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Sessile plants evolve diverse structures in response to complex environmental

cues. These factors, in essence, involve mechanical stimuli, which must be

sensed and coordinated properly by the plants to ensure effective growth and

development. While we have accumulated substantial knowledge on plant

mechanobiology, how plants translate mechanical information into three-

dimensional structures is still an open question. In this review, we summarize

our current understanding of plant mechanosensing at different levels,

particularly using Arabidopsis as a model plant system. We also attempt to

abstract the mechanosensing process and link the gaps from mechanical cues

to the generation of complex plant structures. Here we review the recent

advancements on mechanical response and transduction in plant

morphogenesis, and we also raise several questions that interest us in

different sections.
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Introduction

Plants, like other living organisms, are constantly exposed to various stimuli from

their environments, including mechanical stimuli. Being relatively sessile compared to

animals, plants have evolved different strategies in response to these stimuli. The

mechanical stimuli that affect plants could be classified into two types: contact (e.g.

rain, wind, touch by another organism, etc.), and non-contact (e.g. gravity,

electromagnetic force, etc.) forces. Whatever the source of stimuli, plants do not only

passively adapt to the outside ‘risks’, but rather actively respond to these stimuli by

incorporating their intrinsic machinery to reproducibly shape themselves, and in turn

sculpt the ecosphere.

Morphogenesis is a multiscale process, involving complex feedback between genetic,

biochemical and biomechanical regulations. Plant cells cannot move as they are

constrained by rigid extracellular matrices or “cell walls”. Thus, plant morphogenesis
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mainly depends on growth regulations, specifically in growth

rates and directions. The force that drives growth is ultimately

generated by turgor pressure, which is borne and harnessed by

the cell wall. The plant primary cell wall is a complex

amalgamation of various polysaccharides, glycoproteins, and

water, and is known for its remarkable properties to both

withstand mechanical forces and being pliable to grow. The

design principle behind such property has recently been

intensively reviewed by Cosgrove (2022).

During growth, the walls yield to the mechanical stresses

caused by turgor pressure, allowing the cells to change their

shape. Cell wall extensibility and stiffness are found to be

associated with growth rates, and growth direction is often

found regulated by wall anisotropy. Good examples are the

largely anisotropic cell wall stiffness patterns in the elongating

Arabidopsis hypocotyl (Peaucelle et al., 2015) versus the largely

isotropic cell walls of the organ primordia in the Arabidopsis

shoot apical meristem (SAM) (Sassi et al., 2014). Specific cell

shapes in turn prescribe specific stress patterns, which could be

sensed by cells. This “mechanical feedback” between force and

shape has been well-known to channel several morphological

events (Hamant et al., 2008; Hervieux et al., 2016; Zhao et al.,

2020; Trinh et al., 2021). Additionally, thanks to the

heterogeneous property of cell wall mechanics, the stress

intensity and direction appear very noisy at the tissue or even

larger scale. Given the plant cells are connected by the cell-cell

adhesion and plasmodesmata, the local mechano-heterogeneity

could be sometimes buffered or oppositely amplified (Uyttewaal

et al., 2012; Hong et al., 2018). How do plants coordinate the

fluctuations coming from external and internal mechanical

stimuli and reproduce robust structures? To discuss this

complex issue, we will first look at how plants sense

external cues.
Mechanical sensation– from
external to internal signals

Touch

Touch is a contact force. In theory, wind, rain, hail, tides, and

touch by other organisms should all trigger touch responses.

Hence, the reaction to touching is very general and complex in

plants. In some plants, the touch response could be very fast

(within 1 second), and it is usually associated with specialized

structures. For example, the trigger hairs on the Venus Flytrap’s

leaves and the motor cells of Mimosa pudica are well-known

structures for sensing and conducting fast responses. Similarly,

the Arabidopsis leaf trichomes are also reported as fast touch

signal transduction sensors (Matsumura et al., 2022).

