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Maize is susceptible to infect pest disease, and early disease detection is key to

preventing the reduction of maize yields. The raw data used for plant disease

detection are commonly RGB images and hyperspectral images (HSI). RGB

images can be acquired rapidly and low-costly, but the detection accuracy is

not satisfactory. On the contrary, using HSIs tends to obtain higher detection

accuracy, but HSIs are difficult and high-cost to obtain in field. To overcome

this contradiction, we have proposed the maize spectral recovery disease

detection framework which includes two parts: the maize spectral recovery

network based on the advanced hyperspectral recovery convolutional neural

network (HSCNN+) and the maize disease detection network based on the

convolutional neural network (CNN). Taking raw RGB data as input of the

framework, the output reconstructed HSIs are used as input of disease

detection network to achieve disease detection task. As a result, the

detection accuracy obtained by using the low-cost raw RGB data almost as

same as that obtained by using HSIs directly. The HSCNN+ is found to be fit to

our spectral recovery model and the reconstruction fidelity was satisfactory.

Experimental results demonstrate that the reconstructed HSIs efficiently

improve detection accuracy compared with raw RGB image in tested

scenarios, especially in complex environment scenario, for which the

detection accuracy increases by 6.14%. The proposed framework has the

advantages of fast, low cost and high detection precision. Moreover, the

framework offers the possibility of real-time and precise field disease

detection and can be applied in agricultural robots.
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1 Introduction

Maize is one of the most vital food and industrial crops for

human beings and is the most essential cereal crop across the globe

after rice and wheat (Haque et al. (2022)). In addition to its edible

value, maize also serves as the raw material for industrial products

and animal fodder (Demetrescu et al., 2016; Samarappuli and Berti,

2018; He et al., 2018). However, maize is susceptible to various pest

diseases (Mboya, 2013), and the loss of maize yield induced by pest

disease has increased sharply. Early detection is an important way

to stop the spread of pest diseases, but expert identification is time

consuming and high cost. Therefore, the computer vision and

machine learning technique has attracted numerous attention for

detecting infected plants (Chen et al., 2021; Feng et al., 2020; Feng

et al., 2021).

The raw data commonly used for disease detection is RGB

images which are generally acquired by digital camera. Several

disease detection models which combine RGB images with

machine learning were proposed in recent years. Zhang et al.

(2021) proposed a convolutional neural network (CNN) model

optimized by a multi-activation function module in order to

detect maize diseases including maculopathy, rust and blight.

Wu (2021) introduced a two-channel CNN which constructed

based on VGG and ResNet for maize leaf diseased detection and

achieved a better performance than the single AlexNet model. A

CNN model based on transformer and self-attention was

implemented to automatically identify maize leaf diseases in a

complex background (Qian et al. (2022)). Due to the high

efficiency and low cost in RGB data acquisition, RGB image is

the first choice for training deep learning model. However, most

of the current models trained by RGB data are image-wise

classification of plant diseases (Karthik et al. (2020); Wang

et al. (2021); Syed-Ab-Rahman et al. (2022)). In the

application in field, precise positioning of the diseased area is

needed. Therefore, pixel-wise detection plays an important part

in plant disease detection, but RGB image only has 3 channels in

spectral domain and barely capable of locating diseased area

accurately on account of the deficiency of spectral information.

Hyperspectral image (HSI), regarded as high-dimensional

data can provide tremendous information on spectral domains.

