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Fusarium head blight (FHB) is a fungal disease of wheat (Triticum aestivum.L)

that causes yield losses and produces mycotoxins which could easily exceed

the limits of the EU regulations. Resistance to FHB has a complex genetic

architecture and accurate evaluation in breeding programs is key to selecting

resistant varieties. The Area Under the Disease Progress Curve (AUDPC) is one

of the commonly metric used as a standard methodology to score FHB.

Although efficient, AUDPC requires significant costs in phenotyping to cover

the entire disease development pattern. Here, we show that there are more

efficient alternatives to AUDPC (angle, growing degree days to reach 50% FHB

severity, and FHB maximum variance) that reduce the number of field

assessments required and allow for fair comparisons between unbalanced

evaluations across trials. Furthermore, we found that the evaluation method

that captures the maximum variance in FHB severity across plots is the most

optimal approach for scoring FHB. In addition, results obtained on

experimental data were validated on a simulated experiment where the

disease progress curve was modeled as a sigmoid curve with known

parameters and assessment protocols were fully controlled. Results show

that alternative metrics tested in this study captured key components of

quantitative plant resistance. Moreover, the new metrics could be a starting

point for more accurate methods for measuring FHB in the field. For example,

the optimal interval for FHB evaluation could be predicted using prior

knowledge from historical weather data and FHB scores from previous trials.

Finally, the evaluation methods presented in this study can reduce the FHB

phenotyping burden in plant breeding with minimal losses on signal detection,

resulting in a response variable available to use in data-driven analysis such as

genome-wide association studies or genomic selection.

KEYWORDS

genomic selection (GS), fusarium head blight (FHB), wheat, quantitative resistance,
plant breeding, simulation and empirical evidence
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1 Introduction

Fusarium head blight (FHB), sometimes known as scab, is a

global problem causing a great economic burden on the cereal

industry due to its significant reductions in grain yield and

quality Bottalico and Perrone (2002); Nganje et al. (2004);

McMullen et al. (2012); Savary et al. (2019). Many Fusarium

species are considered phytopathogenic fungi, but in bread and

durum wheat the most serious FHB-causing agent is Fusarium

graminearum Schwabe [telomorph: Gibberella zeae Schw.

(Petch)]. Upon infection, several Fusarium species produce

aggressive secondary metabolites, which lead to crop

contamination such as, deoxynivalenol, nivalenol, T2 toxin,

fumonisin, and mycoestrogen zearalenone, which have

negative effects on human diet and on animal growth and

fertility Placinta et al. (1999); Pestka and Smolinski (2005);

Morimura et al. (2020).

Host resistance to FHB is quantitatively inherited with a

complex genetic architecture and is usually split into

components of resistance with partial overlapping control

Schroeder (1963), that can be classified into several categories

Mesterhazy (1995); Mesterházy et al. (1999). Type I resistance,

refers to the initial resistance to the infection and it is usually

measured as the percentage of infected heads in a plot as FHB

incidence. Type II resistance, or FHB Severity, is the resistance to

fungal spread and it can be measured as the percentage of

infected spikelets in a head. Because of the global concern

about poor wheat grain quality associated with harmful

mycotoxins, resistance sources with type III for low DON

accumulation and type IV for low Fusarium-damaged kernel

(FDK) have recently attracted more wheat breeders’ attention.

Fungal development depends on environmental factors such as

moisture or temperature. Consequently, plants develop passive

resistance mechanisms related to morphological and

developmental traits Buerstmayr et al. (2020). FHB disease

(combination of incidence and severity) is known to be

partially correlated with plant height and flowering/anthesis

date Jenkinson and Parry (1994); Buerstmayr et al. (2008).

Due to its complex genetic control and the fact that

phenotyping is a labor and time-intensive process Van

Sanford et al. (2001); Miedaner et al. (2012), alternatives to

phenotypic selection such as marker-assisted selection (MAS)

and genomic selection (GS) have been proposed as tools to select

resistant varieties.

Genomic selection Meuwissen et al. (2001) has been

promoted as an alternative to MAS in FHB resistance breeding

Lorenz et al. (2012); Rutkoski et al. (2012); Arruda et al. (2015);

Buerstmayr and Lemmens (2015); Mirdita et al. (2015);

Hoffstetter et al. (2016); Herter et al. (2019); Buerstmayr et al.

(2020); Larkin et al. (2020); Steiner et al. (2017; 2019). Instead of

looking for statistically significant associations between markers

and desired traits, GS uses genome-wide molecular marker

information to predict the genetic value of lines that are
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genotyped but not phenotyped. This approach assumes that at

least one marker is in linkage disequilibrium with each QTL

underlying the trait of interest, regardless of the effect size

Heffner et al. (2009). Many different statistical modelling

approaches can be implemented on predicting FHB traits

Heslot et al . (2012), nevertheless empirical results

demonstrated that models often yield similar accuracy values

when predicting FHB-related traits Arruda et al. (2016);

Hoffstetter et al. (2016); Buerstmayr et al. (2020); Zhang

et al. (2021).