How do plants sense touch? Often, the site of force sensing

can be less defined, as demonstrated by experiments of brushing

(Jensen et al., 2017), wounding (Hamant et al., 2008), stretching
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and compressing (Robinson and Kuhlemeier, 2018). Other

touch responses may involve specialized structures mentioned

above. For example, hair-like structures have high aspect ratios

(length: diameter) and are easy to bend, the causal longitudinal

strain perception is known critical for touch sensitivity (Seale

et al., 2018). At the molecular level, several mechanisms have

been proposed. One hypothesis suggests squeeze-generated

cytosolic stream is essential for the perception of touch,

evidenced by the moving of organelles upon stimulations

(Chehab et al., 2009). A second hypothesis suggests stretch-

activated channels are responsible for triggering touch sensing,

where touch-induced bending may trigger asymmetric

stretching on the outside and the inside of the bend. This idea

is further supported by a recent study showing the expression of

mechanosensitive ion channels in the Venus flytrap trigger hairs

(Procko et al., 2021). The third possibility suggests that touch

results in the perturbation of the cell wall-plasma membrane-

cytoskeleton continuum (Chehab et al., 2009).

Touch simultaneously induces a deformation of the plant, or

strain, and a stress pattern associated to it. At the cellular level,

how strain and stress are sensed upon touching is still poorly

understood (Fruleux et al., 2019). Periodic touch stimuli could

lead to altered plant growth, like reduced elongation, excess

lateral expansion of stems, and delayed flowering. This

phenomenon was first coined by Mark Jaffe (Jaffe, 1973) as

thigmomorphogenesis, which is a relatively slow process over

days to weeks. It has been known for a long time that, many

touch-inducible genes were associated with intrinsic mechanical

responses, such as Ca2+ signaling (like calmodulin-like, CML

genes), hormones (like ethylene), and cell wall metabolism (like

xyloglucan endotransglucosylase/hydrolase, XTH genes)

(Braam, 2005). Recent research nicely presents a link from

external touching to internal signaling pathway, showing

plants incorporate ethylene-dependent pectin degradations to

tune their own shape (Wu et al., 2020).
Gravity

Compared to touch, gravity is a non-contact force. How

plants react to gravity is a long-standing biological question.

When we talk about gravity response, we usually discuss growth

directionality relative to the gravity vector, alias gravitropism.

Gravitropism is a complex process, which could be simplified into

three stages: perception, signaling transduction, and bending.

Gravity is believed to be mainly sensed within specific cell types:

columella in the root, and endodermis in the shoot (Kawamoto

and Morita, 2022). In the classical starch-statolith hypothesis

(Sack, 1997), the direction of gravity is proposed to be sensed

by the sedimentation of statoliths (starch-filled amyloplasts) in

columella and endodermal cells, where the weight of statolith is

either sensed by the cell edge or cytoskeleton (e.g. Perbal and

Driss-Ecole, 2003; Leitz et al., 2009). Recent studies have revealed
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the complexity of statolith movement, showing that the statoliths

behave more like an active liquid than a granular material (Bérut

et al., 2018), and that shoot bending is insensitive to a range of

gravity intensities artificially applied by centrifugation but to the

inclination angles between the shoot and the gravitational vector

(Chauvet et al., 2016). Contrarily, another series of hypotheses

(including the gravitational pressure hypothesis (Staves, 1997);

tensegrity hypothesis (Ingber, 1997), etc.) suggested that gravity is

sensed generally by all cell types, and the cell wall-plasma

membrane-cytoskeleton continuum can act as a force-

transmission scaffold to transduce mechanical signals into

biochemical response.

Upon gravity sensing, several biochemical signal

transductions are activated. Among these signals auxin is

prominent in modulating differential growth and organ

bending (Takahashi et al., 2021). Gravitropic bending is

actually a biphasic process: the first phase is curving towards

gravity axis, the second phase is a straightening process called

autotropism (Bastien et al., 2013). Intriguingly, the second

decurving process is gravity-independent. Recent research

shows that actin cables in stem fiber cells perform as plant

posture sensors. This intrinsic geometric sensing is essential for

gravitropism (Okamoto et al., 2015; Moulia et al., 2021).
Mechano-heterogeneity

In multicellular plants, cells are glued together to form a

continuity (Atakhani et al., 2022). However, the mechanical

response for each cell is not necessarily homogeneous.