HSI, not like RGB image which only has three spectral bands,

has multiple bands could be used for extracting disease

characteristics, so it is an ideal candidate for pixel-wise disease

detection (Nagasubramanian et al. (2019); Zhang et al. (2020);

Feng et al. (2021)). Nguyen et al. (2021) extracted disease

features from HSI data cube to detect grapevine vein-clearing

virus and accomplished pixel-wise classification by using

random forest classifier. By selecting features from shortwave

infrared HSIs of peanuts, Qiao et al. (2017) concentrated spectral

information into a subspace where the healthy peanuts and

fungi-contaminated peanuts can be separated easily. Although

HSI could not only provide amounts of spectral information but

also locate the infected area effectively, the drawbacks of HSI are
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also observed. Normally, owing to the measurements of

hyperspectral camera are performed based on the line scanner,

the time to obtain HSI data is much longer than get RGB image

by digital camera (Behmann et al. (2018)). Hence, it is hard to

complete the disease detection fast and efficiently in the

application of field detection. Moreover, the cost of

hyperspectral imaging system is much higher than digital

camera, so it is difficult to spread the use of it.

Above all, using neither RGB images nor HSIs could

combine the advantages of detection accuracy, detection speed,

data acquirement, and low cost. Ideally, it would be great if we

could acquire HSI through a digital RGB camera. In this way, we

can keep the advantages of both RGB image and HSI, it is not

only convenient to detect disease accurately but also affordable.

However, recovering HSIs from RGB images is an ill-posed

problem since a large amount of spectral information is lost

when RGB sensors capture the light (Xiong et al. (2017)).

Typically, the methods can be categorized into two types. The

first one is to build relatively shallow learning models or sparse

coding from a hyperspectral prior (Robles-Kelly (2015); Arad

and Ben-Shahar (2016); Aeschbacher et al. (2017); Jia et al.

(2017); Akhtar and Mian (2018)). Nonetheless, these methods

have poor expression capacity and therefore have limited

performance. Due to the high correlation between RGB values

and corresponding hyperspectral radiance, the second category

of methods is to learn a map between HSIs and RGB images by

utilizing large amount of training data (Stiebel et al. (2018);

Wang and Wang (2021)). Recently, deep learning methods have

been introduced into spectral recovery tasks and have good

performance (Shi et al. (2018); Zhao et al. (2020); Zhu et al.

(2021)). Based on U-Net, Yan et al. (2018) proposed a multi-

scale CNN called SRMSCNN, the encoder and decoder of the

network are symmetrical and the symmetrical downsampling-

upsampling architecture jointly encode image information for

spectral reconstruction. Can and Timofte (2018) proposed a

model called SREfficientNet which contains multiple residual

blocks to utilize low-level features, through combing local

residuals with global residuals to enhance the feature

expression ability, this method requires much less computing

resources to complete the reconstruction task.

This study is performed aiming to explore an effective and cost-

savings way in disease detection application, and the spectral

recovery disease detection model is proposed. The main

contributions of this study arise from two aspects. First, the novel

spectral recovery disease detection framework which has provided a

new way of thinking for plant disease detection is proposed. Second,

the maize spectral recovery dataset is built and the effect of spectral

recovery model on recovery performance is explored. By using the

framework we proposed, the recoveredmaize HSIs are reconstructed

from RGB images and the recovered HSIs perform well in disease

detection, especially in complex environment scenarios. This means

that we can use RGBimages to achieve nearly the same disease

detection accuracy compared with HSIs.
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2 Materials and methods

2.1 Dataset preparation

2.1.1 Data acquisition and calibration
Maize plants are cultivated in field, which is located in the

Agricultural Experimental Base of Jilin University, Changchun,

Jilin Province, China (125°25’43” E, 43°95’18” N). The variety of

maize is Xianyu 335. To facilitate the speed and accuracy of

spectral recovery from pest-infected maize RGB images, we

obtained plenty of HSIs and corresponding RGB images of

pest-infected maize leaves during mid-August. Each image

data we collected contains both healthy and diseased maizes.

Part of samples in dataset are shown in Figure 1. During the

process of data collection, the data we obtained may suffer

distortion due to the influence of intensity of illumination. It is

essential to calibrate raw hyperspectral image by using white and

dark references, according to Eq. 1. We carried a neutral

reference panel and calibrated when is necessary so that the

reliability of data is guaranteed.

