
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Shiliang Liu,
Beijing Normal University, China

REVIEWED BY

Yudan Xu,
Shanxi Agricultural University, China
Zhenchao Zhang,
Qingdao Agricultural University, China

*CORRESPONDENCE

Li Peng
pengli@imde.ac.cn

SPECIALTY SECTION

This article was submitted to
Functional Plant Ecology,
a section of the journal
Frontiers in Plant Science

RECEIVED 06 October 2022
ACCEPTED 10 November 2022

PUBLISHED 28 November 2022

CITATION

Chen T, Wang Q, Wang Y and Peng L
(2022) Processes and mechanisms of
vegetation ecosystem responding to
climate and ecological restoration
in China.
Front. Plant Sci. 13:1062691.
doi: 10.3389/fpls.2022.1062691

COPYRIGHT

© 2022 Chen, Wang, Wang and Peng.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author
(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 28 November 2022

DOI 10.3389/fpls.2022.1062691
Processes and mechanisms
of vegetation ecosystem
responding to climate and
ecological restoration in China

Tiantian Chen1,2, Qiang Wang3, Yuxi Wang1 and Li Peng4*

1Chongqing Key Laboratory of Surface Process and Environment Remote Sensing in the Three
Gorges Reservoir Area, Chongqing Normal University, Chongqing, China, 2Chongqing Field
Observation and Research Station of Surface Ecological Process in the Three Gorges Reservoir
Area, Chongqing Normal University, Chongqing, China, 3Chongqing Institute of Surveying and
Monitoring for Planning and Natural Resources, Chongqing, China, 4College of Geography and
Resources, Sichuan Normal University, Chengdu, China
Vegetation is an essential component of the earth’s surface system and its

dynamics is a clear indicator of global climate change. However, the vegetation

trends of most studies were based on time-unvarying methods, cannot

accurately detect the long-term nonlinear characteristics of vegetation

changes. Here, the ensemble empirical mode decomposition and the Breaks

for Additive Seasonal and Trend algorithm were applied to reconstruct the the

normalized difference vegetation index (NDVI) data and diagnose spatiotemporal

evolution and abrupt changes of long-term vegetation trends in China during

1982–2018. Residual analysis was used to separate the influence of climate and

human activities on NDVI variations, and the effect of specific human drivers on

vegetation growth was obtained. The results suggest that based on the time-

varying analysis, high vegetation browning was masked by overall vegetation

greening. Vegetation growth in China experienced an abrupt change in the 1990s

and 2000s, accounting for 50% and 33.6% of the whole China respectively. Of the

area before the breakpoint, 45.4% showed a trend of vegetation decrease, which

was concentratedmainly in east China, while 43% of the area after the breakpoint

also showed vegetation degradation, mainly in northwest China. Climate was an

important driving force for vegetation change in China. It played a positive role in

south China, but had a negative effect in northwest China. The impact of human

activities on vegetation growthchanged from an initial negative influence to a

positive one. In terms of human activities, an inverted-U-shaped relation was

detected between CO2 emissions and vegetation growth; that is, the fertilization

effect of CO2 had a certain threshold. Once that thresholdwas exceeded, it would

hinder vegetation growth. Population density had a slight constraint on vegetation

growth, and the implementation of ecological restoration projects (e.g., the Grain

for Green Program) can promote vegetation growth to a certain extent.

KEYWORDS

vegetation greening, nonlinear characteristics, climate, ecological restoration
projects, normalized difference vegetation index (NDVI)
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1062691/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1062691/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1062691/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1062691/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1062691&domain=pdf&date_stamp=2022-11-28
mailto:pengli@imde.ac.cn
https://doi.org/10.3389/fpls.2022.1062691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1062691
https://www.frontiersin.org/journals/plant-science


Chen et al. 10.3389/fpls.2022.1062691
Introduction

Vegetation is a fundamental component of the terrestrial

ecosystem that has played an important role in regulating

regional climates, maintaining the surface energy balance, and

so forth (Ballantyne et al., 2017; Forzieri et al., 2017; Pan et al.,

2018). In the context of global environmental changes and

intensified human activities, vegetation dynamics have been a

research hotspot and received enhanced interest (Zhu et al.,

2016; Zhao et al., 2020). The normalized difference vegetation

index (NDVI), which measures the absorption and scattering of

the vegetation canopy in the red and near-infrared bands (Hird

and Mcdermid, 2009), has been a successful proxy for dynamic

vegetation change (Piao et al., 2014; Liu et al., 2019; Wang et al.,

2020). However, the time-series NDVI used by scholars often

contains different frequencies, such as outliers, annual, and

interannual trends (Verbesselt et al., 2010; Jong et al., 2011;

Hawinkel et al., 2015) in addition to the noise caused by fog,

clouds, and residual geometric errors (Roy et al., 2002; Yang

et al., 2021). Also, recent time-series NDVI analyses often

assumed that vegetation trends were monotonic over time, and

the analysts have disregarded the nonlinearity and

nonstationarity of NDVI trends (Piao et al., 2015). That might

fail to accurately analyze the spatiotemporal variations in

vegetation trends (Jong et al., 2012; Ji et al., 2014; Pan

et al., 2018).

To overcome these problems, many temporal decomposition

techniques have been recently proposed to detect short-term and

long-term trends and residuals of time-series NDVIs. Examples

of those techniques include the wavelet transform (Rhif et al.,

2020), Fourier spectral analysis (Lhermitte et al., 2008), and

detecting breakpoints and estimating segments in trends

(DBEST) (Tomov, 2016). However, the wavelet transform is

nonadaptive and cannot be integrated with other toolboxes

(Hawinkel et al., 2015). Fourier spectral analysis and the

DBEST application might require a priori-defined function to

represent components and can recognize only short-term

characteristics of vegetation NDVI changes. Consequently, the

ensemble empirical mode decomposition (EEMD) has been

proposed (Huang et al., 1998). It is an adaptive time-frequency

analysis method suitable for decomposing time-series data and

uses a quantitative method that focuses on interannual

fluctuations (Hawinkel et al., 2015; Chen et al., 2017; Feng

et al., 2021). To monitor nonlinear trends of vegetation

change, piecewise linear regression (Pan et al., 2018), Theil–

Sen estimation (Liu et al., 2015), the Mann–Kendall test

(Martıńez and Gilabert, 2009), polynomial fit (Jamali et al.,

2014), and a Breaks for Additive Seasonal and Trend (BFAST)

(Verbesselt et al., 2010) algorithm was developed. Unlike the

other methods, the BFAST algorithm can monitor breakpoint

positions in a time-series NDVI and determine the optimal

number of breakpoints, has been robustly used with various data

sources (Ma et al., 2020; Zhang et al., 2020).
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Studies have found enhanced vegetation growth since the

early 1980s in areas including northern tropical latitudes (Mao

et al., 2016), karst areas (Tong et al., 2020; Zhang et al., 2021b),

and part of Australia (Donohue et al., 2009). That growth might

be the result of rising temperatures (Fensholt et al., 2012), the

fertilization of CO2 (Piao et al., 2006; Zhu et al., 2016), and

increased management intensity (Jia et al., 2014). However, some

studies have also determined that reduced vegetation growth was

hiding in overall vegetation growth (Fu et al., 2015; Feng et al.,

2021), such as in northern Eurasia (Piao et al., 2011), the

southwestern United States (Zhang et al., 2010), Amazonia

(Doughty et al., 2015), and Inner Asia (Zhou et al., 2014). The

reduced growth was caused by drought (Condorelli et al., 2018),

harmful human activities, and so forth. On the whole, the leading

causes of NDVI variation have been climatic forces such as

temperature (TEM) and precipitation (PRE), and human

activities such as socioeconomic development, land-use

change, and implementation of ecological restoration projects

(Wu et al., 2020a; Zhang et al., 2021b). How to quantify the

relative effects of climate change and human activities on NDVI

dynamic changes incurs several unique researches (Ge et al.,

2021; Shi et al., 2020). Residual analysis, which is a quantitative

method, can be used to identify the effects of climate and human

activities on vegetation variation at spatiotemporal scales (Jiang

et al., 2017; Chu et al., 2018; Zhang et al., 2021a), and has been

used in this study.

Many scholars have paid attention to the spatiotemporal

change trends of the NDVI in China. Those studies found that

since the 20th century, vegetation has improved significantly in

the karst area of southwest China (Yue et al., 2020; Qi et al.,

2021), in the Loess Plateau (Wu et al., 2020b; Li et al., 2021), and

in northern China (Liu et al., 2021), largely due to ecological

restoration projects. At the same time, however, drought has

caused reduced vegetation growth in northwest China (Zhang

et al., 2015). Most of those studies focused on short-term

vegetation changes in specific regions, and less research has

been done on long-term NDVI changes and their nonlinear

characteristics over the whole of China. Studies have also paid

much attention to the effect of climate on NDVI changes, but the

effect of human activities especially the specific human drivers

has rarely been quantified. For those reasons, in this study (1)

long time-series NDVI data were obtained by EEMD (i.e., an

interannual component), which represented actual vegetation

growth; (2) it was detected where and when vegetation

spatiotemporal patterns evolved and changed abruptly in

China over nearly the last four decades using the BFAST

algorithm; (3) residual analysis was used to evaluate and

separate the relative contributions of climate and human

activities on NDVI variation; and (4) three indicators were

selected that indicated specific human activities, and the effect

of specific human activities on vegetation NDVI changes was

analyzed. This study can provide scientific support for a

comprehensive understanding of the characteristics of
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vegetation change in China and an in-depth understanding of

the effect of climate and human activities on vegetation

change (Figure 1).
Materials and methods

Data sources

Currently, commonly used NDVI data products include the

GIMMS3g NDVI, the SPOT-VGT NDVI, and the MODIS

NDVI. The time series of the GIMMS3g NDVI data is longer

(from July 1981 to December 2015) but lacks data for the recent

5 years, and its resolution is low (8 km). The SPOT-VGT and

MODIS NDVI data have a high spatial resolution

(approximately 1 km), but the time series is short, covering

only approximately 20 years. The NDVI dataset used in this

study was the NOAA CDR NDVI. Because the raw data for

October, November, and December 1994 and November and

December 2020 were missing for China, the data for those

months were set at 0. Based on the NOAA CDR NDVI, the R

rgee package was used to invoke the Google Earth Engine, then

long-term time series for the NDVI in China were generated

through a maximum-value composite procedure and clipping.

The obtained NDVI data had the longest time series (from 1981

to 2020), and the spatial resolution was 5 km, which was better

than that of the GIMMS3g NDVI data. The obtained data can be

used for large-scale, long-term vegetation change research. The

NDVI data in this study were from the National Earth System

Science Data Center, National Science & Technology

Infrastructure of China (http://www.geodata.cn).
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In this study, TEM, PRE, and solar radiation (SR) were

selected as the main climatic forces changing NDVI secular

trends. The TEM and PRE datasets of China were generated

from global 0.5° and high-resolution climate datasets through

the Delta spatial downscaling scheme. Moreover, data from 496

independent meteorological observation points were used for

verification, and the verification results were credible. They were

from the National Tibetan Plateau Data Center (http://data.tpdc.

ac.cn/zh-hans/), the time scale was from January 1901 to

December 2020, and the spatial resolution was 1 km. The SR

data in this study were derived from the dataset published by the

Copernicus Climate Change Service (C3S), operated by the

European Centre for Medium-Range Weather Forecasts. It can

be downloaded at https://cds.climate.copernicus.eu/cdsapp#!/

search. The SR data time scale was from January 1981 to

February 2022, and the spatial resolution was 0.1°. Based on

NDVI data, the coordinate system and resolution of the raster

data were unified, and a raster dataset with a spatial resolution of

5 km from 1982 to 2020 was obtained.

The land-use dataset used in this study was to obtain the

forests area and it was operated on the Google Earth Engine

platform, with a time scale of 1990 to 2018 and a spatial

resolution of 30 m. For details, please refer to Yang and

Huang (2021). Long-term data on CO2 emissions and

population density were obtained from the China Energy

Statistical Yearbook and China Demographic Yearbook

respectively. Other data, such as administrative boundaries,

elevation, and the seven geographic regions of China

(Supplementary Figure S1), were from the Resource and

Environment Science and Data Center, Chinese Academy of

Sciences (https://www.resdc.cn/).
FIGURE 1

Framework map. x(t) means white noise, IMF means intrinsic mode functions, and Res is residual.
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Methods

Extracting the interannual component from
the time-series NDVI by EEMD

To avoid the mode aliasing problem of empirical mode

decomposition, the EEMD was first proposed by Huang et al.

(1998). It can decompose a time series (e.g., the NDVI, TEM, or

sea level) into a series of physically meaningful components

with no a priori functions while preserving the time domain

flexibility of different time series (Hawinkel et al., 2015). The

main goal of EEMD is to add white noise to the original data D

(t) by using the statistical characteristics of Gaussian white

noise with a uniform frequency distribution, so that the original

data D(t) has continuity at different scales after adding the

Gaussian white noise, thereby reducing the degree of modal

aliasing and achieving signal decomposition. The specific

decomposition steps of EEMD are (1) set the processing

number of the original data D(t), (2) add random white noise

to the original data and form a series of new data, (3) do

empirical mode decomposition on the new data to obtain

different intrinsic mode functions (IMFs) and a final residual

term R(t) (Eq. [1]), and (4) average the IMFs of the

corresponding modes. The EEMD decomposition result is

thereby obtained. All IMFs must meet the following two

conditions: (1) the number of extrema and zero crossings is

less than 1 in the entire time series, and (2) the mean value of

the upper and lower envelopes is 0 at any point. If those

conditions are not met, the decomposition steps are repeated.

After the EEMD, the low order is generally the high-frequency

part, the high order is generally the low-frequency part, and

each IMF not only contains different frequency components,

but also carries different energy, and both vary with the original

data D(t).

DðtÞ ¼o
n

i=1
IMFi(t) + R(t) (1)

Meantime, after decomposing, all pixel values of the 37-year

monthly NDVI data were spatially averaged, and a D(t) series

with 444 values was obtained for China. Noises were iteratively

added with 100 numbers and a 0.1 standard deviation to the D(t)

series. Every IMF had a corresponding mean period Ts.

According to Hawinkel et al. (2015), IMFs with a Ts of<0.5

year were considered noise components (Cnoise), IMFs with 0.5

year ≤ Ts ≤ 2.0 years were considered seasonal components

(Cannual), and IMFs with a Ts of >2.0 years and residual trends

were considered interannual change components (Cinterannual).
Detecting breakpoints by the Breaks for
Additive Seasonal and Trend algorithm

The BFAST algorithm can decompose an original time-series

NDVI into seasonal components, trend components, and residual
Frontiers in Plant Science 04
components and effectively detect sudden changes in a time-series

NDVI (Verbesselt et al., 2012). In this study, the BFAST package

was used in R to detect the number of breakpoints of an

interannual NDVI and their positions in a long time-series

NDVI. Specifically, first, a moving sum test was used to

determine whether there was a mutation point, then the

Bayesian information criterion was applied to determine the

optimal number of breakpoints, and finally the locations of the

breakpoints in the time-series NDVI were estimated through a

least-squares regression.

In actual calculations, BFAST requires that the parameters of

the seasonal model and the maximum number of breakpoints be

specified. In terms of the parameters of the seasonal model, that

model was removed when the interannual component of NDVI

was obtained, so the seasonal model was set as “none.” In

climatology, the interannual trend refers mainly to the

variability of time scales greater than 1 year and less than 10

years. So, the maximum number of breakpoints was set to 3 in

the time series. In terms of spatial distribution, to avoid the result

being too complicated, the maximum number of breakpoints

was set to 1.

Identifying the forces driving the interannual
NDVI variation

Based on pixels, the absolute interannual change rate of

NDVI was calculated by the unitary linear regression analysis

method: the computation equation is expressed as

qslope =
n�o

n

i=1
i� NDVIið Þ −o

n

i=1
io
n

i=1
NDVIi

n�o
n

i=1
i2 − o

n

i=1
i

 !2 (2)

where n is for times; NDVIi is the interannual NDVI of one

pixel in time i; qslope >0 indicates an increasing trend, and the

converse denotes a decreasing trend; and |qslope| ≈ 0 shows that

there is almost no change in the interannual NDVI.

In this study, a regression model between climatic forces

(TEM, PRE, SR) and the interannual NDVI was constructed.

The simulated NDVI according to the climate was calledNDVIC.

Then, the residual between the actual interannual NDVI and

NDVIC was calculated and called NDVIH to characterize the

effect of human activities on vegetation changes. The specific

equation is

NDVIC = b0 + b1 � PRE + b2 � TEM + b3 � SR + ϵ (3)

NDVIH = NDVI − NDVIC (4)

where NDVIC is the simulated NDVI under the effect of

climate; NDVIH is the residual and represents the NDVI changes

caused by human activities; b0 is the regression intercept; b1, b2,
and b3 are the partial correlation coefficients between the NDVI
frontiersin.org
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and PRE, TEM, and SR; and ϵ is the random error. For

the partial correlation coefficient, it represents the magnitude

of the correlation between two variables calculated under the

condition of eliminating the influence of other variables. Its

equation is

Rxy =
o
n

i=1
½(xi − �x)(yi − �y)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
n

i=1
(xi − �x)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − �y)2

s (5)

Rxy,z =
Rxy − RxzRyzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − R2
xz)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 − R2

yz)
q (6)

where Rxy is the linear correlation coefficient of

the two variables of x and y, Rxz is the linear correlation

coefficient of the two variables of x and z, Ryz is the linear

correlation coefficient of the two variables of y and z, Rxy,z is the

partial correlation coefficient of x and y after the independent

variable z is fixed, xi and yi are the values of the variables x and y

in the time i respectively, x and y are the average value of the two

variables x and y from 1982 to 2018, and n is the number

of samples.

After achieving the separation of climate and human

activities on vegetation growth, three indicators were selected

to statistically clarify the effect of specific human drivers on

vegetation changes: the amount of CO2 emission, population

density, and the ratio of forests to China’s total area.
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Results

Spatiotemporal variations in the
interannual NDVI trend

The result of NDVI decomposition in this study was shown

in Figure 2A. It can be seen that noise contained useless

information, and the annual component represented the short-

term seasonal trend. So, our focus was mainly on the interannual

component’s spatiotemporal variations and driving forces.

According to the statistics on the value of the interannual

NDVI for all of China and its seven geographic regions, the

interannual NDVIs for the seven geographic regions were

significantly different. The NDVIs from large to small were

south China > east China > central China > northeast China >

southwest China > north China > northwest China (Figure 2B),

and the maximum in south China was nearly 3 times the

minimum in northwest China. There was also a noticeable

interannual NDVI fluctuation and a significant increasing

trend (slope = 0.0015 yr–1, p<0.001) from 1982 to 2018.

The increasing rates of overall interannual NDVI trends of the

seven geographic regions were different: they were significant at

the 0.05 level for northwest China (slope = 0.12 yr–1) and

southwest China (slope = 0.0019 yr–1), and were significant at

the 0.001 level for south China (slope = 0.0034 yr–1), central

China (slope = 0.0029 yr−1), east China (slope = 0.0024 yr–1),

northeast China (slope = 0.0018 yr–1), and north China (slope =

0.001 yr–1).
A B

FIGURE 2

Decomposition result and change trend of interannual NDVI. (A) Change trend of noise, annual and interannual NDVI in China. (B) Change trend
of interannual NDVI in China and its seven geographic regions.
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The mean value of interannual NDVI was between 0 and

0.78, it was spatially higher in southeast China than in the

northwest, and the dividing line between high and low values

was basically close to the Hu Line (Figure 3A). The slope of the

interannual NDVI variation was between –0.0006 and 0.0008,

and the slope of nearly 74.8% of the entire region was greater

than 0 (Figure 3B), indicating vegetation greening in most parts

of China, especially in central and south China. Nearly 25.2% of

China showed a vegetation browning trend, which were mainly

in northwest China.
Breakpoints of NDVI trend

The breakpoints of the time-series interannual NDVI were

identified by the BFAST algorithm (Supplementary Figure S2),

and the change trend of the interannual NDVI in four stages was

linearly fitted (Figure 4). The results showed that the change of the

interannual NDVI in China was clearly nonlinear. The

interannual NDVI in the first and second stages showed a

downward trend and in the later two stages showed an upward

trend. An important turning point in the vegetation trend change

in China was in 1995. Relative to the first stage (mainly from 1982

to 1990), the vegetation in the second stage (mainly from 1991 to

1995) had a larger downward trend (slope = 0.008, p = 0.156), and

the growth rate of the vegetation (slope = 0.0043, p = 0.013) in the

third stage (mainly from 1996 to 2004) was also greater than in the

fourth stage (mainly from 2005 to 2018). For the seven

geographical regions, the nonlinear characteristics of interannual

NDVI changes were markedly different. In the first stage, the

interannual NDVI in northeast and north China showed a

decreasing trend, whereas east China, south China, central

China, northwest China, and southwest China showed an

increasing trend. In the second stage, northeast China, north

China, east China, and south China all showed an NDVI

decreasing trend, whereas central China, northwest China, and
Frontiers in Plant Science 06
southwest China showed an increasing trend. In the third and

fourth stages, the interannual NDVI basically showed an

increasing trend in different geographic regions, but the rate was

slightly different.

Half pixels of China showed breakpoints in interannual

NDVI variations, most of which appeared in the 1990s, as

shown in Figure 5, which were distributed in central and

southern China. In fact, many relevant studies have found

abrupt changes in NDVI trends during the 1990s (Chen et al.,

2014), which was roughly in agreement with our studies. In the

2000s, 33.6% of China showed obvious breakpoints, mainly in

northwest China. Also, the occurrence time of breakpoints in

different geographical regions differed. In central China, east

China, north China, south China, and southwest China, the

abrupt change was mianly in the 1990s; its coverage in those

regions accounted for 53.57%, 60.34%, 46.22%, 66.73%, and

59.47% of China respectively. For northeast and northwest

China, the breakpoints of interannual NDVI changes were

concentrated mainly in the 1990s and 2000s, accounting for

42.38% and 35.11%, and 33.35% and 45.34% of the total

area respectively.

The slope of the interannual NDVI variation in 45.4% of

China was less than 0 before the breakpoint, which meant that

45.4% of China had an NDVI degradation trend; those regions

were distributed in the coastal area of southeast China

(Figure 6A). And 54.6% of China had an NDVI recovery

trend, those regions were distributed at the central part of

China. For each geographic region, the slope of the

interannual NDVI in south China before the breakpoint

fluctuated greatly, whereas the mean value in central China

was higher at 0.0002 (Figure 6B). After the breakpoint, the area

where the slope of the interannual NDVI was less than 0 was

slightly reduced to 43%, and the area where the slope was greater

than 0 was in 57% of the total area, showing an increasing trend.

The region with a slope of less than 0 was mainly in western

China, and the region with a slope of greater than 0 was mainly
A B

FIGURE 3

Mean value and change trend of multiyear interannual NDVI. (A) Mean value of multiyear interannual NDVI. (B) Change trend of multiyear
interannual NDVI.
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FIGURE 4

Breakpoints of time-series interannual NDVI in China.
FIGURE 5

Spatial distribution of breakpoints of the interannual NDVI in China.
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in east China (Figure 6C). The slope of the interannual NDVI in

southwest China after the breakpoint fluctuated greatly, whereas

the mean value in south China was higher, at 0.0004 (Figure 6D).

Overall, the change range of the interannual NDVI after the

breakpoint was larger, and NDVI greening was stronger.
Driving forces of interannual
NDVI variation

From the change trends of NDVIC and NDVIH, it can be seen

that the mean value of NDVIC was greater than 0, indicating the

positive effect of climate on vegetation growth in China

(Figure 7). The effect of human activities on vegetation growth

fluctuated greatly, and changed from a negative effect at the

beginning to a positive effect at the end. At the same time, the

mean value of NDVIC was substantially higher than that of

NDVIH, indicating that climate had the greater effect on the

variation in the vegetation NDVI in China. The turning point of

NDVIH to a positive effect occurred in approximately 2008. In

fact, China has done a series of ecological restoration projects

since the 1990s, and the scale continued to expand in the 2000s.

But the positive effect did not occur until 2008, which might be
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caused by other negative human drivers and reflect the lagging

effect of human activities on vegetation growth.

The slope of NDVIC in north and northwest China was less

than 0, indicating that the positive effect of climate on vegetation

growth was weakening, and the restrictive effect was

strengthening (Figure 8A). The slope of NDVIC in south

China was the largest, indicating the continuous positive effect

of climate on regional vegetation growth. As for the change of

NDVIH, the areas with a slope of less than 0 were in north and

northwest China, reflecting the sustainability of positive effects

of ecological restoration projects on vegetation growth in those

regions should be further strengthened (Figure 8B). Areas with a

greater slope of NDVIH were mainly in central and south China,

and many relevant studies have confirmed the contribution of

Grain to Green program to vegetation greening in southern

China (Tong et al., 2018), which was consistent with our study.

According to the driving-forces partition of NDVI variation

shown in Figure 9, the areas of climate and human activities

affecting NDVI changes were relatively close, indicating that the

changes of interannual NDVI in China were the result of the

combined effects of climate and human activities. Among them,

the area of human-controlled decrease in the NDVI accounted

for approximately 11.6% of the study area, distributed in mainly
D

A B

C

FIGURE 6

Change trends of interannual NDVI before and after breakpoint. (A) Slope of interannual NDVI before breakpoint. (B) Distribution of NDVI slope
before breakpoint in different geographical regions. (C) Slope of interannual NDVI after breakpoint. (D) Distribution of NDVI slope after
breakpoint in different geographical regions.
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the northern margin of the Qinghai-Tibet Plateau, the northern

part of north China, the Yangtze River Delta, and the Pearl River

Delta. The area of climate-controlled decrease in the NDVI

accounted for approximately 13.5% of the whole region,

distributed mainly in northwest China. The area of human-

controlled NDVI increase accounted for approximately 42.60%

of the study area, located in mainly the central, northeast, and

southwest parts of China, similar to the distribution of ecological

construction projects. The area with a climate-controlled

increase in the NDVI accounted for approximately 32.30% of

the entire region, distributed in mainly the Qinghai-Tibet

Plateau and south China.

For specific human drivers, the amount of CO2 emission

represented economic development, population density
Frontiers in Plant Science 09
represented the population agglomeration, and the ratio of

forests represented the application of ecological restoration

projects. It is shown in Supplementary Figure S3 that there

was a clear inverted-U-shaped relation between vegetation

growth and CO2 emissions. That is to say, the increase in CO2

emissions at the initial stage stimulated vegetation growth.

When the emissions peaked, the positive effect of CO2

emissions on vegetation growth reached the optimum, but

when the emissions continued to increase, vegetation growth

was inhibited. The threshold of CO2 emissions was roughly 4.6

to 4.8 million tons. Therefore, policies should be carried out to

control the amount of CO2 emissions. Increased population is an

important cause of land cover/use change and the consequent

vegetation change. Supplementary Figure S4 showed that there
A B

FIGURE 8

Slope of NDVIC and NDVIH. (A) Slope of NDVIC. (B) Slope of NDVIH.
FIGURE 7

Long-term trend of NDVIC and NDVIH. NDVIC was the NDVI change caused by climate, and NDVIH was the NDVI change caused by human
activities. The significance test is at the 0.05 level.
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was indeed a negative correlation between population density

and the interannual NDVI, but this negative effect was not

substantial. As an important means to increase the vegetation

coverage and solve the ecological environment problems in

China, ecological restoration projects have always been a focus

of research. From Supplementary Figure S5, it can be seen that

the increase in the forested area ratio had a positive effect on

vegetation growth in China. However, their relation gradually

stabilized in the later period, which means that the increase in

the ratio of forests area will no longer bring continuous

vegetation growth, and the ecological restoration project needs

to be optimized.
Discussion

As an important proxy to characterize the earth vegetation

coverage and analyze the response of vegetation to global climate

change, the NDVI has been widely used in related fields (Julien

and Sobrino, 2009; Saleem et al., 2020). However, the NDVI data

used in many studies contained noise and seasonal components,

and it was difficult to show the true change trends of vegetation.

To this end, some methods have been proposed to decompose

the NDVI data. Among them, the EEMDmethod is quite robust

to noise and short-term disturbances and has been widely used

(Pan et al., 2018). Based on this, this study used EEMD to

reconstruct the NDVI and obtain its interannual components for

a long-term trend study. In accordance with previous studies

using time-unvarying methods, most vegetated lands have

experienced overall greening over nearly four decades, and

occurred in central and south China (Jong et al., 2011; Zhu

et al., 2016). Actually, most of the browning trends were detected
Frontiers in Plant Science 10
in this study by nonlinear methods, and this was supported by

other studies at regional and continental scales (Cunha et al.,

2015; Nyamekye et al., 2020; Valtonen et al., 2021). Some studies

have pointed out that the 1990s was an important turning point

for global vegetation changes (Wen et al., 2017; Zhang et al.,

2021a), which is consistent with the results obtained in this

study, where half pixels in China showed breakpoints in

interannual NDVI variations in the 1990s. In terms of spatial

distribution, the breakpoints appeared at different times in seven

geographic regions. The mutation changes occurred in the 1990s

in central, south, and east China, reflecting the distribution and

development trend of China’s economy. However, the

breakpoint of northwest China occurred mainly in the 2000s,

which was in line with the vigorous implementation of ecological

restoration projects in this region.

This study argued that TEM, PRE, and SR were among the

primary climatic forces affecting the distribution and growth of

vegetation in China (Piao et al., 2006; Kong et al., 2017), and the

interannual trends of the three climatic drivers in the same time

period were obtained (Figure 10). It was found that TEM

increased significantly in the 37 years (0.03 °C·yr-1, P<0.001),

and there was an increasing trend in PRE and SR (0.37 mm·yr-1

and 0.12 107J·yr-1), but they did not pass the significance test (P

= 0.44 and 0.007). That is to say, the changes in PRE and SR in

China were not obvious, but the TEM rose substantially.

Increases in TEMs above the optimum will likely decrease

vegetation photosynthesis and increase evaporation (Su and

Shangguan, 2018; Feng et al., 2021). Especially for arid or

semiarid regions, although these regions have implemented

ecological restoration projects, the lack of PRE and the rise in

evaporation hindered vegetation growth, showing a downward

trend (Claussen et al., 2013). That was consistent with our results
FIGURE 9

Driving-forces partition of interannual NDVI variation.
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of vegetation browning in northwest China. In fact, climate and

human activities jointly affected vegetation changes in China,

and their influencing scopes were similar. Especially for the

central China and karst areas of southwest China, human

activities were the main driving forces for their vegetation

increase, which is close to the related research and might be

the result of the Grain for Green program (Tong et al., 2017; Liao

et al., 2018; Tong et al., 2018). However, in the early stage of the

implementation of the ecological restoration project, the growth

rate of regional vegetation NDVI was relatively high (slope =

0.01, P = 0.008), but the growth rate decreased significantly in

the later stage (slope = 0.001, P = 0.024), which means the

sustainability of the ecological restoration program should be

further strengthened. Also, the year that the effect of human

activities on vegetation growth changed from negative to positive

was 2008, which was late to the implementation time of the

Grain for Green program. That is mainly because other human

drivers may offset the positive effect of ecological restoration

program on vegetation increase, and there is a lagged effecct of

ecological restoration program on vegetation growth.

For specific human activities, the implementation of

ecological restoration programs, which is characterized by

increasing the area ratio of forests, has played a very important

and positive role in increasing vegetation coverage at the early

stage, and close to other studies (Tong et al., 2017; Hu et al.,

2018); but the increase in forest area ratio did not bring a

continuous enhanced vegetation growth. When the ratio of

forests area reached a certain threshold, the vegetation NDVI

tended to stabilize. Therefore, it is essential to reverse the single
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ecological restoration scheme, which regarded the forests area

increasing as the main method and optimize the ecosystem

structure. Also, as China’s industrialization process has

accelerated, CO2 emissions caused by energy consumption

have surged. Many studies have pointed out that as a raw

material for vegetation photosynthesis, increasing CO2

emissions accelerates vegetation photosynthesis, and vegetation

growth is promoted through fertilization (Wang et al., 2011).

This study also found that CO2 emissions would promote

vegetation growth through fertilization in the early stage, but

this fertilization effect was not always continuous and effective.

There was an inverted-U-shaped relation between the amount of

CO2 emissions and the vegetation NDVI. That is, when the CO2

content exceeded a certain level, vegetation growth was

inhibited, which partly reflected that ecosystems are suffering

increasing stresses and experiencing a shift from a period

dominated by the positive effects of fertilization to a period

characterized by the saturation of the positive effects of

fertilization on vegetation growth and rise of negative impacts

of climate change (Peñuelas et al., 2017; Pan et al., 2018). That

was mainly because CO2 content exceeding the threshold

accelerates the rise of the surface TEM, prolongs the

vegetattion growing season, and then aggravates the

decomposition of organic matter (Terrer et al., 2019; Feng

et al., 2021).

In this study, the breakpoints of vegetation NDVI change

were identified by the BFAST algorithm. Actually, the

identification of the breakpoint was related to the research

periods and methods, and the difference in breakpoints
FIGURE 10

Temporal variations of interannual trend of climate in China.
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number would cause different results, so comparing the

conclusions of different research results must be more

thorough. The function between interannual NDVI and TEM,

PRE, and SR was constructed, and the NDVI changes caused by

human activities were calculated by residual analysis. In fact, the

NDVI changes resulted from the combined actions of climate

and human activities, there was an obvious interaction between

them, and the influence of the interaction often exceeded that of

a single indicator (Wang et al., 2016). Therefore, research on the

interaction between climate and human activities should be

increased in the future.
Conclusion

Through related methods, our study investigated the

nonlinear characteristics of the interannual NDVI and its

driving forces in China from 1982 to 2019. It was found by

the time-unvarying method that there was a marked vegetation

increase trend, with an average rate of increase of 0.0015 per

year. The spatial distribution of vegetation NDVI in China was

regular, and its high and low NDVI value boundary was close to

the Hu Line but did not cross that line, which reflected the

constraints of geographic features on vegetation growth.

Actually, the vegetation growth in China was not monotonous,

and substantial vegetation browning was masked by overall

vegetation greening. For most regions, abrupt change occurred

in the 1990s and 2000s: 45.4% of the area before the breakpoint

showed a trend of vegetation decrease, whereas 43% of the area

after the breakpoint also showed a vegetation decrease. Climate

and human activities were the main forces for China’s vegetation

changes. Specifically, human activities dominated the

interannual vegetation recovery in central and south China,

whereas climate was the leading cause of vegetation

degradation in northwest China. In specific human activities,

there was an inverted-U-shaped relation among CO2 emissions

and vegetation NDVI changes, a negative effect of population

density on vegetation increase, and a positive effect of the forest

ratio on vegetation growth. Therefore, the results of this study

provide a scientific basis for the development of vegetation

management and protection strategies in the study area.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author/s.
Frontiers in Plant Science 12
Author contributions

TC: Conceptualization, Data curation, Writing – original

draft. QW: Conceptualization, Data curation, Supervision,

Writing– review and editing. YW: Data curation, Supervision,

Writing – review and editing. LP: Conceptualization, Data

curation, Supervision, Formal analysis, Writing – review and

editing. All authors contributed to the article and approved the

submitted version.
Funding

This work was supported by the National Natural Science

Foundation of China (No. 42001090) and the National Key

Research and Development Program of China (2022YFF1300701).
Acknowledgments

Acknowledgement for the data support from “National

Earth System Science Data Center, National Science &

Technology Infrastructure of China (http://www.geodata.cn)”.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fpls.2022.1062691/full#supplementary-material
frontiersin.org

http://www.geodata.cn
https://www.frontiersin.org/articles/10.3389/fpls.2022.1062691/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.1062691/full#supplementary-material
https://doi.org/10.3389/fpls.2022.1062691
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2022.1062691
References
Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P.,
et al. (2017). Accelerating net terrestrial carbon uptake during the warming
hiatus due to reduced respiration. Nat. Clim Chang 7, 148–152. doi: 10.1038/
nclimate3204

Chen, X. Y., Zhang, X. B., Church, J. A., Watson, C. S., King, M. A., Monselesan,
D., et al. (2017). The increasing rate of global mean sea-level rise during 1993–2014.
Nat. Clim Chang 7, 492–495. doi: 10.1038/nclimate3325

Chen, B. X., Zhang, X. Z., Tao, J., Wu, J. S., Wang, J. S., Shi, P. L., et al. (2014).
The impact of climate change and anthropogenic activities on alpine grassland over
the qinghai-Tibet plateau. Agric. For Meteorol 189–190, 11 18. doi: 10.1016/
j.agrformet.2014.01.002

Chu, H. S., Venevsky, S., Wu, C., and Wang, M. H. (2018). NDVI-based
vegetation dynamics and its response to climate changes at amur-heilongjiang
river basin from 1982 to 2015. Sci. Total Environ. 650, 2051–2062. doi: 10.1016/
j.scitotenv.2018.09.115

Claussen, M., Bathiany, S., Brovkin, V., and Kleinen, T. (2013). Simulated
climate-vegetation interaction in semi-arid regions affected by plant diversity. Nat.
Geosci 6, 954–958. doi: 10.1038/ngeo1962

Condorelli, G. E., Maccaferri, M., Newcomb, M., Andrade-Sanchez, P., White, J.
W., French, A. N., et al. (2018). Corrigendum: Comparative aerial and ground
based high throughput phenotyping for the genetic dissection of NDVI as a proxy
for drought adaptive traits in durum wheat. Front. Plant Sci. 24 (9). doi: 10.3389/
fpls.2018.01885
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