Heterogeneity is an intrinsic property of the biological system,

spanning all aspects from molecular to organism levels.

Therefore, how a robust order is built up during plant

morphogenesis is a fascinating question.
Cell wall heterogeneity

Being a fiber-enforced complex structure, the plant cell wall

is far from homogenous. Several key compounds and structures

in the cell wall have been proposed to mediate its physical

properties during morphogenesis. For example, the stiff cellulose

microfibrils can be randomly arranged or aligned into

directional arrays. Microfibril anisotropy is thought to be laid

down primarily during synthesis by the cellulose synthase

complex (CSC) tracing along existing microfibrils or the

underlying cortical microtubule (CMT), which were shown to

align to the direction of the principal tensile stress (Hamant

et al., 2008; Chan and Coen, 2020). Anisotropic microfibril

arrays can then fortify cell walls in the same direction to

restrict growth, biasing growth anisotropy in the perpendicular

direction (Jonsson et al., 2022). Pectin forms matrices in the cell

wall, and its methylesterification state and binding to Ca2+ can
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modulate the matrix stiffness to modulate cellular growth (Du

et al., 2022). Recently, it was proposed that pectin can form

nanofilaments, which are local heterogeneities of methylated/

demethylated pectin foci, and their unequal swelling may

contribute to the undulated shape of Arabidopsis pavement

cells (Haas et al., 2020).

Cell wall synthesis and modifications are highly local during

development (Dauphin et al., 2022), which implies that cell wall

mechanical properties can vary spatiotemporally. Indeed, direct

mechanical measurements revealed that cell wall moduli, a

measure of material stiffness, is highly patchy from subcellular

to tissue levels (reviewed by Hong et al. (2018)). One may expect

such “noisy” cell wall patterns should introduce growth

heterogeneity and reduce organ shape reproducibility.

Surprisingly, however, plants may alternate the stiff and soft

patches over time by “spatiotemporal averaging”, as proposed in

the Arabidopsis sepal (Hong et al., 2016). Long-range

coordination between patches dampens local variability, but

counterintuitively reduces the effect of the “spatiotemporal

averaging, thereby reducing organ shape reproducibility (Hong

et al., 2016). This example demonstrates how local mechanical

heterogeneity may contribute to global shape robustness.

The biochemical reactions between wall polymers are

proposed to account for cell wall’s macroscopic mechanical

properties (Zhang et al., 2021; Dumais, 2021). These reactions

also occur over time, and together with the laminar deposition of

new cell wall materials, may create gradients of stress and strain

on top of the patchiness along the thickness of the wall

(Lipowczan et al., 2018). One may picture this as a “fractal of

heterogeneity”: existing patchy cell wall expands differentially

and gets larger, and a new layer of cell wall with smaller patches

is added underneath the previous layer, and repeats. Over time,

this temporal accumulation can lead to heterogeneity on many

lengthscales, which may contribute to the different levels of local

growth variability and long-range coordination in plant tissues

(Fruleux and Boudaoud, 2021).
Heterogeneity arising from cell-cell
interaction

Arabidopsis pavement cells acquire interlocked jigsaw

shapes, generated by coordinated, heterogeneous growths

within and between the cells (Elsner et al., 2018). Besides the

well-established molecular pathways involving auxin and Rho

GTPases, biomechanical heterogeneity has been considered as

another candidate for shape generation [reviewed by Liu et al.

(2021)]. The aforementioned mechanical feedback theory can

explain shape acquisition for single pavement cells

(Sampathkumar et al., 2014; Sapala et al., 2018), particularly in

reinforcing and amplifying initial minor undulations of the cell.