Ic =
Ir−Id
Iw−Id

, (1)

where, Ic and Ir refer to calibrated and raw hypersepctral

images respectively, Iw and Id refer to white and dark

image respectively.

The hyperspectral sensor used for collecting data was the

Specim IQ sensor (Specim, Oulu, Finland), which is an integrated

system that could obtain and visualize HSIs and RGB images data.

The Specim IQ camera provides 512×512 pixels images with 204

bands in the 400-1000 nm range. The RGB images and raw HSIs

were captured by the Specim IQ simultaneously to avoid pixel

position deviation. The integration time was automatically

calculated by camera due to the light condition was unfixed.

Owing to our goal is to recovery HSIs from natural RGB images

and the wavelength of natural RGB images ranges from about 400

- 700 nm. For the purpose of reducing training cost and

improving training efficiency, the images were resampled to 31

spectral bands in the visual range from 400 nm to 700 nm with a

spectral resolution of 10 nm (Arad et al. (2022)). In this study, the
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images of maize were captured at a distance of 1-1.5 m. A neutral

reference panel with 99% reflection efficiency was used to perform

spectral calibration.

2.1.2 Data preprocessing and augmentation
In order to relieve the burden of network and increase

training samples, the hyperspectral data X ∈ RC�H�W and

corresponding RGB data were divided into bunches of

31×128×128 and 31×128×128 patches respectively. The

number of patches generated by an image depends on the

stride, according to Eq. 2. To improve the generalization

ability of the model, rotation and flipping were adopted to

augment the original data.

Np = (
W−Wp

S + 1)2, (2)

where, Np refers to the number of patches, S refers to stride,

W and Wp refer to the width of image and patch, respectively.
2.2 Spectral recovery and disease
detection framework

The overall framework is as depicted in Figure 2. The maize

spectral recovery neural network was first trained by RGB

images and corresponding raw HSIs. Raw RGB images were

fed into the maize spectral recovery neural network, through

feature extraction, mapping and reconstruction, we got the

reconstructed HSIs. Subsequently, we put the reconstructed

HSIs into disease detection neural network as input, and

finally completed disease detection task. The detailed structure

is described in the subsequent sections.

2.2.1 Maize spectral recovery neural network
Recovering hyperspectral images from RGB images is an ill-

posed problem, since a large amount of information is lost

during the process of integrating the hyperspectral bands into

RGB values. Traditional spectral recovery methods need hand-

crafted priors (Arad and Ben-Shahar (2016); Akhtar and Mian

(2018)), which performance is barely satisfactory due to the
FIGURE 1

Part of maize samples in dataset.
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lacking of representing capacity. However, deep learning

method, which performs well in many computer vision tasks,

has been applied to hyperspectral recovery successfully. Through

feeding a large number of training data, deep neural network can

learn a map between RGB and HSIs. Various network structures

have been proposed to accomplish the spectral recovery tasks,

such as CNN and Generative Adversarial Network (GAN)

(Zhang et al. (2022)). The GAN model contains a generator

and a discriminator. The generator learns to reconstruct HSIs

from RGB images and the discriminator judges whether the

reconstruction quality is satisfactory. Although GAN can

recover HSIs well, training GAN is unstable and likely to arise

mode collapse. We tend to choose a more stable model. Recently,

deep CNN based methods have achieved promising

performance (Koundinya et al. (2018); Li et al. (2020); Fu

et al. (2020)). In the training process of deep neural networks,

the problem of the vanishing of the gradient may arise at times.

The residual structure and dense structure could solve this

problem. The residual structure could add skip connections

among layers and provides the possibility for deeper network.
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However, the residual structure directly adds parameters of all

previous layers which could destroy the distribution of

convolution output and thus could reduce the transmission of

feature information. In our maize spectral recovery network, we

aim to make better use of spectral characteristics and thus the

dense structure which concatenates channel dimensions of

previous layers was adopted. The advanced hyperspectral

recovery convolutional neural network (HSCNN+) contains

dense blocks and could learn abundant and natural spectral

information. In addition, unlike hyperspectral recovery

convolutional neural network (HSCNN) requires prior

knowledge from the RGB camera hardware, HSCNN+ requires

no pre-knowledge from the RGB sensor and makes our

framework easier to apply to field robots for agriculture.

Therefore, the HSCNN+ which has superior performance on

spectral recovery tasks was adopted as the backbone of our maize

spectral recovery neural network (MSRNN).

The HSCNN is one of the first CNN-based spectral recovery

network and the HSCNN+ network was optimized on the basis

of HSCNN (Xiong et al. (2017)).The HSCNN+ network include
FIGURE 2

Schematic diagram of the overall maize spectral recovery and disease detection network architecture.
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three parts which consists of feature extraction, feature mapping

and reconstruction. The network structure is depicted in

Figure 3. The core part of the network is the feature mapping

part which contains multiple dense blocks. The output of

previous layer mapped by 1 × 1, 3 × 3 and 3 × 3 - 1 × 1

convolution and then concatenated together. The dense

structure enables the lth layer to receive the features from all

preceding layers which can efficiently alleviate the problem of

gradient vanishing, and what’s more, it offers a probability for

deeper neural network. Our MSRNN has three parts, among

them the structure of the first part of feature extraction and the

last part of reconstruction is identical to the HSCNN+. The

feature mapping part contains 20 dense blocks.

2.2.2 Maize disease detection neural network
In terms of plant disease detection, most people focus on image-

wise plant disease detection. However, it seems impossible for image-

wise maize disease detection network to apply in field due to the

influence of planting density. For pixel-wise plant disease detection, a

large amount of spectral data is required. Fortunately, HSI is a good

choice, and therefore CNN forHSIs classification was adopted as our

pixel-wise maize disease detection neural network. The high

dimensional data is sent into convolutional layers as input, and

the output of convolutional layer is sent into a classifier which

contains fully connected layer. All pixels in the spatial domain of

hyperspectral images are classified into three classes: pest-infected

maize, healthy maize, and others.
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2.2.3 Details of model training
For spectral recovery network, the dataset we used contains

100 maize HSIs, and the training set: test set is 9: 1. We set S in

Eq. 2 to 16, so each HSIs may create 625 augmented patches for

training. We used the Adam solver for optimization and beta set

as 0.9. The learning rate is decayed with a cosine annealing from

0.001 to 0.00001, and we stop training when no obvious decay of

training loss is observed. The loss function we used is MSEloss

that measures the mean squared error (squared L2 norm)

between each element in the input and target.

For disease detection network, the data we used is the output

of spectral recovery network. For input HSIs, we created patches

with stride of 2, and the training set: test set is 9: 1. The learning

rate was set to 0.001 and the cross entropy function was used as

the loss function.
2.3 Evaluation metrics

For the purpose of evaluating the quality of spectral

reconstruction, Mean Relative Absolute Error (MRAE) and Root

Mean Square Error (RMSE) were selected as evaluation metrics.

MRAE computes mean absolute value between all spectral bands

of recovered spectral images and groundtruth images. It represents

the quality of spectral recovery and it is defined as Eq. 3. RMSE

computes the root mean square error between the recovered and

groundtruth spectral images. It is defined as Eq. 4.
FIGURE 3

Network structure of the HSCNN+. The notation “1 × 1” and “3 × 3” denote the convolution with the kernel size of 1 × 1 and 3 × 3 respectively.
The notation with rectangular box denotes the convolution is followed by ReLU activation function. The notation “C” with a circular box denotes
the concatenation operation.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1056842
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fu et al. 10.3389/fpls.2022.1056842
MRAE = 1
No

N

i=1

IiR − IiG
�� ��

IiG
, (3)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NoN

i=1(I
i
R − IiG)

2
q

, (4)

where, N refers to the total number of pixels, IiR and IiG refer

to the ith pixel of the recovered spectral images and groundtruth

images respectively.

In addition to verifying the quality of the spectral recovery

model through the above evaluation metrics, we utilize a pest-

infected maize detection model to test the effectiveness of the

spectral recovery model. This model classifies pixel-wise images

into three classes: infected part, healthy part and others. The class

“others” means it neither belongs to healthy maize nor infected

maize, such as hand, white panel, stones and so on. When the

agriculture robots are working in field, they may snap to something

that does not relate to maize and could disturb the detection

results. These things are therefore classified to “other”. We chose

precision, recall and F1 score to evaluate our disease detection

model. These evaluation metrics can be calculated by Eqs 5, 6, 7.

We also used the overall accuracy (OA) and average accuracy (AA)

evaluation metrics to evaluate the detection ability of the model.

Here, OA refers to the total number of correctly classified pixels

divided by the total number of all pixels and AA refers to the sum

of accuracy for each class predicted divided by the number of class.

P = TP
TP+FP

, (5)

R = TP
TP+FN

, (6)

F1 =
2P�R
P+R , (7)

where, P refers to precision, R refers to recall, F1 refers to F1

score, TP refers to the number of true positives, FP refers to the

number of false positives, and FN refers to the number of

false negatives.
3 Experiments and discussion

All the image preprocessing processes and main algorithm

were conducted using MATLAB R2021a, Anaconda3 (Python

3.8), PyTorch library, scikit-learn library, etc. The proposed

model was trained and tested with hardware configuration

including IntelR i9-10980XE CPU (3.00GHz), 64-GB memory,

and NVIDIA RTX A5000 (CUDA 11.4) graphics card.
3.1 Evaluation of spectral recovery quality

For maize RGB images to HSIs conversion, the HSCNN+

which we chose for maize spectral recovery was compared with
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several state-of-the-art algorithms (Zamir et al. (2020); Cai et al.

(2022); Zhao et al. (2020); Shi et al. (2018)). The dataset we used

was mentioned in section 2.1, and the test set was strictly never

used for training. All compared models adopted same patch size

as HSCNN+. The initial learning rate of HRNet was 1×10-4. For

MST++ and MIRNet, the learning rate was set to 4×10-4 and

halved every 50 epochs during the training process. The batch

size was 20. Random flipping and rotation were used for data

augmentation. In order to evaluate the effectiveness of HSCNN

+, we used MRAE and RMSE evaluation metrics. The

experimental results are shown in Table 1.

Table 1 gives the numerical results of different models on the

test set. As can be seen, the MRAE of HSCNN+ reached 0.0713

which was lower than MST++ 0.1681, MIRNet 0.3073, HRNet

0.1120. The HSCNN+ model achieved 57.6%, 76.8%, 36.3%

decrease in MRAE compared with MST++, MIRNet, HRNet

respectively. The RMSE of HSCNN+ were lower than all

compared models as well and achieved 1.3%, 8.1%, 6.6%

reduction. It demonstrates that in the maize spectral recovery

case, the model learned by HSCNN+ is more suitable and can be

well generalized. fidelity of the HSCNN+ model in maize

spectral recovery application. However, it can be observed that

the 228 largest error happens at both ends of the spectral bands.

To the best of our knowledge, this may be caused 229 by the

acquisition accuracy difference of the spectral camera. The

precision of camera in middle bands is 230 higher than ends

of the spectral bands. Therefore, the error at both ends of

spectral bands caused by data 231 collection may impact on

training accuracy. Fortunately, both ends of spectral bands have

little impact on the overall disease detection accuracy.

To evaluate the perceptual quality of maize spectral

reconstruction, Figure 4 shows the visual results of four selected

bands from a test hyperspectral image. The first four rows show the

data distribution of 5 methods and the ground truth in the last row.

As shown in Figure 4, the spectral recovery model maintained the

spatial features well and the HSCNN+ model kept more spectral

details than other compared models. As a result of most of the

recovered HSIs are maize leaves which have similar spectral

characteristics, details information in dark parts are not obvious,

we recommend readers to concentrate on texture details. Figure 5

further shows the spectral signatures of four selected points from the

test data, two of themwere selected randomly from healthy part and
TABLE 1 MRAE and RMSE results of RGB to hyperspectral
conversion.

Model MRAE RMSE

MST++ 0.1681 0.1220

MIRNet 0.3073 0.1310

HRNet 0.1120 0.1289

HSCNN+ 0.0713 0.1204
frontie
The bold values mean the MRAE and RMSE of HSCNN+ is the lowest among four
models.
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two others were selected randomly from infected part. The

recovered HSI and ground truth HSI have 31 spectral bands from

400 nm to 700 nm. We can observe that the spectral curve of

reconstructed HSI has high similarity with ground truth, which

confirmed the high reconstruction fidelity of the HSCNN+ model

in maize spectral recovery application. However, it can be observed

that the largest error happens at both ends of the spectral bands. To

the best of our knowledge, this may be caused by the acquisition

accuracy difference of the spectral camera. The precision of camera

in middle bands is higher than ends of the spectral bands.

Therefore, the error at both ends of spectral bands caused by data

collection may impact on training accuracy. Fortunately, both ends

of spectral bands have little impact on the overall disease

detection accuracy.
Frontiers in Plant Science 07
3.2 Comparison of disease detection
network in different scenarios

According to the above experiment results, we found that

HSCNN+ is more suitable for maize spectral recovery. Raw

maize RGB images was converted to reconstructed HSIs by

maize spectral recovery net. In order to test the effectiveness of

our reconstructed HSIs in disease detection, we test the detection

performance of recovered HSIs in different detection scenarios.

The maize spectral recovery disease detection framework is

intended to apply in field robots for disease detection.

Therefore, it is essential to choose scenarios that field robots

are likely to be encountered. The four scenarios include three

close shot and one complex scene. When the agriculture robots
FIGURE 4

Visual comparison of four selected bands for maize spectral recovery from RGB images.
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are working in field and moving between plants, the scenarios we

chose for test are likely to be appeared in the robot view. We

used our disease detection model and the input of models were

raw RGB images, reconstructed HSIs and raw HSIs, so that we

could clearly see the performance of reconstructed HSIs. The

HSI and RGB image data collected in field were chosen as test

detection scenarios as shown in Figure 6. The raw data of these

four scenarios has never been used for our maize spectral

recovery. We fed in the raw RGB images of different scenarios

into maize spectral recovery network to get recovered maize

HSIs, then the reconstructed HSIs, raw RGB images and raw

HSIs were imported into maize disease detection network to

finally get the disease detection results.

Our maize disease detection network concentrated on pixel-

wise detection, all pixels of HSIs were used as dataset and the
Frontiers in Plant Science 08
HSIs size is 512×512. The disease detection model contains 3D

and 2D convolutional layers to extract features in spectral and

spatial domain, and end up with fully connected layers as

classifier to classify pixels into three classes: healthy, infected

and others. The total number of labeled pixels in scenario1,

scenario2, scenario3 and scenario4 are 227559, 233864, 235152

and234614 respectively. The 253 experiment results are shown

in Table 2, and Figure 7 gives a detailed account of the disease

detection results 254 in all scenarios.

Table 2 compares the performance of different data in four

test scenarios. As can be seen, the OA of disease detection

reached RGB 91.35%, RHSI 97.49%, rHSI 97.29% in scenario

1, reached RGB 98.22%, RHSI 99.39%, rHSI 98.80% in

scenario 2, reached RGB 98.34%, RHSI 98.94%, rHSI 98.74%

in scenario 3, and reached RGB 99.14%, RHSI 99.41%, rHSI
B

C D

A

FIGURE 5

Signature of four selected spatial points in Figure 4. (A) Point (133,81) of healthy part. (B) Point (307,439) of healthy part. (C) Point (304,191) of
infected part. (D) Point (353,277) of infected part.
B C DA

FIGURE 6

Four scenarios. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4.
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99.28% in scenario 4. We found that in all scenarios, the OA of

disease detection using reconstructed HSIs were all higher

than that using RGB images which means our reconstructed

HSIs performed better than RGB images. Moreover, although

the OA of detection when using reconstructed HSIs were

slightly lower than that when taking raw HSIs as input, the

detection performance between using raw HSIs and recovered

HSIs were very close. In most cases, not only the OA metrics,

almost all evaluation metrics including precision, recall, F1

score and AA follow the above rules. This means that our

reconstructed HSIs would work just as well as raw HSIs and

better than raw RGB images. Above all, our recovered HIS has

been achieved relatively large improvement in detecting

infected maize compared with raw RGB image. In some

cases, RGB image itself already has a high accuracy, the

major reason for this is that in a relatively simple scenario,

there is less disturbance. Therefore, the information raw RGB

images provided match with the corresponding algorithms

could achieve relatively high accuracy. It is difficult for our
Frontiers in Plant Science 09
recovered HSIs to achieve great improvement and the space

for improving is seriously limited.

To validate the proposed model’s detection results, we

performed a 5-fold cross-validation strategy. Table 3

summarizes the disease detection OA in different test scenarios

of all 5-folds. It could be observed that the recovered HSIs

performed well to improve the detection accuracy in all folds

which indicates the generalization capabilities of the framework.

Figure 7 shows the confusion matrices of all scenarios. The

abscissa axis and ordinate axis of each confusion matrix

represents predicted class and actual class respectively. As can

be seen, the great mass of pixel samples distribute on the

diagonal line of confusion matrices. In most cases, the

diagonal numbers in rHSI are greater than in RGB, which

indicates that our reconstructed HSI as input data could

support the detection model has higher accuracy than RGB

image. For further test the effect of reconstructed HSI, we chose a

scenario to visualize our detection results as shown in Figure 8.

As depicted in Figure 8, using the recovered HSI to detect disease
TABLE 2 Detection results of maize disease in different scenarios.

Scenario 1 (complex) Scenario 2 Scenario 3 Scenario 4
RGB RHSI rHSI RGB RHSI rHSI RGB RHSI rHSI RGB RHSI rHSI

Precision(%)

Healthy 97.01 99.16 98.87 98.85 99.3 98.85 97.96 98.28 98.02 98.66 98.84 97.98

Infected 89.6 96.2 94.27 95.36 98.47 98.05 90.83 94.2 94.99 97.41 98.61 98.38

Others 91.03 97.72 98.02 99.09 99.8 98.35 99.11 99.61 99.35 99.84 99.82 99.89

Recall(%)

Healthy 96.54 99.07 99.16 96.97 99.22 98.64 96.77 98.37 98.02 96.92 98.32 98.32

Infected 76.59 94.32 95.08 96.97 98.98 96.72 93.36 96.34 93.86 98.97 99.02 98.63

Others 96.45 98.5 97.63 99.25 99.63 99.7 99.43 99.39 99.44 99.74 99.81 99.72

F1(%)

Healthy 96.77 99.12 99.02 97.9 99.26 98.74 97.36 98.33 98.02 97.78 98.58 98.15

Infected 82.58 95.25 94.68 96.16 98.72 97.38 92.08 95.26 94.42 98.18 98.81 98.5

Others 93.66 98.11 97.83 99.17 99.71 99.39 99.27 99.5 99.4 99.79 99.82 99.81

OA(%) 91.35 97.49 97.14 98.22 99.39 98.8 98.34 98.94 98.74 99.14 99.41 99.28

AA(%) 89.86 97.3 97.29 97.73 99.28 98.35 96.52 98.03 97.11 98.55 99.05 98.89
frontiers
a RGB means RGB image, RHSI means raw hyperspectral image, rHSI means recovered hyperspectral image.
The bold values mean the best result among RGB, RHSI and rHSI in different scenarios
TABLE 3 Detection OA (%) of individual folds in the 5-fold cross validation process.

Scenario 1 (complex) Scenario 2 Scenario 3 Scenario 4
Fold no. RGB RHSI rHSI RGB RHSI rHSI RGB RHSI rHSI RGB RHSI rHSI

Fold 1 92.69 97.06 97.42 97.51 99.55 97.70 97.98 98.75 99.09 99.35 99.61 99.22

Fold 2 94.56 97.19 97.08 98.13 99.45 99.39 98.34 99.07 99.19 99.13 99.58 99.60

Fold 3 90.87 97.38 97.18 96.05 99.34 99.41 98.63 99.16 98.78 99.28 99.54 99.13

Fold 4 93.55 97.49 97.30 97.60 99.63 99.22 98.71 99.15 99.09 98.57 99.43 99.56

Fold 5 93.51 97.41 97.19 99.13 99.58 99.30 98.07 99.17 99.16 99.39 99.59 99.54

Average 93.04 97.31 97.23 97.68 99.51 99.00 98.35 99.06 99.06 99.14 99.55 99.41
a RGB means RGB image, RHSI means raw hyperspectral image, rHSI means recovered hyperspectral image.
The bold values mean the best result among RGB, RHSI and rHSI in different scenarios.
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has higher stability and precision compared with using the

RGB data.

From detection results in scenario 1, we observed that using

the reconstructed HSIs has tremendous effects on performance
Frontiers in Plant Science 10
of disease detection. By importing raw RGB data into spectral

recovered network to get recovered HSIs, the OA of disease

detection is improved from 89.86% (using raw RGB images) to

97.29% (using recovered HSIs). This would be caused by the
FIGURE 8

Visual comparison of disease detection using RGB image, recovered HSI. and raw HSI.
FIGURE 7

Confusion matrices of all scenarios. (In each confusion matrix, the abscissa axis represents predicted class and the ordinate axis represents
actual class.).
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complex detection environment as shown in Figure 6A. The

spatial features extracted by disease detection network from raw

RGB images can not sufficient to support the disease detection

tasks. By using spectral recovered network to convert raw RGB

images to recovered HSIs, the spectral features were enlarged.

Compared with 3 spectral channels in RGB images, the

reconstructed HSIs have 31 channels which could get more

accurate disease detection in the complex scenes.

Above all, the maize spectral recovery network first trained

by our maize spectral recovery dataset which contains maize

RGB images and corresponding HSIs to learn a map between

raw RGB data and HSIs data. After enhancing spectral features

of raw RGB images, the recovered HSIs can perform as well as

raw HSIs in disease detection application. This means that we

could obtain original maize RGB data fast by a low-cost digital

camera, and then throw into our maize spectral recovery

network to get reconstructed maize HSIs. By utilizing the

recovered maize HSIs to detect diseases, we could achieve

almost the same accuracy as raw HSIs can do. In view of the

high-cost and time-consuming of acquiring HSIs and the

operational complexity of hyperspectral camera, we offer a

better choice for field maize disease detection application.
4 Conclusion

This research proposed a maize spectral recovery disease

detection framework based on HSCNN+ and maize disease

detection CNN to complete low-cost and high-precision maize

disease detection in field application. We found ideal spectral

recovered model to reconstruct HSI data from raw maize RGB

data and used the recovered HSI data as input for disease

detection network. The spectral information in the raw data

was expanded, and the quality of HSI reconstruction was

satisfactory. