
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Christopher Rensing,
Fujian Agriculture and Forestry
University, China

REVIEWED BY

Shihong Luo,
Shenyang Agricultural University,
China
Vishnu Sukumari Nath,
Donald Danforth Plant Science Center,
United States

*CORRESPONDENCE

Yu-Lan Jiang
yljchsd@163.com

SPECIALTY SECTION

This article was submitted to
Plant Symbiotic Interactions,
a section of the journal
Frontiers in Plant Science

RECEIVED 03 October 2022

ACCEPTED 28 October 2022
PUBLISHED 16 November 2022

CITATION

Zhang H, Yang M-F, Zhang Q, Yan B
and Jiang Y-L (2022) Screening for
broad-spectrum antimicrobial
endophytes from Rosa roxburghii
and multi-omic analyses of
biosynthetic capacity.
Front. Plant Sci. 13:1060478.
doi: 10.3389/fpls.2022.1060478

COPYRIGHT

© 2022 Zhang, Yang, Zhang, Yan and
Jiang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 16 November 2022

DOI 10.3389/fpls.2022.1060478
Screening for broad-spectrum
antimicrobial endophytes
from Rosa roxburghii and
multi-omic analyses of
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2Guizhou Academy of Testing and Analysis, Guiyang, China, 3Institute of Entomology, Guizhou
University, Guiyang, China, 4College of Tobacco Science, Guizhou University, Guiyang, China
Plants with certain medicinal values are a good source for isolating function-

specific endophytes. Rosa roxburghii Tratt. has been reported to be a botanical

source of antimicrobial compounds, which may represent a promising

candidate for screening endophytic fungi with antimicrobial potential. In this

study, 54 endophytes were isolated and molecularly identified from R.

roxburghii. The preliminary screening using the plate confrontation method

resulted in 15 different endophytic strains showing at least one strong inhibition

or three or more moderate inhibition against the 12 tested strains. Further re-

screening experiments based on the disc diffusion method demonstrated that

Epicoccum latusicollum HGUP191049 and Setophoma terrestris HGUP190028

had excellent antagonistic activity. The minimum inhibitory concentration

(MIC) test for extracellular metabolites finally indicated that HGUP191049 had

lower MIC values and a broader antimicrobial spectrum, compared to

HGUP190028. Genomic, non-target metabolomic, and comparative

genomic studies were performed to understand the biosynthetic capacity of

the screened-out endophytic fungus. Genome sequencing and annotation of

HGUP191049 revealed a size of 33.24 megabase pairs (Mbp), with 24

biosynthetic gene clusters (BGCs), where the putative antimicrobial

compounds, oxyjavanicin, patulin and squalestatin S1 were encoded by three

different BGCs, respectively. In addition, the non-targeted metabolic results

demonstrated that the strain contained approximately 120 antimicrobial

secondary metabolites and was structurally diverse. Finally, comparative

genomics revealed differences in pathogenicity, virulence, and carbohydrate-

active enzymes in the genome of Epicoccum spp. Moreover, the results of the

comparative analyses presumed that Epicoccum is a promising source of
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antimicrobial terpenes, while oxyjavanicin and squalestatin S1 are antimicrobial

compounds shared by the genus. In conclusion, R. roxburghii and the

endophytic HGUP191049 isolated from it are promising sources of broad-

spectrum antimicrobial agents.
KEYWORDS

biological activity, Epicoccum, genomics, non-target metabolomics, comparative
genomics, Epicoccum latusicollum, Setophoma terrestris
1 Introduction

Endophytic fungi are generally recognized as a group of

microorganisms that do not cause substantial damage to the host

and live harmlessly in healthy plant tissues throughout a certain

life cycle stage (Yuan et al., 2018). The existence of fungi inside

the tissues of healthy plants has been known as early as the late

19th century when endophytic fungi were first successfully

isolated from darnel (Lolium temulentum) (Freeman, 1904;

Kusari et al., 2012). However, plant endophytic fungi had not

attracted much attention as a new microbial resource until 1993.

When an endophytic fungus, Ceriporiopsis andreanae

(basionym Taxomyces andreanae), was isolated from Taxus

brevifolia for the production of taxol, which initiated a surge

in studies on endophytes (Stierle et al., 1993; Cheng et al., 2022).

Another excellent anticancer drug, vincristine is originally

reported from Catharanthus roseus, endophytic Fusarium

oxysporum isolated from this plant can also produce

vinblastine and vincristine in appreciable amounts (Kumar

et al., 2013). The herb Artemisia annua L. is well known for

its antimalarial properties and is the source of the antimalarial

drug artemisinin (Madsen et al., 2010). Extracts of both

endophytic Penicillium and Talaromyces isolated from

A. annua exhibited significant antimalarial activity (Alhadrami

et al., 2021). Therefore, endophytic fungi can produce the same

natural products as their host plants. Importantly, microbial

fermentation has several advantages over the use of plants for the

production of bioactive substances, such as easy-to-operate,

reducing the need for plants, and obtaining stronger active

drug derivatives by varying the culture conditions (Kumar

et al., 2013).

Various endophytic fungi have been employed in recent

years to produce bioactive compounds, such as Aspergillus,

Epicoccum, Hypoxylon, Induratia, Penicillium, Phoma,

Phaeosphaeria, Saccharomycopsis, Sarocladium, Trichoderma,

and Wickerhamomyces. The biologically active secondary

metabolites deriving from endophytic fungi belong to diverse

structural classes. The secondary metabolites include alkaloids,

anthraquinones, polyketides, sterols, terpenes, and volatile

organic compounds (Zhang et al., 2021a). They possess potent
02
antimicrobial, antiviral, insecticidal, antioxidative, antidiabetic,

cytotoxic, and anticancer properties (Deshmukh et al., 2015;

Zhang et al., 2019; Fernando et al., 2020; Manganyi and Ateba,

2020; Pal et al., 2020; Rahaman et al., 2020; Agrawal et al., 2022).

A few endophytic fungi can produce phytohormones to promote

the growth of their host plants. And synthesize bioactive

compounds to increase the resistance of the plants to

environmental stresses. Still, they can also promote the

accumulation of secondary metabolites initially produced by

the plant, including pharmaceutical ingredients (Jia et al., 2016).

Research on endophytic fungi has become more accessible

with the continual advancement of sequencing and omics

technologies. Genetics- and genomics-based strategies have

emerged as a comprehensive approach to studying natural

microbial products (Walker et al., 2020). It is possible to

elucidate the basic pathways of secondary metabolites isolated

from organisms using these technologies. These technologies

can facilitate the computational discovery of biosynthetic

pathways. Producer strains for biosynthesis are investigated,

silenced biosynthetic gene clusters are activated, and synthetic

pathways for novel compounds are designed to increase their

yields and activity (Sagita et al., 2021). Comparative multi-

genome analysis significantly improves understanding of the

genetic and metabolic diversity of endophytic fungi involved in

different host-plant interactions (Ye et al., 2017). Additionally,

the putative functional characteristics of endophytes can be

elucidated by metagenome-based analyses (Gupta et al., 2020).