The success of data-driven models such as MAS or GS relies

on a good response variable or phenotypic value to properly

capture genetic effects and/or complex interactions between

genotypes and environments. Research for FHB resistance is

often done through cooperative trial networks such as the annual

CIMMYT FHB screening nurseries, the US wheat, and barley

scab initiative, or the WheatSustain project (https://www.

suscrop.eu/projects-first-call/wheatsustain), where data from

multiple partners, locations and years are collected into a

common dataset. These datasets are essential to developing

robust and powerful models that yield reliable results and

allow complex modelling such as genotype-by-environment

interaction (GxE) Buerstmayr et al. (2020). However, the

harmonization of the data and standardization of protocols is

often a difficult task Akdemir et al. (2020). For example, plot

designs, epidemic establishment origin (natural or artificial), or

assessment protocols (number and timing of FHB evaluations)

are key factors in field data acquisition. In this sense, scoring and

comparing FHB resistance across trials should be done carefully.

The Area Under the Disease Progress Curve (AUDPC) is

commonly used as a quantitative resistance phenotyping

strategy because it integrates aspects related to host

development and growth Jeger and Viljanen-Rollinson (2001).

AUDPC is a particular application of Riemans’ssum where a

discrete set of assessments are combined to approximate the

definite integral of the function that would be ideally obtained if

a set of infinite assessments (with an infinitesimal period

between them) were available Thompson and Silverman

(2008). From the growth point of view, biological processes

are usually modelled using S-shape, sigmoid functions such as

logistic or Gaussian cumulative distribution functions Gompertz

(1825); Darroch and Baker (1990); Zwietering et al. (1990).

These functions are characterized by a few parameters that are

given a biological meaning such as latency period, growth rates,

or saturation levels. Disease progress curves are not an exception

Madden and Campbell (1990), the repeated assessments

performed on a plot can be fitted to a sigmoid function via

non-linear regression and then collapsed into the parameters

that characterize the regressed curve Chang et al. (2018); Omara

et al. (2018); Nyanapah et al. (2020).

AUDPC presents some drawbacks: i) several FHB

assessments capturing all stages of disease progress

development are required to have a reliable measure of FHB
frontiersin.org
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resistance, ii) it yields scores with unusual units (% of severity ×

time), losing the relationship with both time and FHB severity

units and making it difficult for interpretation, and iii) scores

obtained from unbalanced number of assessments may be biased

due to the inability to capture all stages of the disease

development. In fact, thesame phenotypic pattern can yield

very different AUDPC scores if assessments are performed just

too early or too late during the disease development.

Here, we compare the use of AUDPC as an informative and

integrating method to evaluate FHB resistance in field trials, with

alternative scoring metrics by i) developing efficient

methodologies/scoring metrics that maximize the information

gained in each assessment, avoiding an exhaustive phenotype

burden and allowing fair comparison of scores across trials, ii)

comparing the predictive ability of statistical models when prior

information about developmental traits such as plant height and

anthesis date isadded to the model, and iii) quantify the ability of

these new alternatives to capture partial diseases components

via simulation.
2 Material and methods

2.1 Plant material and FHB phenotyping

The WheatSustain winter wheat panel is composed of 230

genotypes (cultivars and breeding lines) covering a wide genetic

variability across Europe. We used the breeders’ knowledge and

the mean of the coefficient of determination to selectthe training

set lines for this experiment Laloë (1993); Isidro y Sánchez and

Akdemir (2021). The panel represents cultivars developed

through breeding programs from Germany (157), Austria (50),

Norway (14), Sweden (4), Denmark (3), Poland (1), and

Switzerland (1).

Genomic DNA of the 230 varieties was extracted from 1-

week-old seedlings, and sent for sequencing using the

TraitGenetic 25K single nucleotide polymorphism (SNP) chip.

High-quality markers were kept by removing the markers with >

5% heterozygous or missing calls and with a minor allele

frequency of< 5%. A total of 22,354 informative markers were

retained after filtering. Missing markers were imputed using a

multivariate normal (MVN) - expectation maximization (EM)

algorithm (Poland and Rife (2012)).

Field trials were carried out for two years (2020 and 2021)

and three locations, Tulln (Austria, University of Natural

Resources and Life Sciences, BOKU), Vollebekk (Norway,

Norwegian University of Life Sciences, NMBU), and

Feldkirchen (Germany, SECOBRA Saatzucht GmbH, Secobra).

Genotypes were sown in a randomized complete block design

with two replications in Tulln and Vollebekk, and non-

replicated trials in Feldkirchen. Weather stations collected

meteorological conditions for all environments daily from

sowing to harvest.
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Trials were artificially inoculated with Fusarium culmorum

or F. graminearum during anthesis/inoculation and FHB disease

was evaluated as the percentage of infected spikelets per plot, as

an integrated measure for incidence and severity Gerlach et al.

(1982). The number of assessments per plot was different in each

location (Table 1). Developmental traits such as anthesis date

and plant height were also measured. To include temperature

effects on plant growth and disease development, as well as to

consider the temperature variability among years and locations,

we estimated the accumulated growing degree days (GDDs)

expressed in thermal time units as described in McMaster and

Wilhelm (1997). AccumulatedGDDs are then computed as

follows:

GDD l
(0) = 0

GDD l
(t) = GDD l

t−1ð Þ + max 0,
T l
max tð Þ+T

 l
min tð Þ

2 − Tbase

� �� �
8><
>: (1)

where GDD l
(t) is the value of accumulated growing degree

days on the t-th day and l-th location, T l
max(t) and T l

min(t) are,

respectively, the maximum and minimum temperature recorded

on the t-th day and l-th locationand Tbase is the fixed threshold to

increment GDDs. Tbase was set 5°C in this study for all locations.

The disease development curves in GDD units for each trial are

shown in Figure 1.
2.2 Scoring metrics

AUDPC is a particular application of Riemans’s sum where a

discrete set of T assessments are combined to approximate the

definite integral between x1 and xT of the function that we would

ideally obtain if a set of infinite assessments (with a infinitesimal

time unit between them) were available. Trapezoidal or mid-

point rule Wilcoxson et al. (1975) is the default method to obtain

AUDPC but other algorithms may be used to meet the

experimental and statistical requirements Simko and Piepho

(2012). A summary table of methods used in literature to

calculate AUDPC is provided in Jeger and Viljanen-

Rollinson (2001).

Here, we propose three alternative scoring metrics with the

following formulation. Let X={x1, x2, …, xT}be the set of

accumulated Growing Degree Days to Anthesis corresponding to

the T assessment’s dates and Y={y1, y2, …,yT} the set of T FHB

severity evaluations. We define a scoring metric as a function that

maps X and Y into a score to be used as the response variable in

further analysis.
2.2.1 Angle
A single-point approach that applies a non-linear

transformation, arctan, on the slope computed between a

single assessment (xT, yT) and the origin (0,0). To integrate

more available information, we propose an approach that
frontiersin.org
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considers the average time value in which FHB severity reaches

the final plateau, instead of just the last assessment.

Mathematically:

Angle X,Yð Þ = arctan yT
xp+xT

2

� �
xp = min(X ∣ y = yT )

8><
>: (2)

where xp is the minimum value of X given that the maximum

value of FHB severity (yT) is reached, i.e. the first time that the

maximum disease reached was recorded.

2.2.2 GDD50
We define GDD50 as the accumulated growing degree days in

which a plot reaches 50% of the total FHB severity. This concept has

been described as the latent period in disease progression in the

literature (Das et al. 1993), and has been also used as a parameter to

characterize partial disease resistance. We use the following

algorithm to compute GDD50 by linear interpolation:

GDD50 X,Yð Þ = 50 − yL
yR  − yL

xR − xLð Þ + xL

L = arg maxx(X ∣ y ≤ 50)

R = arg  minx(X ∣ y ≥ 50)

(
8>>><
>>>:

(3)

where L and R are the indexes of the closest points (to the left

and right, respectively) to the target disease level (50%), so (xL, yL)

and (xR, yR) are the best points to linearly interpolate GDD50.
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2.2.3 Maximum variance (Max s2)
This score is measured as the percentage of FHB severity

with the highest variability among plots in the FHB assessment.

Mathematically this is expressed as:

Max s 2 X,Yð Þ = yfhb _max

fhb _max = arg maxt o
N

i=1
(FHBit − FHB: t)

2

2
4

3
5

8>>><
>>>:

(4)

where FHB is a N×T matrix with FHBit being the disease

value for i-th plot and t-th assessment, and FHB.t is the mean

disease value in the t-th assessment. Thus, fhb_max is the highest

variability assessment index. This metric is easy to measure but

requires the phenotypic information of all lines before

computing it.
2.3 Simulation

A stochastic simulation was conducted to obtain a

reliable dataset that mimic the same conditions as BOKU’s real

database, i.e a set of 6 observations of the disease progress curve for

230 genotypes through 2 years and 2 replicates by year.

Following the phenotypic records from field experiments, we

assumed that the disease progress curves follow a sigmoid or

logistic behaviour based on two parameters:
TABLE 1 Partners’ trial design.

Location GPS Sowing Avg. Anthesis FHB Assessment Avg.
Partner (Country) coordinates Year date date protocol Ta (°C)

6 times with 4 days

2020 21/10/19 01/06/20 interval starting 10 11.2

days after anthesis

BOKU Tulln 48°19’12’’N

(Austria) 16°04’10’’E 6 times with 4 days

2021 14/11/20 11/06/21 interval starting 10 10.4

days after anthesis

Single assessment

2020 27/10/19 14/06/20 21-47 days 7.2

after anthesis

NMBU Vollebekk 59°39’38’’N

(Norway) 10°46’55’’E Single assessment

2021 14/11/20 21/06/21 24-31 days 6.8

after anthesis

3 times with 3-4 days

2020 07/10/19 31/03/20 interval starting 242 8.1

days after sowing

Secobra Feldkirchen 47°54’27’’N

(Germany) 11°50’34’’E 5 times with 6-7 days

2021 22/09/20 01/05/21 interval starting 222 7.9

days after sowing
fronti
ersin.org
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y = sigmoid x, a, bð Þ = 1

1 + exp a−x
b

� � (5)

where y is the FHB incidence/severity recorded for a given x

value of accumulated GDDs. Parameter a determines the

position of the curve on x-axis and coincides with both the

inflection point and the required accumulated GDDs to reach a

FHB incidence/severity equal to 50%. Parameter b determines

the shape of the sigmoid curve and coincides with the reciprocal

value of the rate parameter, also known as intrinsic rate of

increaseMadden and Campbell (1990) or apparent infection rate

Plank (1963). In this simulation we assume no correlation

between those parameter and, thus, they are considered to be

traits with independent genetic architecture and control.

Real marker information was used to genotype the training

population: the simulated genome consisted of 22,354 markers

for each trait and marker effects are assumed to randomly follow

a normal distribution. True breeding values were calculated by

summing effects across all markers and then, scaled to follow a

normal distribution (parameter a) and a gamma distribution

(parameter b) as realistic density distributions derived from real

data. Populations of a and b parameters were used to calculate

the definite integral values (ideal AUDPC scores).

Components of phenotypic variance (additive genetic

variance, environmental variance and residual variance) where

chosen to partially disconnect genotypic information and true
Frontiers in Plant Science 05
breeding values and approximate four different heritability

values (0.2, 0.5, 0.8 and 1.0). Assessments were performed

from days 10 to 30 after anthesis with a period of 4 days

between them. Anthesis dates were stochastically computed

according to field data.

We also simulated 11 scenarios with different assessment

protocols (Table 2) where some of the evaluations were

considered missing data. We investigated the predictive ability

of scoring metrics in all combinations of these two factors

(heritability and assessment protocol) resulting in 4×11 = 44

simulated prediction tasks.
2.4 Genomic predictions

Predictive ability of scoring metrics was tested by applying

Genomic Best Linear Unbiased Predictors (GBLUP) model Van

Raden 2008 using the sommer package Covarrubias-Pazaran

(2016) in R R Core Team (2021)package [9] in R [44].

y = Xb + Zu + ϵ

u

ϵ

" #
∼ N

0

0

" #
,

Ks 2
a   0

  0 Rs 2
ϵ

" # !
8>><
>>: (6)

where y is the response variable, i.e. scores. X and Z are

known design matrices for fixed (environmental effects, blocks,
FIGURE 1

Disease development among trials. Each field trial is graphed in one grid. Grids in the same column have a common location (Tulln, Vollebekk
and Feldkirchen, from partners BOKU, NMBU and Secobra, respectively). Grids in the same row have common season (2020 or 2021). Each
curve represents the disease development in one plot. Dots represent field assessments and curves are constructed by connecting them. The
percentage of FHB incidence/severity is assumed to be null on anthesis.
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covariates, etc) and random effects (genotypes or lines). b is the

vector of regression coefficients of fixed effects (least squares).

Vector u contains the random genetic additive effects or GEBVs.

Random term and residual variances are denoted as s 2
a and s 2

ϵ ,

respectively. Matrices K and R are the kernels of random effects

and residuals to define the covariance structure. K is the additive

genomic relationship matrix based on marker information

(Endelman and Jannink 2012). Since the model is considered

to be homoscedastic (independency between residuals), R = I,

the Identity matrix.

To test the performance of predictions based on scoring

metrics, we formulated three prediction scenarios using a 5-fold

cross-validation scheme. All scenarios involve an independent

analysis for each of the four scoring metrics. Scenarios 1 and 2

were applied to field data and only scenario 3 was applied to

simulated data.

Scenario 1. Whole field data were analyzed simultaneously

in a two-step strategy. In the first step, genetic effects (BLUEs)

were estimated once by removing environmental effects:

First step :  

y = X1b + X2g + Zu + ϵ 

u

ϵ

" #
∼ N

0

0

" #
,

Is 2
u   0

  0 Is 2
ϵ

" # !
8>><
>>: (7)

where y is the vector with observed phenotype, X1 and X2 are

design matrices for fixed effects, b̂ is the vector with estimates of

trial effects (nested interaction between location and year) and g ̂
is the vector with estimates for genetic effects (BLUEs). Z is the

design matrix of random effects and û is the vector with

predictions of random effects (nested interaction between trial

and replication). Both random terms û and ϵ are assumed to be

uncorrelated with s 2
û and s 2

ϵ as variance components.

In the second step, data was split into train and test

according to the cross-validation scheme. BLUEs from training

data were used as response variable in four GBLUP models
Frontiers in Plant Science 06
involving different combinations of phenological traits as fixed

effects: No covariates (None), Anthesis date (AD), Plant height

(PH) and both (AD + PH). The obtained BLUPs (GEBVs).

Accuracy values were obtained by correlating predicted GEBVs

from unseen lines with BLUEs. This step was replicated 25 times.

Second step :   

g = m + Xw + Zg* + ϵ

g*

ϵ

" #
∼ N

0

0

" #
,

Ks 2
g*   0

  0 Is 2
ϵ

2
4

3
5

0
@

1
A

8>>><
>>>:

(8)

where g ̂ is the vector with BLUEs from first step, m is the

intercept, X is the design matrix for fixed effects, ŵ is the vector

with estimates of covariate effects. Z is the design matrix of

random effects and g*is the vector with predictions of random

effects (GEBVs), which are assumed to be correlated with

additive genomic relationship matrix K as covariance

structure. s2
g* and s 2

ϵ are variance components for GEBVs

and residuals, respectively.

Scenario 2. Field data was split by trial and analyzed

independently using a single step strategy and the same

combinations of phenological traits as fixed effects. Accuracy

values were obtained by correlating predicted GEBVs from

unseen lines with phenotypic records. This analysis was

replicated 10 times for each of the 6 trial subsets.

Single step :   

y = X1b + X2w + Zg* + ϵ

 g*

ϵ

" #
∼ N

0

0

" #
,

Ks 2
g*   0

  0 Is 2
ϵ

2
4

3
5

0
@

1
A

8>>><
>>>:

(9)

where y is the vector with observed phenotype, X1 and X2 are

design matrices for fixed effects, b̂ is the vector with estimates of

replication effects and ŵ is the vector with estimates for covariate

effects. Z is the design matrix of random effects and g* is the

vector with predictions of random effects (GEBVs), which are
TABLE 2 Simulated scenarios.

Scenario Assessment protocol No. Assessments

all 1 2 3 4 5 6 6 (100%)

firsts 1 2 3 3 (50%)

mids 3 4 5 3 (50%)

evens 2 4 6 3 (50%)

odds 1 3 5 3 (50%)

limits 1 2 6 3 (50%)

pair 2-5 2 5 2 (33%)

pair 3-6 3 6 2 (33%)

first 1 1 (17%)

fourth 4 1 (17%)

last 6 1 (17%)
BOKU’s design protocol is followed. Assessment are taken from day 10 to 30 after anthesis with a 4-day period. For example, assessments in scenario pair 2-5 are performed 14 and 26 days
after anthesis.
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assumed to be correlated with additive genomic relationship

matrix K as covariance structure. s 2
g* and s 2

ϵ are variance

components for GEBVs and residuals, respectively.

Scenario 3. A single step GBLUP model was used to predict

GEBVs in each of the 44 simulated predictive tasks:

Single step :   

y = Xb + Zg* + ϵ 

 g*

ϵ

" #
∼ N

0

0

" #
,

Ks 2

g*
  0

  0 Is2
ϵ

2
4

3
5

0
@

1
A

8>>><
>>>:

(10)

where y is the vector with observed phenotype, X is the design

matrix for fixed effects, b̂ is the vector with estimates of replication

and year effects. Z is the design matrix of random effects and g* is
the vector with predictions of random effects (GEBVs), which are

assumed to be correlated with additive genomic relationship

matrix K as covariance structure. s 2
g* and s 2

ϵ are variance

components for GEBVs and residuals, respectively.

GEBVs were not only correlated with the observed scored

values as shown in previous scenarios: correlations were

extended to genetic effects for parameters a and b and the

integral value computed from them. Each predictive task was

replicated 30 times. Average accuracy values were calculated and

summarized in different ways:
Fron
• For each of the 44 predictive tasks, we determined the

best performers predicting the four categories

(Phenotype, Integral, Parameter a and Parameter b)

and compute the percentage of tasks in which each
tiers in Plant Science 07
scoring metric was the best (higher Pearson ’s

correlation between GEBVs and the respective

parameter).

• For each of the 11 scenarios of assessment protocols, we

computed the Area Under the Curve (AUC) of the

interaction plots resulted by plotting heritability (x-

axis) against accuracy (y-axis) . The relat ive

performance of alternative scoring metrics (Angle,

GDD50, and Max s2) was calculated as the percentage

of gain in AUC compared with AUDPC.
3 Results

3.1 Empirical field data prediction:
Scenario 1

The prediction accuracy across trials for the scenario 1 is shown

in Figure 2A. Results indicates that on average AUDPC showed a

prediction accuracy of 0.53. Taking as reference this value, the

largest accuracies were reached when capturing the maximum

variance with a mean accuracy of 0.57, which was +8.74% greater

than AUDPC. On the contrary, GDD50 showed the lowest mean

accuracy of 0.44 and a decrease of 17.36% compared to AUDPC.

The angle metric showed a decrease on average prediction of 4.46%

with respect to AUPDC. The use of covariates did not have a

significant effect on prediction.
B

A

FIGURE 2

Prediction accuracy (correlation between GEBVs and observed values) for scoring metrics in Prediction scenarios 1 (A) and 2 (B). Bar color
indicates GBLUP model covariates. Bar height represents average accuracy value and error bars stand for standard deviation.
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3.2 Independent field trials prediction:
Scenario 2

Figure 2B shows the prediction accuracies within trials. The

use of covariates did not have a consistent effect on prediction

accuracy. Anthesis or plant height covariates did not improved

the average performance, indeed supposed a decrease in

prediction in most trials. Results indicate that both locations

and years had an important effect on the prediction accuracy and

that the number of assessments and disease progress sampling

were also important. In general, the maximum variance trait

(Max s2) showed greater performance for all years and locations.

In Tulln trials, AUDPC yielded the largest accuracy values,

with an average of 0.63 and 0.61 in 2020 and 2021, respectively.

GDD50 and Max s2 obtained relatively good accuracy and angle
was clearly the worst in both years. In trials where the number of

FHB assessments were lower, alternative metrics showed better

performance with angle and Max s2 being the most predictable

metrics in Feldkirchen 2020 (average accuracy of 0.58) and all
Frontiers in Plant Science 08
alternatives outperforming AUDPC in Feldkirchen 2021

(average accuracy of 0.42). Angle was also the best

transformation in Vollebekk 2020 with average accuracy of

0.58 and only GDD50 metric was worse than average in

Vollebekk 2021.
3.3 Prediction on simulated data:
Scenario 3

Most representative scenarios for each number of

assessment are shown in Figure 3: all (6), mids and limits (3),

pair 3-6 (2), and last (1). As a general trend, accuracy values

increase with higher heritability values. When GEBVs are

correlated with phenotype/observed score, best curves and

AUC values are obtained by Max s2 and AUDPC: 0.41, 0.40

and 0.41 for scenarios all, mids and pair 3-6, respectively.

Highest AUCs are also obtained in these three scenarios when

correlating with integral but in that case GDD50 was also a top
B

A

FIGURE 3

(A) Schematic representation of simulated assessment protocols (only 5 from a total of 11 are shown). The curve represents typical disease
development with sigmoid behaviour and each point represents a simulated assessment. Shadow and white stripes indicate available and
unavailable/missing information, respectively. (B) Interaction plots for heritability (x-axis) and accuracy (y-axis). The assessment protocol is
denoted in the top of the subplot. Prediction accuracy is computed as the Pearson’s correlation between GEBVs and phenotypes (response
variable) in the upper row and integral (ideal AUDPC) in the lower row.
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performer. Although best integral predictions were obtained

without restrictions on available data, minimum accuracy

losses (<1%) were found when using just the restricted

information of assesment protocols mids and pair 3-6.

Drop accuracy gains for limits and last were, respectively, -4.8%

and -9.1% when predicting phenotype and -5% and -13.3% when

predicting integral. Angle has a relative good performance

predicting phenotype but has the worst performance predicting

integral. AUDPC has a considerable drop in overall accuracy

predicting phenotype when only the last point is available

(-36.8% of AUC gain respect to accuracy obtained with 6 points).

Figure 4 shows the percentage of best performers in each task:

Max s2 was the best performer predicting phenotype in 46% of

predictive tasks. Angle and AUDPC were the best in 27% and 25%,
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respectively and GDD50 was the best just in 2%. When predicting

integral, AUDPC and GDD50 were the best performers, with 45%

and 30% respectively. GDD50 was the best performer in almost

half (46%) of the predictive tasks for sigmoid parameter a. Angle

was the best performer in 84% of tasks predicting sigmoid

parameter b and AUDPC was the best in the remaining 16%.

Figure 5 shows the relative performance of alternative

methods as AUC gains respect to AUDPC. Max s2

outperformed AUDPC predicting phenotype in 7 out of 11

assessment protocols, including when all the information is

available. Results showed similar AUC gain patterns for

integral and parameter a. Alternative methods, and especially

Angle, perform better predicting parameter b except in those

protocols that capture just the early stages of disease
FIGURE 4

Predictive ability summary. Each chart represents the percentage of tasks in which each scoring metric obtained the best accuracy i.e. the best
correlation between GEBVs and the respective parameter (in the top of each subplot).
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development (first and xtitfirsts). GDD50 was better predicting

the integral and parameter a in four assessment protocols (all,

evens, limits and pair 3-6) but was penalized in those where only

the first stages of disease development werecaptured. All

alternative scoring metrics outperform AUDPC predicting

phenotype when just the fourth or last assessment is available.

Data from Figure 5 is computed from the absolute values that are

shown in the Supplementary Table S1.
4 Discussion

Besides the common issue of accurately characterizing the

disease pattern, the research of FHB resistance has the temporal

component factor issue, i.e. since disease patterns changes over

time, multiple evaluations of plants/plots are required to

properlyquantify disease resistance. This imposes an important

drawback in plant breeding programs because i) breeders cannot

always measure the disease progression across the crop

developmental phases, and ii) increase phenotyping cost and

time. Here, we proposed alternative metrics to AUDPC with the

aim to i) cope with multi-trial, unbalanced data with different

experimental conditions, and ii) yield scores that are fair,

comparable, and easy to interpret so they can lead to the

elaboration of guidelines for less time-and-labor-consuming

but equally informative phenotyping.
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4.1 Metrics’ predictability

In this work, we assumed that a better understanding of

reality translates into higher accuracy when predicting the score

value (phenotype) of unseen lines via cross-validation. Although

AUDPC was expected to reach the best accuracy values in trials

with higher number of assessments, the non-optimal results of

Feldkirchen 2021 (Figure 2B) with 5 assessments suggest tha it is

not only the quantity but the quality of those assessments, which

should sample all disease stages to compute a representative

AUDPC score.

GDD50 was adapted from the well-known parameter

“latency period” Darroch and Baker (1990); 314 Ringer et al.

(1995); Nyanapah et al. (2020) as a measure of the lag period

from infection to the appearance of visible symptoms Das et al.

(1993). The characteristics of GDD50 are that i) scores are given

in time units and have an easy interpretation, i.e. the time

required to reach a half of maximum disease, ii) the highest

virulence rate (increase of disease per time unit) is reached when

x = GDD50 and iii) GDD50 computation is very sensitive to the

assessment protocol and takes advantage of the number and

resolution of assessments. In this sense, a strategy based on the

evaluation of a few assessments around the set of dates near 50%

of infection would allow breeders to reduce the number of

assessments without a high penalization in genomic prediction

accuracy. For instance, our results demonstrated that GDD50
FIGURE 5

Relative performance of alternative metrics to AUDPC. Each grid represents the percentage of AUC gain of a scoring metric (x-axis) in a
determined scenario (y-axis) and parameter (subplot title). Color scale has been normalized to avoid outliers impact on small values (AUC gains
range from -86% to +18000%).
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was strongly penalized in those trials where the disease

assessment did not cover both sides around the 50% of FHB

infection (Vollebekk in both years and Feldkirchen 2020,

Figures 1, 2B). Also, we observed that GDD50 was negatively

correlated with all other metrics including AUDPC

(Supplementary Figure S1). This inversely related correlation

can be explained due to the fact that the area under the curve of a

sigmoid is asymmetric with respect to the x-axis, which is much

greater on the right side or, in other words, after the inflection

point (GDD50). Therefore, given a fixed interval to measure

AUDPC, the higher the inflection point, the more important

part of the area moves outside the measurement window, i.e. the

0-30 days interval used in this work.

The area under the curve of a sigmoid is asymmetric with

respect to the x-axis, which is much greater on the right side or,

in other words, after the inflection point (GDD50). Therefore,

given a fixed interval to measure AUDPC (0-30 DAYS), the

higher theinflection point, the more important part of the area

moves outside the measurement window (the interval from 0

to 30).

Angle scoring metric was conceived as a straightforward

approach which minimum requirements, i.e. just one

informative datapoint but with the ability to keep the

characteristic non-linearity of the disease progress curve by

applying arctan function. Its drawbacks are the inability of

integrating more information when it is available and the

uninformative nature of its units (degrees or radians) when

brought to the field. Here, angle emerged as the most predictable

metric when just one point was provided (Figure 2B), suggesting

that its transformation is the most efficient way to integrate one

single datapoint.

With the aim to determine the role of capturing variance on

predictability, we calculate the assessment with the maximum

variance of the FHB evaluation (Max s2). This metric was

computed a posteriori, i.e. many different assessments may be

performed to calculate Max s2, although just one would be

finally used. When field design implies just one assessment, Max

s2 is equivalent to just consider the disease percentage and drop

the time information. Our results indicated thatMax s2 yielded
optimally across and within trials indicating that metrics that

capture variance are very informative. Moreover, simulation

results indicate that, for higher heritability, there is a positive

correlation between predictive accuracyand coefficient of

variance (CV), as shown in Supplementary Figure S2. We also

found that platykurtic phenotypic distributions (thinner tails

and less outliers than normal distribution) were linked to

better predictions.

To elucidate if the same results patterns was observed in

controlled environments, we performed a simulation study

which mimicked the disease progression of the BOKU design.

Our simulation supported the empirical results (Figures 3–5),

where we found similar prediction performance patterns. Max
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s2 was the most predictable metric and GDD50 the least

predictable one. In addition, alternative metrics were more

predictable than AUDPC in assessment protocols that

simulate Vollebekk conditions (fourth and last, Figure 5)

indicating that a reduction in data points assessment implies a

reduction in predictability of AUDPC but not in other metrics.
4.2 Developmental traits as covariates

We found that the addition of covariates, such as PH and

AD, as fixed effects in the statistical model did not improve

prediction accuracy (Figure 2). Although it has been

demonstrated previously that PH is negatively correlated with

FHB traits Michel et al. (2016); Miedaner et al. (2017), other

studies have shown that positive, negative, and null correlations

could be found in European wheat collections with other traits

such as flowering date Buerstmayr et al. (2008). This indicates

that the use of covariates does not always translate to an

improvement in precision in GS. Nevertheless, the addition of

developmental information may be key in other data-driven

analyses such as GWAS, where potential spurious associations

between molecular markers and FHB traits should be corrected

He et al. (2016).
4.3 Trade-off between phenotyping
effort and accuracy gain

The idea of reducing assessment number to compute

resistance scores is not new. Based on the sigmoid behaviour

of disease progress curve, and assuming that integral is the target

value, Jeger & Viljanen-Rollinson Jeger and Viljanen-Rollinson

(2001) proposed that an enough informative AUDPC score for

stripe rust severity could be obtained by computing it from the

two most informative datapoints (taken at the start of an

epidemic and at the end or at a critical growth stage). They

obtained Spearman’s correlation values between 0.83 and 0.96

when comparing this approach with the AUDPC scores

computed using all available information (7-8 assessments).

We demonstrate that AUDPC values computed from two or

three targeted datapoints (critical growth stage and end of

epidemic) are enough informative to obtain both a predictable

phenotype and a good approach of the integral (Figure 3). This

approach would reduce evaluation or phenotyping effort with

minimal accuracy losses. Also, we found that GDD50 is a strong

candidate to compute integral when those targeted datapoints

(second, third and sixth assessments) are provided, as shown in

Figures 3B, 5 and Supplementary Table S1. These points are

crucial in the GDD50 computation because they increase the

probability of finding values in both below and above 50% of

disease, as shown in Supplementary Figure S3.
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4.4 Capturing sigmoid parameters

Patterns of disease development over time are usually well-

fitted to nonlinear models Ratkowsky (1993). Nonlinear

functions are characterized by few parameters which determine

key features of each individual curve. We can assign a biological

meaning to these parameters and use them as scoring values for

partial disease components as interesting sources of quantitative

disease resistance. For example Nyanapah et al. Nyanapah et al.

(2020) compared eight measures of disease resistance to gray leaf

spot on maize which include latency period, rate parameter, and

AUDPC variants such as standard AUDPC and AUDPC to

inflection point. Chang et al. Chang et al. (2018) compared the

goodness of fit of four different nonlinear models (exponential,

monomolecular, logistic and Gompertz) to cocoa black pod

progress curve. Experimental procedures in these studies

implied the use of a manageable number of genotypes and

exhaustive phenotyping benchmark that allow nonlinear least

squares optimization methods to properly fit datapoints

to curves.

In our approach, we applied this knowledge to the problem

of characterizing disease curves where datapoints were not

enough to use standard nonlinear fitting procedures.

Simulation experiment allowed us to understand the role of

each scoring metric on thecapture and prediction of the partial

disease components reflected in the sigmoid function such as the

latency period (inflection point or parameter a) which can be

targeted by computing GDD50 and the apparent disease rate

(rate parameter or parameter b), which was successfully

captured by our Angle approach. Due to this findings, we

suggest further analysis to properly understand the basis of

these relations and to transfer this knowledge to field trials

and real selection processes.
5 Conclusions

In this study, we tested the ability of scoring metrics (AUDPC,

Angle, GDD50, and Max s2) to efficiently capture and integrate

field information. Our findings demonstrated that if the field

assessments capture critical growth stages of disease development

such as the inflection point and/or the end of the disease growth,

then a reduction in the number of assessments did not imply a

significant predictive accuracy loss. Field assessments protocols

that try to capture maximum variance are a great approach to

characterize quantitative resistance. GDD50 is a feasible

alternative to measure FHB resistance as soon as disease

sampling covers 50% of the disease infection. Thus, historical

data analysis could be performed to predict the most optimal time

to measure FHB in the field experiment, due tothe predictive role

of GDDmeasures. In addition, alternative metrics such as GDD50

and Angle are good approaches to compute sigmoid parameters,

which can be translated into quantitative resistance components
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without the usual requirements of data availability in non-linear

fitting procedures. We propose the following guideline for

phenotyping FHB resistance:
◼ If requirements of resolution and sampling are met (i.e.

phenotyping assessment is not an issue), characterizing

FHB resistance as the percentage of infected spikelets

per plot when variance is high is a great approach for the

prediction of unseen genotypes.

◼ If the number of assessments is restricted but a targeted

strategy is possible, capturing inflection point is essential

to characterize disease progress curve. Following our

field data, the optimal measurements should be carried

out between 20 and 30 days after anthesis/inoculation.
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SUPPLEMENTARY FIGURE 1

Correlation between scoring metrics in field trials. Diagonal grids show
the normalized distribution of each score split by trial. Lower triangle grids

show the pairwise scatter plots between the four scoring metrics. Upper
triangle grids indicate the pairwise overall correlation (in gray) and the trial

correlations between the four scoring metrics. Trials from Tulln,
Feldkirchen and Vollebekk are denoted, respectively, by colors red,

green and blue. Year 2020 is denoted with darker colors.

SUPPLEMENTARY FIGURE 2

Correlation between the coefficient of variation (CV) of phenotypic
distributions and the predictive accuracy (r) when all simulated

information is available. Color and shape determine, respectively, the
scoring metric and the heritability. Each dot represent one replicate (out

of 30).

SUPPLEMENTARY FIGURE 3

Disease stages coverage in each simulated assessment protocol. Each
grid represents the disease development curves of simulated plots given

the available information of the assessment denoted above. Dots
represent simulated assessments and curves are constructed by

connecting them. Red color indicate that there is no available
information below 50% of disease in that plot and blue color indicate

that there is no available information above 50% in that plot. Gray curves

contains at leastone value below and above 50%.

SUPPLEMENTARY TABLE 1

Absolute AUC values obtained from the heritability-accuracy interaction

such those shown on . Row and column names denote, respectively, the
assessment protocol and the scoring metric. Subtitles denote the value

which is being predicted. Underlined AUC scores are the higher in each

assessment protocol and predicted parameter.
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