However, pavement cells are not isolated, and one cell’s lobe

must match its neighbor’s neck. It was found that anticlinal cell
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walls between two neighboring pavement cells can have

asymmetric pectin deposition and different moduli, which

precedes lobe-neck formation and would lead to bending

either under tension or when pectin expands upon

demethylation (Majda et al., 2017; Haas et al., 2020). Another

study proposes that mechanical asymmetry in anticlinal walls is

not sufficient for pavement cell shape, and stress pattern in the

outer periclinal wall is further required to generate the matching

puzzle shapes of the pavement cells: by including periclinal walls

in mechanical simulations, turgor pressure may cause the cell

edge to buckle. The resulting stress heterogeneity may initiate

local cytoskeleton reorganization, which will promote lobe-neck

formation (Bidhendi and Geitmann, 2019). The attractive part of

this model is that, the regular wavelength of the buckling may

emerge from cell geometry and mechanical properties like

bending stiffness, potentially giving rise to predictable

heterogeneity that contributes to complex cell shape formation

without initial prepatterning. All these, coupled with local

growth heterogeneity and the microtubule-CSC-mediated

mechanical feedback, likely underlie the generation of the

convoluted pavement cell geometry (Belteton et al., 2021). In a

more complex three-dimensional context, a recent model

suggested that different mechanical feedback activity in inner

and outer cell walls of laminar organ primordia ensures the

cortical microtuble-mediated growth anisotropy for organ

flattening (Zhao et al., 2020).

Other kinds of mechanical heterogeneity can also emerge

from tissue arrangements. For example, cell arrangements can

contribute to heterogeneity in apparent stiffness on both cell and

tissue levels (Mosca et al., 2017; Majda et al., 2022). Turgor

pressure, which was often believed to be homogenous between

plant cells connected by plasmodesmata, was recently

demonstrated to be heterogeneous in the epidermis of

Arabidopsis shoot apical meristem (SAM). Unlike the

heterogeneity of cell wall moduli, which appears random,

turgor pressure level anticorrelates with cell size and cell

neighbor number in the epidermis (Long et al., 2020). This

pressure pattern is reminiscent of the pressure distribution in

soap bubbles (Weaire and Hutzler, 2001), which emerges from

cell geometry and topology. This, and the buckling theory above,

hint that biomechanical variability may not always be random;

the pattern may be predictable, and they may serve as the

symmetry-breaking event for subsequent growth patterning.

For further discussion on variability versus stochasticity, see

Long and Boudaoud (2019).
Mechanical signaling transduction

Considering all challenges posed above, how is stress or

strain being sensed by plants, and what’s the molecular

mechanism behind? In the last decades, we accumulated

substant ia l knowledge about mechanical s ignal ing
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transductions. Exploring the underlying mechanism may help

us to get a better understanding of how plants react to forces.
Mechano-sensors

A plant cell could be conceptually described as a plasma

membrane (PM) wrapped water balloon constrained by the rigid

cell wall. As mentioned above, cell wall is the main load-bearing

component in a plant cell, and the trigger for cell wall

mechanical responses could be stress, strain, or both (Fruleux

et al., 2019). At the molecular level, a large protein family–

receptor-like kinase (RLK) is generally thought to be important

for cell wall mechano-sensing. The most well-studied RLKs in

mechano-transduction are FERONIA (FER) and THESEUS1

(THE1). FER is multifunctional. For instance, FER is a negative

regulator in touch response (Darwish et al., 2022), whereas

actively regulates the F-actin mediated PIN polar localization

in gravity response (Dong et al., 2019). Interestingly, FER could

interact with pectin to activate ROP GTPase and thus regulates

pavement cell morphogenesis (Tang et al., 2022; Lin et al., 2022),

and also contributes to the mechanical sensing in shoot

morphogenesis in a microtubule-independent manner

(Malivert et al., 2021). By contrast, THE1 is first identified as a

wall integrity sensor by pharmacological screen, and recently

reported to be responsible for coordinating changes in turgor

pressure and cell wall stiffness (Bacete et al., 2022).

In normal conditions, the rigid cell wall resists the internal

turgor pressure and reaches an equilibrium. In definition, turgor

is the force within the cell that pushes the plasma membrane

against the cell wall. The turgor thus must be surveilled

constantly in order to keep the wall and membrane integrity.

Indeed, a class of proteins named mechanosensitive (MS) ion

channels is important for membrane tension perception. For

example, Ca2+ channels like OSCA relies on tension sensing and

mediates osmosensing in Arabidopsis (Yuan et al., 2014), and

intrinsically disordered region (IDR) proteins like AtLEA4 are

important for the response to increased osmolarity (Cuevas-

Velazquez et al., 2021). For a detailed review on osmotic sensing,

referred to Gorgues et al. (2022).

Whereas the importance of cell wall and PM in mechano-

sensing is obvious, more and more evidence supports the rational

existence of a physical continuum from cell wall to PM,

cytoskeletons, and even internal organelles (Lang et al., 2004;

Fal et al., 2017; Hamant et al., 2019; Lee et al., 2019; Yoneda et al.,

2020; Goswami et al., 2020a; Goswami et al., 2020b; Fal et al., 2021;

Schneider et al., 2021; Codjoe et al., 2022; Radin et al., 2022). Once

the force transmission chain is a continuum at the cellular level,

where are the hotspots for the connection among different

compartments is still an open question.

In theory, the propagation of force is very fast in stiff tissues.

Thus, mechanical forces could reasonably act as long-distance

signals to cooperate plant growth and morphogenesis at tissue or
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even organ level. On such a larger scale, cells are connected via

plasmodesmata and cell-cell adhesions. Interestingly,

plasmodesmata and cell adhesions are recently reported as

important components for the coordination of tensile stress

and tissue patterning at the supracellular level (Verger et al.,

2018; Hernández-Hernández et al., 2020). While supracellular

mechanical signaling has been shown to be important for plant

growth and morphogenesis (Zhao et al., 2018; Long et al., 2020;

Moulia et al., 2021; Trinh et al., 2021), how the cellular

mechano-sensing is coordinated at a larger scale is still

poorly understood.
Signaling transduction

Force transduction must include the interaction with

chemical signals. Recently, some nexuses of force and chemical

signaling transduction are emerging. Ca2+-mediated signaling,

hormones (such as auxin, ethylene, JA, GA), ROS, and immune

response are all involved for example in touch response (Li et al.,

2019; Wu et al., 2020; Darwish et al., 2022; Matsumura et al.,

2022). A clear picture emerges: once the machinal signals arrive,

there must be a very fast response (like electric and Ca2+

signaling) to the stimuli, (e.g., Nguyen et al., 2018; Hagihara

et al., 2022), after that, the components related to energy,

material production, and modifications are mobilized to

support the whole system. The feedback is thus essential.
Discussion

In this review, we take touch and gravity perception as two

examples, representing contact and non-contact environmental

forces respectively, to glimpse how these forces shape plant

organs, and how plants in turn feed back to these physical

stimuli. In addition, we also discussed how mechanical

heterogeneity may arise from stochasticity or emerge from

tissue geometrical arrangements. It is likely that tissue

mechanical heterogeneity may introduce further complexity

and refinement to the local and global perceptions of external

mechanical stimuli, which may then trigger different

morphological responses, forming yet another feedback that

integrates information across various scales. Lastly, and in

response to this proposition, we try to find the nexus point of

extrinsic and intrinsic mechanical responsive pathways.

There are many outstanding questions. First, how do plants

distinguish different mechanical cues? One apparent strategy/

solution is to form specific tissues or organs. This raises another

connected question: do mechanical cues contribute to the

specification of these cells? Recently, several studies indicated

how mechanical forces are upstream of cell fates specification

(Landrein et al., 2015; Fal et al., 2016; Hernandez-Lagana et al.,
Frontiers in Plant Science 05
2021), although there are still large spaces for further

exploration; Second, how do plants embrace the seemingly

contradictory heterogeneity and robustness? Regarding this

intriguing topic, readers could refer to Hong et al. (2018);

Third, where and how are the mechano-chemical hotpots

formed? This is relevant to cell and organ polarity, which is

also a kind of heterogeneity. For polarity and mechanics, readers

could refer to Gorelova et al. (2021); The last, on a large scale,

how the plant shapes are evolutionally preserved and finally

fixed under environmental force pressure is also not

fully understood.
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