The rapid development of omics technologies has accelerated the

development of endophytic fungal resources.

Rosa roxburghii Tratt., a homology of medicine and food, has

received considerable attention across many research fields because

of its notably high vitamin C. Various phytochemicals extracted

from its fruits, roots, and leaves have shown potential antimicrobial

activity. When choline chloride with lactic acid or levulinic acid

(molar ratio 1:2) as deep eutectic solvents, the extracts of

R. roxburghii leaves showed incredible antibacterial activities

against the five tested pathogens (Bacillus subtilis, Escherichia coli,

Listeria monocytogenes, Salmonella typhimurium, and

Staphylococcus aureus), with the minimum inhibition

concentration (MIC) values ranging from 0.012 to 0.049 mg/mL
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(Wang et al., 2021). Strictinin isomers, separated from the root of

this plant, were excellent antimicrobial components, mainly

responsible for oxidative stress and protein synthesis disorder

(Ma et al., 2020). Since R. roxburghii is a botanical source of

antimicrobial compounds, it may represent a promising target for

screening endophytic fungi with antimicrobial potential. We

isolated endophytic fungi from R. roxburghii and screened the

most prospective strain by antimicrobial activity assays.

Additionally, we investigated the strain’s biosynthetic capacity

through genomics, non-targeted metabolomics, and

comparative genomics.
2 Materials and methods

2.1 Isolation and identification

2.1.1 Sample collection and endophyte
isolation

Healthy R. roxburghii tissues (roots, stems, leaves, flowers,

fruits, and seeds) were collected from April to August 2020 in

Guizhou Province (27°4′50″ N, 106°29′50″ E and 25°52′52″ N,

104°33′59″ E), China. Endophytic fungi were isolated from

different tissue parts using a surface sterilization method (Wang

et al., 2019). The main steps of the procedure: Tissue segments

were surface-sterilized with 75% ethanol for 1 min, rinsed thrice

with sterile water, immersed in 1% (w/v) aqueous sodium

hypochlorite (NaOCl) for 1–3 minutes (roots, 2 min; stems and

seeds, 3min; and leaves, fruits, and flowers, 1 min), and washed

thrice again with sterile distilled water. Six different media were

used for fungal isolation, namely, potato dextrose agar (PDA),

oatmeal agar (OA), malt extract agar (MEA), Czapek Dox agar

(CDA), water agar (WA), and synthetic low nutrient agar (SNA).

The media were supplemented with streptomycin sulphate (0.5 g/

L) to avoid bacterial contamination. Meanwhile, the effectiveness

of surface sterilization was examined according to the previous

description (Singh et al., 2017; Rojas et al., 2020). All pure isolates

were stored at -80°C with 30% glycerol.

2.1.2 Molecular identification
DNA was extracted from mycelia grown on potato dextrose

agar (PDA) according to the manufacturer’s instructions for a

Fungal gDNA Isolation Kit (BW-GD2416, Biomiga, China). The

primers used for polymerase chain reaction (PCR) amplification

and sequencing included ITS5/ITS4 for ITS (White et al., 1990),

LR0R/LR5 for LSU (Vilgalys and Hester, 1990), Bt2a/Bt2b for

TUB (Glass and Donaldson, 1995), and fRPB2-5F/fRPB2-7cR

for RPB2 (Liu et al., 1999). Successful amplification is generally

obtained by annealing at 55°C for 35 cycles. The PCR products

were sequenced by Sangon Biotech (Shanghai, China).

Endophytic fungi were identified based on multigene

phylogenetic analyses. Consensus sequences were edited with

BioEdit v. 7.0.9.0 (Hall, 1999). Multiple sequence alignment was
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performed using MAFFT v. 7 (Katoh et al., 2019), manually

adjusted in BioEdit, and concatenated in PhyloSuite v. 1.2.2

(Zhang et al., 2020). Phylogenetic analyses were inferred from

maximum likelihood (ML) and Bayesian inference (BI).

ModelFinder determined the substitution models based on the

Bayesian Information Criteria (BIC) and Akaike information

criterion (AIC) (Kalyaanamoorthy et al., 2017). BIC was used for

ML analyses, while AIC was used for BI analyses. ML tree

inference was constructed using 10,000 ultrafast bootstraps

(Minh et al., 2013) under the edge-linked partition model

implemented in IQ-TREE (Nguyen et al., 2014). BI analyses

were carried out in MrBayes 3.2.6 (Ronquist et al., 2012) under

the partition models, with two independent runs of four chains

that were run for five million generations using the Markov

chain Monte Carlo algorithm. Finally, the resulting trees were

visualized using Figtree v.1.4.3 (Rambaut, 2014).
2.2 Antimicrobial activity

2.2.1 Tested strains
To evaluate the antimicrobial activity of endophytic fungi,

the following microorganisms were used: Six tested fungi,

including kiwifruit soft rot pathogens Lasiodiplodia

theobromae and Botryosphaeria dothidea, pepper anthracnose

fungus Colletotrichum capsici, rice blast fungus Pyricularia

oryzae, rice sheath blight fungus Rhizoctonia solani, and root

rot fungus Fusarium oxysporum (causing Pseudostellaria

heterophylla and Zanthoxylum schinifolium diseases). Six

tested bacteria, namely kiwifruit bacterial canker pathogen

Pseudomonas syringae pv. actinidiae; peach bacterial shot hole

pathogen Pantoea agglomerans; other bacteria Bacillus subtilis

CMCC (B) 63501, Escherichia coli CMCC (B) 44102,

Pseudomonas aeruginosa ATCC 27853, and Staphylococcus

aureus ATCC 6538.

2.2.2 Preliminary screening of antimicrobial
activity assay

Endophytic strains with antagonistic ability were screened

out by the plate confrontation method (Gao et al., 2021). The

width of the zone of inhibition (I) between tested fungi (or

bacteria) and endophytes was determined according to the

previously described method (Gao et al., 2021). The definition

of the inhibition intensity is based on the previously described

method (Gashgari et al., 2016; Zhao et al., 2019). The intensity is

divided into four levels, which are indicated by 0, 1, 2, and 3 for

no inhibition, weak inhibition, moderate inhibition, and strong

inhibition, respectively. For evaluating antifungal activity: 0 (I =

0 mm), 1 (0 mm < I ≤ 1 mm), 2 (1 mm < I ≤ 3 mm), and 3 (I >

3 mm); for antibacterial activity: 0 (I ≤ 1 mm), 1 (1 mm < I ≤

2 mm), 2 (2 mm < I ≤ 10 mm), and 3 (I > 10 mm). Through

phylogenetic analyses and preliminary screening, strains were

selected for re-screening antimicrobial activity under the
frontiersin.org

https://doi.org/10.3389/fpls.2022.1060478
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1060478
following principles: with the best inhibition effect in the same

species and strong inhibition of at least one or moderate

inhibition of three or more against the tested strains.

2.2.3 Secondary metabolites extraction
To further investigate the antimicrobial activity of the

initially screened-out strains, crude extracts of the secondary

metabolites were prepared using the method described

previously (Zhang et al., 2021b). The endophytic strains were

fermented in Erlenmeyer flasks (250 mL) containing 100 mL

potato dextrose broth (PDB) (potato: 200 g/L, glucose: 20 g/L,

and natural pH) at 28 ± 1°C, 220 rpm, and for 7–10 d. High-

speed centrifugation (14,000 g, 10 min) was performed to

separate the culture broth and mycelium, which were extracted

by ethyl acetate (EtOAc) and methanol (MeOH)-assisted

sonication, respectively. Then concentrated at 50°C under

reduced pressure until constant weight and dissolved in

dimethyl sulfoxide (DMSO) to obtain 20 mg/mL of EtOAc

crude extract (extracellular metabolites) and MeOH crude

extract (intracellular metabolites).

2.2.4 Re-screening of antimicrobial
activity assay

The extracellular and intracellular metabolites were re-

screened for antimicrobial activity using the disc diffusion

method (Hu et al., 2017; Rjeibi et al., 2020). For antifungal

assay: Briefly, a tested fungal plug (6 mm diam.) and a same-

sized sterile filter paper disc were placed at the appropriate

position of the PDA plate (90 mm diam.). The disc was

impregnated with 10 mL of metabolite (20 mg/mL). DMSO

was used as a negative control. All plates were incubated at

28 ± 1°C. The radial growth of the tested strains was measured

after 2–7 d. Negative control plates as R1 and experimental plates

containing metabolites as R2. The percentage inhibition (%) =

(R1-R2)/R1 × 100% (Hajieghrari et al., 2008).

For antibacterial assay: The sterile disc (6 mm diam.) was

placed at the center of the nutrient agar (NA) plate, which had

been coated with tested bacteria, and then impregnated with

10 mL of extracellular or intracellular metabolite (20 mg/mL).

Equal volumes of DMSO were used as a negative control. The

diameters of the inhibition zone (d) were measured after

culturing for 24–48 hours at 25°C ± 1°C for phytopathogenic

bacteria and 35°C ± 1°C for other tested bacteria. Similarly,

the MICs were determined. The assays were repeated

three times.
2.3 Morphological observations

Morphological characteristics were observed on PDA. In this

study, the final screened-out strain with antimicrobial potential

was inoculated on PDA, cultured at 28°C for 5–7 days, and then
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placed at 4°C for preservation to promote sporulation.

Macroscopic morphology was examined under a digital

microscope (VHX-7000, Keyence). After sporulation,

micromorphological features and dimensions of the spores

were determined in 25% lactic acid under a Zeiss Axiolab 5

light microscope equipped with an Axiocam 208 camera.
2.4 Genome-sequencing, annotation,
and analyses

Strain with the strongest antimicrobial activity from the

re-screening was selected for whole-genome sequencing to

deeply analyze its biosynthetic capacity. Genomic DNA was

sequenced using a combination of second-generation Illumina

sequencing technologies and third-generation PacBio

sequencing technology at Guangzhou Genedenovo

Biotechnology Co., Ltd. The endophytic strain was grown in

a 1 L Erlenmeyer flask containing 500 mL of PDB at 28°C

under 220 rpm for three days. The fermentation broth was

centrifuged at 14,000 g for 10 min at 4°C, the supernatant was

discarded, and the mycelium was collected and used for

genomic DNA extraction. Genomic DNA was extracted using

commercial kits, and DNA quality was assayed using Qubit

(Thermo Fisher Scientific, Waltham, MA) and Nanodrop

(Thermo Fisher Scientific, Waltham, MA). Qualified genomic

DNA was fragmented with G-tubes (Covaris, Woburn, MA,

USA) and end-repaired to prepare SMRTbell DNA template

libraries with a fragment size of >10 Kb. Then, library quality

was detected by Qubit® 2.0 Flurometer (Life Technologies, CA,

USA), and average fragment size was estimated on a

Bioanalyzer 2100 (Agilent, Santa Clara, CA). Subsequently,

SMRT sequencing was performed on the Pacific Biosciences

Sequel sequencer (PacBio, Menlo Park, CA) following standard

protocols (MagBead Standard Seq v2 loading, 1 × 180 min

movie) with the P4-C2 chemistry.

Continuous long reads attained from SMRT sequencing

were corrected for random errors in the long seed reads (seed

length threshold 6 Kb) by aligning shorter reads from the same

library using MECAT. The resulting corrected, preassembled

reads were used for de novo assembly using MECAT with an

overlap-layout-consensus (OLC) strategy (Myers et al., 2000;

Xiao et al., 2017). The Open reading frame (ORF) was predicted

using the GeneMark-ES (Ter-Hovhannisyan et al., 2008).

Repetitive elements were identified by RepeatMasker (Chen,

2004). Noncoding RNAs, such as rRNAs prediction, were

carried out using RNAmmer (Lagesen et al., 2007), and tRNAs

were identified by tRNA-scan-SE (Lowe and Eddy, 1997).

Functional annotation of predicted protein-coding genes

against National Center for Biotechnology Information (NCBI)

non-redundant Protein (Nr) database, Gene Ontology (GO),

eukaryotic orthologous groups (KOG), Kyoto Encyclopedia of
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Genes and Genomes (KEGG), and SwissProt databases were

conducted by the BlastP method. Moreover, the assembled

genome sequence was analyzed for secondary metabolite

biosynthesis gene clusters (BGCs) using antiSMASH 6.1.1.
2.5 Non-targeted metabolomics analyses

The PDB fermentation conditions for endophytic fungi were

identical to the genomic sequencing assay. The fermentation

broth of the endophyte was separated by high-speed

centrifugation (14,000 g, 10 min). We selected extracellular or

intracellular metabolites with better inhibitory activity for non-

target metabolomics analyses based on the results of the re-

screening assay. The culture broth samples were thawed at 4°C,

and 100 mL aliquots were mixed with 400 mL of cold methanol/

acetonitrile/H2O (2:2:1, v/v/v). Following vortex mixing, low-

temperature sonication for 30 min and resting for 10 min at

-20°C. After that, the mixture was centrifuged for 20 min (14,000

g, 4°C). The supernatant was dried in a vacuum centrifuge. The

samples were re-dissolved in 100 mL acetonitrile/water (1:1, v/v)

for LC-MS analyses. Analyses were performed using a UHPLC

(1290 Infinity LC, Agilent Technologies) coupled to a

quadrupole time-of-flight (AB Sciex Triple TOF 6600). The

chromatographic separation and The ESI source conditions

were as previously described (Huang et al., 2019).
2.6 Comparative genomics analyses

Relevant genomic data released by NCBI were selected for

comparative genomic profiling. Three de novo gene prediction

programs, Augustus v.2.7, GeneMark+ES v.4.0, and SNAP

v.2013-02-16, were used to predict the protein-coding regions

if only genomic data were available in NCBI. The Maximum

likelihood tree of genomes was performed using single-copy

orthologous genes. Pathogen-host interaction (PHI),

carbohydrate-active enzymes (CAZymes), and BGCs were

annotated using PHI-base v. 4.13, dbCAN2 v. 11, and

antiSMASH v. 6.1.1, respectively. Genes encoding BGCs were

aligned using MAFFT v. 7, the substitution model was

determined by ModelFinder, and ML tree inference was

performed in IQ-TREE using 10,000 ultrafast bootstraps.

Finally, the annotation results of each genome were compared

and analyzed.
2.7 Data analysis

Data were analyzed by ANOVA, followed by comparisons of

means using the LSD test in Data Processing System (DPS v9.50)

(P < 0.05).
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3 Results

3.1 Identification of endophytic fungi

All culturable endophytic strains were sequenced and used for

multigene phylogenetic analyses. 54 strains belonging to

Dothideomycetes, Eurotiomycetes, Pezizomycetes, Leotiomycetes,

and Agaricomycetes were successfully isolated and identified from

tissue segments of R. roxburghii. The largest number of endophytes

was found in root tissues (20 isolates), followed by the stem (14

isolates), leaf (9 isolates), fruit (6 isolates), seed (4 isolates), and

flower (one isolate). Of these isolates, 51 strains were identified at

the species level, covering 28 confirmed species. The remaining

genus-level isolates, including two unidentified species, may belong

to new taxa. The phylogenetic relationship was constructed with

combined ITS, LSU, TUB, and RPB2, as illustrated in Figure 1A.
3.2 Preliminary screening results

Preliminary screening results of the 54 isolates for antimicrobial

activity in vitro were represented in Figure 1B and Supplementary

Table 1. In this study, the antibacterial activity of endophytic fungi

was superior to the antifungal activity. The antimicrobial activity

may be strain-specific owing to significant differences observed

among strains of the same endophytic species, such as Alternaria

tenuissima, Emmia latemarginata, and Neofusicoccum sp. Most

endophytes exhibited broad-spectrum activities, whereas another

small group did not display any antimicrobial activity, e.g.,

Macrophomina phaseolina and Paraphoma vinacea. Concretely,

endophytes showed stronger antibacterial activity against Ba.

Subtilis, and hardly any activity were observed against Py. oryzae.

Although generally described as pathogens, some species as

endophytic fungi also demonstrated potential antimicrobial

activity, e.g., Al. tenuissima HGUP191067. In general, 15

endophytes were selected for subsequent experiments based on

molecular identification and the strength of inhibition

activity (Figure 1).
3.3 Re-screening of antimicrobial activity

3.3.1 Re-screening of antifungal activity
As observed from the trends of Figure 2 and Supplementary

Table 1. These extracellular and intracellular metabolites, which

were prepared from the preliminary screened-out strains, showed

broad-spectrum antifungal activity against at least one

phytopathogenic fungus. However, most metabolites exhibited

less than 20% inhibition against the six tested fungi. Fortunately,

endophytic strains Epicoccum latusicollum HGUP191049,

Neofusicoccum sp. HGUP191080, and Setophoma terrestris

HGUP190028 displayed potential as antifungal agents since their

metabolites displayed over 30% inhibition rate against at least one of
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the tested fungi. Of these, the extracellular metabolites of

HGUP191049 and HGUP190028 were highly effective against L.

theobromae with inhibition rates was 58.5 ± 3.4% and 51.4 ± 3.4%,

respectively. Meanwhile, the inhibition rate of HGUP191049 also

reaches 58.0 ± 2.2% against Botryo. dothidea and 45.3 ± 1.3%

against C. capsici. Accordingly, Ep. latusicollum HGUP191049

holds good promise for developing antifungal agents.

3.3.2 Re-screening of antibacterial activity
As can be derived from Figure 3 and Supplementary Table 1,

most secondary metabolites showed sub-moderate inhibition

intensity (d < 10 mm). However, the extracellular metabolite of

Ep. Latusicollum HGUP191049 was shown to have potent
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antibacterial activity against both tested Gram-positive (St. aureus

and Ba. subtilis) and Gram-negative (Ps. syringae pv. actinidiae, Es.

coli, and Ps. aeruginosa) bacteria, since inhibition zone diameters

ranging from 15.3 ± 1.5 mm to 20.3 ± 2.5 mm. So the strain

HGUP191049 was considered to be well antagonistic.

3.3.3 Determination of the MIC
Two endophytic isolates Ep. latusicollumHGUP191049 and Se.

terrestris HGUP190028 had a better antimicrobial effect in the re-

screening assay based on a broad spectrum and intensity. To

evaluate the antimicrobial potential of the extracellular

metabolites of the two isolates, in which MIC values were

determined. As shown in Table 1, Ep. latusicollum HGUP191049
BA

FIGURE 1

Phylogenetic relationships and preliminary screening for antimicrobial activity of endophytic fungi. (A) Phylogram generated from maximum
likelihood (ML) analyses, based on combined ITS, LSU, TUB, and RPB2 sequence data. Bootstrap support values for ML greater than 75% and
Bayesian posterior probabilities greater than 0.90 are given near nodes, respectively. Bold indicates strains that have been preliminarily screened
out. (B) Heatmap of antimicrobial activity spectra against the tested strains.
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presented MIC values of 1.25 mg/mL, 2.50 mg/mL, and 1.25 mg/

mL against L. theobromae, Botryo. Dothidea, and R. solani,

respectively, whereas MIC values ranged from 0.31 mg/mL to

5.00 mg/mL against six tested bacteria. The endophytic strain

HGUP191049 had more potential for antimicrobial properties

than the strain HGUP190028.
3.4 Taxonomy of Epicoccum latusicollum

Sexual morph not observed. Asexual morph (Figure 4):

Conidiomata pycnidial, aggregated, superficial, black, globose to

subglobose or pyriform, glabrous, up to 140 mm diam., without

distinct ostioles. Pycnidial wall pseudoparenchymatous, composed

of oblong to isodiametric cells, 3–5 cell layers, 13–18 mm thick.

Conidiogenous cells phialidic, smooth, hyaline, ampulliform to

doliiform, 4.5–9.5 × 4–5 mm. Chlamydospores intercalary or

terminal, pale brown, smooth, single or in chains, globose to oval.

Conidia ellipsoidal to oblong, aseptate, hyaline, smooth, thin-

walled, guttulate, 3–5.5 × 1.5–2.5 mm.

Culture characteristics: Colonies on PDA, 50–55 mm diam.

after seven days of cultivation in the dark at 28°C, raised, margin

regular, velvety, with abundant aerial mycelium, dense, white,

pale yellow near the center; reverse: white to pale yellow, sienna

pigment produced near the center.
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Material examined: China, Guizhou Province, Guiyang City,

from healthy stems of R. roxburghii (Rosaceae), 22 April 2020,

H. Zhang (HGUP191049); living cultures were deposited in the

Culture Collection at the Department of Plant Pathology,

College of Agriculture, Guizhou University, China, No. GUCC

191049.1 and China General Microbiological Culture Collection

Center, No. CGMCC 40110.

Notes: The screened strain HGUP191049 and the type of Ep.

latusicollum are phylogenetically similar as they cluster together

with well support (Supplementary Figure 1). Our collection

resembles the type CGMCC 3.18346 in having a pycnidial

wall, conidiogenous cells, and conidia. However, our collection

slightly differs from the type in having aggregated conidiomata

rather than solitary conidiomata (Chen et al., 2017). Therefore,

the examined morphology overlaps and is phylogenetically

identical to Ep. latusicollum. We report our collection as a new

host record of Ep. latusicollum from the stem of R. roxburghii.
3.5 Genome sequencing and annotation

Genome sequencing of Ep. latusicollum HGUP191049 was

conducted using a combination of single molecule real-time

(SMRT) and Illumina sequencing technologies. The obtained

genome of HGUP191049 was assembled into 22 scaffolds, about
FIGURE 2

Results of re-screening for antifungal activity. E and I indicate extracellular and intracellular metabolites, respectively. A.m., E.l., G.p., N.sp., P.c.,
and S.t., represent Aureobasidium microstictum HGUP191071, Epicoccum latusicollum HGUP191049, Guignardia psidii HGUP191042,
Neofusicoccum sp. HGUP191080, Penicillium crustosum HGUP190031, and Setophoma terrestris HGUP190028, respectively.
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33.24 megabase pairs (Mbp), and 10,500 genes (Figure 5;

Table 2). The estimated genome size of HGUP191049 is

broadly congruent with other estimates of genome size in

Epicoccum, 33–35 Mbp (Supplementary Figure 2) (Fokin et al.,

2017; Oliveira et al., 2017; Guo et al., 2021). The N50 and N90

length of the scaffolds were 1,859,063 bp and 1,112,482 bp,

respectively. The GC content was 52.06% for the genome and

54.82%% for the coding sequences. In total, 10,310 protein-

encoding genes were predicted from the genome assembly.

Among them, 10,197, 9,523, 5,981, and 4,530 genes have

functional annotations in the Nr, KEGG, SwissProt, and KOG

databases, respectively. In this study, 325 genes (3.10%) were
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associated with secondary metabolite biosynthesis, transport, or

catabolism in the KOG database (Supplementary Table 3).

The BGCs were analyzed using antiSMASH, and a total of 24

putative natural product BGCs of HGUP191049 were yielded,

including three NRPSs, nine T1PKSs, four terpene synthases,

one NRPS-T1PKS, one Indole-T1PKS, and six NRPS-like gene

clusters (Supplementary Table 4). Of the 24 annotated BGCs,

eight BGCs were found to share similarities in gene content with

previously identified, while the remaining showed no significant

similarities with currently known. These unknown BGCs could

potentially shed light on the search for novel compounds. The

antiSMASH and BLAST bioinformatics analyses identified three
TABLE 1 The minimum inhibitory concentration (MIC) of extracellular metabolites of two endophytic isolates against 12 tested strains.

Species Strain no. MIC concentration (mg/mL)

L. theobromae Botryo. dothidea C. capsici Py. oryzae R. solani F. oxysporum

Setophoma terrestris HGUP190028 5.00 5.00 10.00 20.00 – 10.00

Epicoccum latusicollum HGUP191049 1.25 2.50 10.00 – 1.25 10.00

Species Strain no. Ps. syringae Pan. agglomerans St. aureus Ba. subtilis Es. coli Ps. aeruginosa

Setophoma terrestris HGUP190028 – – 2.50 0.31 10.00 –

Epicoccum latusicollum HGUP191049 0.31 1.25 5.00 0.62 2.50 2.50
FIGURE 3

Results of re-screening for antibacterial activity. E and I indicate extracellular and intracellular metabolites, respectively. A.l., E.l., M.t., P.c., P.t.,
and S.t. stand for Alternaria longipes HGUP192022, Epicoccum latusicollum HGUP191049, Mycoleptodiscus terrestris HGUP190018, Penicillium
crustosum HGUP190031, Phyllosticta telopeae HGUP192003, and Setophoma terrestris HGUP190028, respectively.
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complete BGCs encoding dimethylcoprogen, (-)-mellein, and

melanin. Other annotated potential products were squalestatin

S1 (40% similarity), phomasetin (40%), oxyjavanicin (25%),

patulin (20%), and azanigerone A (26%), respectively. Among

these putative natural products, oxyjavanicin (Supplementary

Figure 3), squalestatin S1 (Supplementary Figure 4), and patulin

(Figure 6) have been reported to exhibit antimicrobial activity

(Nicolaou et al., 1994; Paytubi et al., 2017; Kato et al., 2020). In

this study, the putative patulin BGC is cluster 16 (T1PKS),

sharing only 20% similarity to BGC0000120. We detected this

compound in the secondary metabolites of Ep. latusicollum

HGUP191049 (Figure 6).
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3.6 Non-target metabolomics

According to the non-target metabolomics profiling, we

detected 999 metabolites for positive mode, 523 for negative

mode, and 18286 (92.3%) unknown metabolites (positive and

negative modes), which indicated that Ep. Latusicollum

HGUP191049 might produce a large number of new

compounds. It was determined by conducting a literature search

whether knownmetabolites had antimicrobial activity. The results

revealed about 120 compounds with antimicrobial activity, 7.9%

of the known compounds (Supplementary Table 5). Specifically,

some antimicrobial compounds with different structures were
FIGURE 4

Epicoccum latusicollum (HGUP191049). (A, B). Colony on PDA (front and reverse). (C) Pycnidia forming on PDA. (D) Pycnidia. (E) Section of pycnidium.
(F) Section of pycnidial wall. (G) Conidiogenous cells. (H) Chlamydospores. (I) Conidia. Scale bars: C = 200 mm; D–F = 20 mm; G–I = 10 mm.
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illustrated in Figure 7, including polyketide (e.g., kendomycin),

alkaloids (e.g., berberine), terpenoids (e.g., geniposidic acid),

flavonoids (e.g., nevadensin), steroids (e.g., fluticasone

propionate), naphthoquinone compounds (e.g., atovaquone),

anthraquinones (e.g., hypericin), phenolic compounds (e.g.,

mangostine), coumarin compounds (e.g., 6-methylcoumarin),

fatty acid compounds (e.g., phenyllactic acid), carbamates (e.g.,

geldanamycin), amides (e.g., benzamide), heterocyclic compounds

(e.g., kojic acid), antibiotic compounds (e.g., norfloxacin), and

other antimicrobial compounds (e.g., (+)-trans-chrysanthemic

acid, (S)-(-)-citronellic acid, and azadirachtin A). Within this,

flavonoids are one of the most abundant groups of antimicrobial

secondary metabolites. The highly structural diversity

demonstrated that Ep. latusicollum HGUP191049 is a talented

producer of antimicrobial compounds.
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3.7 Comparative genomics analyses
results

3.7.1 Prediction and comparative analyses of
pathogenicity-related genes

To identify and compare potential protein-coding genes

related to pathogenicity and virulence in the genomes, whole

genome blast analyses were performed against the pathogen-host

interaction (PHI) gene database v. 4.13 at E<1*10−20 and

identity≥70% (Prasad et al., 2015; Urban et al., 2017; Xu et al.,

2020). Screening of PHI annotated phenotypes showed that most

genes belonged to “reduced virulence”, “unaffected pathogenicity”,

and “loss of pathogenicity”. In contrast, few genes were associated

with the “effector (plant avirulence determinant)” (one gene),

“enhanced antagonism” (one gene), and “chemistry target
TABLE 2 Genome features of Epicoccum latusicollum HGUP191049.

Genome features Value Genome features Value

Size of assembled genome (Mbp) 33.24 Protein-coding genes (≥ 60 aa) 10,304

GC content of assembled genome (%) 52.06 Min protein length (aa) 52

Number of scaffolds 22 Max protein length (aa) 9,186

N50 Length (bp) 1,859,063 tRNA genes 206

N90 Length (bp) 1,112,482 rRNA genes 88

Maximum length (bp) 4,138,377 Depth 295X

Minimum length (bp) 38,673 Genes assigned to KOG categories 4,530

Average gene length (bp) 1422.07 Total length of contigs 33242988

All protein-coding genes 10,310 Putative biosynthetic gene clusters for secondary metabolites 24
fronti
FIGURE 5

Circular map of genomic features of Epicoccum latusicollum HGUP191049. The peripheral circles represent the scaffolds (Mb scale), consisting
of 22 scaffolds. From outer to inner circles (second to the sixth circle) are KOG annotation (forward and reverse strands), different colors
indicate different functional classification; antiSMASH annotation (forward and reverse strands), different colors indicate different types of
biosynthetic gene clusters (BGCs); ncRNA (black indicates tRNA, red indicates rRNA); GC content (red indicates greater than the mean, blue
indicates less than the mean); GC skew (used to measure the relative content of G and C, GC skew = (G-C)/(G+C); purple indicates greater than
0, orange indicates less than 0).
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sensitivity to chemical” (none) phenotypes (Figure 8). Genes of

the “increased pathogenicity (Hypervirulence)” type are key

pathogenic ones. As illustrated in Figure 8 and Supplementary

Figure 2, strains with different nutrient modes of the same

Epicoccum species may possess the same gene numbers of

“increased pathogenicity (hypervirulence)” type, such as Ep.

latusicollum (HGUP191049 and T41), Ep. nigrum (cf0051 and

ICMP 19927), and Ep. sorghinum (BS2-1 and USPMTOX48),
Frontiers in Plant Science 11
having 8, 7, 8 genes of this type for them, respectively. Of this

phenotypic gene, the seven genomes in this study shared seven

identical genes of this type, whereas Ep. latusicollum

(HGUP191049 and T41) and Ep. sorghinum (BS2-1 and

USPMTOX48) had one more of this type gene than the other

genomes, namely PHI:5494, which may be a vital contributor to

the difference in pathogenicity between species. In addition, an

endophyte of the same species may contain more “loss of
B

C

A

FIGURE 6

Patulin in Epicoccum latusicollum HGUP191049. (A) Biosynthetic pathways of patulin (Puel et al., 2010; Nielsen et al., 2017). (B) Non-targeted
metabolic profiling spectrum. (C) Schematic representation of the putative BGC of patulin (cluster 16). KS, ketosynthase; AT, acyl transferase;
DH, dehydratase; KR, ketoreductase; T1PKS, type I polyketide synthases.
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pathogenicity phenotypic genes” than a pathogen, e.g. endophytic

strain HGUP191049 has two more genes of this type than

pathogenic strain T41, and endophytic cf0051 has four more

genes than pathogenic ICMP 19927. Moreover, for Ep.

latusicollum, endophytic HGUP191049 had six “loss of

pathogenicity” phenotypic genes (PHI: 2145, PHI: 4095, PHI:

10527, PHI: 9899, and PHI: 8875) different from the pathogenic

T41 (PHI: 8734, PHI: 5232, and PHI: 9357), which may be one of

the factors contributing to their differences in pathogenicity

within species.

3.7.2 Prediction and comparative analyses of
carbohydrate-active enzyme genes

Carbohydrate-active enzymes (CAZymes) are essential for

fungal biological activity. CAZymes are responsible for

degrading host plant cells and establishing colonization for

plant pathogenic and endophytic fungi. As biocontrol fungi,
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CAZymes can be used to destroy the cell walls of pathogens and

nematodes (Yang et al., 2019). The CAZymes involved in the

degradation of plant cell walls were further classified into the

degradation of cellulose, hemicellulose, and pectin, and those

involved in the degradation of fungal cell walls were grouped

into the degradation of chitin and b-1,3-glucan (Zhao et al.,

2013; Kubicek et al., 2014; Yang et al., 2019).

As can be derived from Figure 9, the main CAZyme gene

families that differ significantly between Epicoccum and

Didymella are GH10, GH28, GH43, and PL1. In this study,

41.5% (17/41) of the families are identical among and within

species in Epicoccum, such as GH6, all of which are 3 in number.

Other families differ in the number of characteristics by 1–2,

with a few 3, as in GH43. However, it is significantly different for

GH18, which belongs to a family associated with chitin

degradation, with numbers ranging from 9 to 15, which may

be an important factor influencing the difference in the
FIGURE 7

Some different structural types of antimicrobial secondary metabolites from Epicoccum latusicollum HGUP191049.
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antifungal potential of Epicoccum spp. Of Ep. latusicollum, the

biological activity of strain HGUP191049 distinguished from

T41 in having different amounts of GH3 and GH45, GH43,

GH78 and PL3, and GH18, for the degradation of cellulose,

hemicellulose, pectin, and chitin, respectively.

3.7.3 Prediction and comparative analyses of
BGCs

In this study, there were 177 BGCs from six Epicoccum

genomes, of which PKS accounted for 35.0%, NRPS for 18.6%,

terpene for 15.8%, hybrid PKS/NRPS for 6.8%, indole for 2.3%,

and other unknown BGCs (NRPS-like) for 21.5% (Figure 10),

which suggests that Epicoccum is a promising source of terpenes

besides the traditional PKS- and NRPS-encoded compounds.

Phylogenetic relationships of BGCs from six Epicoccum strains

and evolutionarily adjacent species D. exigua were analyzed to

investigate differences among secondary metabolites of Epicoccum

spp. (Figure 10). The result showed that BGCs could be grouped

into 26 clades. The same types of BGCs with high identity may

encode the same secondary metabolites, while the corresponding

BGCs of a compound may be in different evolutionary branches.

Notably, Epicoccum species have BGCs encoding the same

compounds. The same branch of Ep. latusicollum (Contig0006.1

and JACCMO010000004.1) and Ep. sorghinum (VXJJ01000017.1

and MIEO01000350.1) (Clade 18), which all encode oxyjavanicin,

where Ep. nigrum, the BGC JAASLF010000044.1, which encodes
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this compound, belongs to Clade 8. Similarly, squalestatin S1 is also

encoded by BGCs from six different Epicoccum genomes.

Consequently, it is presumed that oxyjavanicin and squalestatin

S1, both of which have been reported as antimicrobial agents, are

secondary metabolites shared by Epicoccum spp.
4 Discussion

Medicinal plants have long been used as a source of

medicine. Approximately 8,000 medicinal plants have been

developed into drugs and biocides, contributing more than

7,000 compounds to the pharmaceutical industry (Kaul et al.,

2012). However, the overuse of medicinal plants in traditional

folk medicine practices has led to environmental degradation

and loss of biodiversity. Developing bioactive compounds based

on endophytic fungi can reduce deforestation and the extinction

of important and valuable medicinal plants (Uzma et al., 2019).

Medicinal plants are a valuable source for exploring biologically

active endophytes (Kaul et al., 2012). In this study, R. roxburghii

is an economically important source of medicine and food. Its

fruit is rich in vitamin C (up to 2 000 mg/100 g), superoxide

dismutase (SOD), and flavonoids (Xu et al., 2019; Hou et al.,

2020). The root, leaf, and fruit of R. roxburghii have been used as

traditional medicinal materials to treat several diseases, such as

dyspepsia, enteritis, and scurvy. In addition, some components
FIGURE 8

Comparisons and annotations of pathogen-host interactions (PHI). D.e, Didymella exigua; E.l, Epicoccum latusicollum; E.n, Epicoccum nigrum;
E.s, Epicoccum sorghinum.
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extracted from R. roxburghii have been demonstrated to possess

biological activities, including hypoglycemic, hypolipidemic,

immune-enhancing, and antitumor effects (Zhang et al.,

2021b). More importantly, R. roxburghii is also a plant source

of antimicrobial compounds (Ma et al., 2020; Wang et al., 2021).

Therefore, we selected R. roxburghii as a candidate for screening

endophytic fungi with antimicrobial activity.

Species-level identification of fungi is a critical step to ensure

reproducibility and is essential for both basic scientific research

(ecology, taxonomy) and applied scientific research (genomics,

bioprospecting). However, only 14% of fungal secondary

metabolites studies have combined morphological and

molecular data for identification (Raja et al., 2017). The results

of these investigations suggest that the identification of fungi in

most such studies is unreliable, as a single gene (mainly ITS) may

fail to distinguish closely related members of certain genera

phylogenetically. More than a quarter of GenBank fungal ITS

sequences have not been adequately confirmed taxonomically

(Zhang et al., 2021b). For accurate species identification,

molecular data (preferably polygenic) should be combined
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with morphological studies (Woudenberg et al., 2017). In this

study, we obtained the antimicrobial active strain Ep.

latusicollum HGUP191049, whose taxonomic status was

confirmed by morphology and multigene phylogenetic analyses.

In this study, the strains isolated from R. roxburghii with

antimicrobial activity were screened out by multigene

phylogenetic analyses (ITS, LSU, RPB2, TUB, TEF, and ACT),

the plate confrontation method, and the disc diffusion method,

namely Ep. latusicollum HGUP191049, Neofusicoccum sp.

HGUP191080, and Se. terrestris HGUP190028. Epicoccum

latusicollum has been reported to be capable of causing several

plant diseases, including leaf spots on tobacco and Elaeagnus

pungens (Guo et al., 2021; Qi et al., 2021), stalk rot on maize (Zea

mays L.) (Xu et al., 2022), and root rot on Nicotiana tabacum

(Gai et al., 2020). In this work, this species is first reported as an

endophytic fungus with antimicrobial activity and is a new host

record from R. roxburghii. Another strain with antimicrobial

activity, Neofusicoccum sp. HGUP191080 may phylogenetically

represent a new species and requires further identification by

morphology. Neofusicoccum species, which are endophytes or
FIGURE 9

Comparisons and annotations of carbohydrate-active enzyme genes. D.e, Didymella exigua; E.l, Epicoccum latusicollum; E.n, Epicoccum
nigrum; E.s, Epicoccum sorghinum. Different circle sizes indicate the number of different gene families.
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pathogens of plants, produce structurally different metabolites

that show interesting biological activities such as antibacterial,

cytotoxic, and phytotoxic (Salvatore et al., 2021). Finally, Se.

terrestris caused pink root rot in various plants, such as squash,

canola, and winter squash (Ikeda et al., 2012; Yang et al., 2017;

Rivedal et al., 2018). However, as an endophyte isolated from

Dysoxylum binectariferum, Se. terrestris is known to produce

blennolides with anticancer and antimicrobial activity (Arora

et al., 2018). Thus, some species commonly reported as

pathogens may have potential biological activity as endophytic

fungi. Further MIC assays demonstrated that the present study’s

antimicrobial strength and spectrum of Ep. latusicollum

HGUP191049 were superior to other strains.

The development of genomics, transcriptomics, proteomics,

metabolomics, high-throughput technologies, and computational

resources has significantly broadened the understanding of the

key pathways affecting the synthesis of fungal secondary

metabolites (Palazzotto and Weber, 2018). In this study,

genomics, non-target metabolomics, and comparative genomics

were performed further to investigate the biosynthetic capacity of

Ep. latusicollum HGUP191049. Genes required for secondary
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metabolite synthesis are typically arranged in a multigene

biosynthetic gene cluster (Yang et al., 2019). With this high-

quality genome sequence and annotation, we predicted a total of

24 BGCs, which may encode eight known compounds. Of these

compounds, squalestatin S1, oxyjavanicin, and patulin were

reported to have antimicrobial activity (Nicolaou et al., 1994;

Paytubi et al., 2017; Kato et al., 2020). Genetic modification of

BGCs and/or introduction of a particular mutation provides

opportunities to obtain derivatives of the original metabolites

(Ichikawa et al., 2012). Genome mining of gene clusters encoding

biosynthetic pathways of fungal secondary metabolites has

become a critical approach for new compound discovery

(Weber et al., 2015). The sequencing and annotation of the Ep.

latusicollum HGUP191049 genome is the foundation for the

identification of antimicrobial compound BGCs, the activation

of silencing gene clusters, and the identification and regulation of

biosynthetic pathways. In this study, non-targeted metabolic

analyses further revealed the biosynthetic capacity and potential

antimicrobial compounds of Ep. latusicollum HGUP191049 by

determining all detectable metabolites. Moreover, patulin, a

compound encoded by gene cluster 16, has also been detected.
FIGURE 10

Phylogenetic analyses of biosynthetic gene clusters (BGCs). Bootstrap support values for maximum likelihood are given near nodes. D.e,
Didymella exigua; E.l, Epicoccum latusicollum; E.n, Epicoccum nigrum; E.s, Epicoccum sorghinum. The species name is followed by the strain
number, and the final number indicates the gene of each BGC. Bolded adjacent branches indicate coding for the same compound.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1060478
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1060478
Comparative genomics aims to use an ensemble of related

genomes to improve the understanding of each genome in the set

(Haubold & Wiehe, 2004). Epicoccum is a genus in which

endophytic, saprophytic, and pathogenic modes of nutrition

coexist, such as Ep. nigrum is a primary saprophyte involved in

the retting of flax (Brown, 1984), an endophytic fungus isolated

from the leaves of Lysidice rhodostegia (Wang et al., 2010), even a

pathogen that causes leaf spot disease on Lablab purpureus

(Mahadevakumar et al., 2014). So, Epicoccum species may

reshape their lifestyles among endophytic, saprophytic, and

pathogenic to adapt to changing environmental conditions (Kuo

et al., 2014). The fungus may secrete numerous proteins that

facilitate colonization during interaction with the plant (Yin et al.,

2015). Nine high-level phenotypic terms are defined in PHI-base

to compare the pathogen-host interactions between organisms

across the tree of life (Urban al., 2017). Using comparative

genomic approaches, we show that PHI:5494, one of the

“increased pathogenicity (hypervirulence)” type genes, may be

an important factor in the difference in pathogenicity between

Epicoccum species. Moreover, endophytic HGUP191049 had six

“loss of pathogenicity” phenotypic genes different from the

pathogenic T41, which may account for the lifestyle differences

in Ep. latusicollum.

Currently, CAZyme gene families are defined and classified into

six main categories in the CAZy database: glycosyltransferases

(GTs), glycoside hydrolases (GHs), polysaccharide lyases (PLs),

carbohydrate esterases (CEs), carbohydrate-binding modules

(CBMs), and enzymes of auxiliary activities (AAs) (Zhang et al.,

2018). Of these families, GH18 is related to a family of chitin

degradation in amounts ranging from 9 to 15 by comparative

analyses, which may be an important factor contributing to the

differences in the antifungal potential of Epicoccum spp.

The secondary metabolites of fungi constitute a rich source

of natural products with antimicrobial activity. Genes encoding

biosynthetic pathways of secondary metabolites are usually

located on chromosomes forming BGCs (Yao et al., 2021).

Results from comparative analyses show that Epicoccum is a

promising source of terpenes. Terpenes exhibit antimicrobial

activity owing to their highly lipophilic nature, which may

interfere with the integrity and function of cell membranes

(Sohrabi et al., 2015). In addition, oxyjavanicin and

squalestatin S1 reported as antimicrobial agents (Nicolaou

et al., 1994; Kato et al., 2020), are putative secondary

metabolites shared by Epicoccum spp. In this study, a broad-

spectrum antimicrobial potential strain was screened out from

the endophytic fungi of R. roxburghii and analyzed for

biosynthetic capacity.
5 Conclusion

We isolated 54 endophytic fungi from R. roxburghii and

analyzed their multigene phylogenetic relationships. In vitro
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antimicrobial experiments revealed that the endophytic strain

with broad-spectrum antimicrobial potential, Ep. latusicollum

HGUP191049, was screened out. Multi-omics analyses

suggested that Epicoccum spp. is an ideal source of

antimicrobial compounds. In conclusion, plants with specific

medicinal value are promising sources for isolating endophytes

with corresponding particular functions.
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SUPPLEMENTARY FIGURE 1

Phylogenetic analysis of Epicoccum latusicollum HGUP191049,
phylogenetic tree generated from a maximum likelihood analysis based
Frontiers in Plant Science 17
on the combined LSU, ITS, RPB2, and TUB sequence data, the tree is
rooted withDidymella exigua CBS 183.55 and D. rumicicola CBS 683.79, T
type or ex-type.

SUPPLEMENTARY FIGURE 2

Maximum likelihood phylogram and genome statistics of Epicoccum
species analysed in this study. The genome accession numbers of Ep.

latusicollum (HGUP191049 and T41), Ep. nigrum (cf0051 and ICMP
19927), Ep. sorghinum (BS2-1 and USPMTOX48), and Didymella exigua

(CBS 183.55) are JANURY000000000, JACCMO000000000,

J AAS L F000000000 , NCTX00000000 , V X J J00000000 ,
MIEO00000000, and VOSY00000000, respectively.

SUPPLEMENTARY FIGURE 3

Putative oxyjavanicin in Epicoccum latusicollum HGUP191049. a.
Oxyjavanicin structure b. Schematic representation of the putative BGC

of oxyjavanicin (cluster 11). TD: thioesterase domain, KS: ketosynthase,
AT : acyl transferase, PT : product template, T1PKS : type I
polyketide synthases.

SUPPLEMENTARY FIGURE 4

Putative squalestatin S1 in Epicoccum latusicollum HGUP191049. (A)
Squalestatin S1 structure (B) Schematic representation of the putative

BGC of squalestatin S1 (cluster 4).
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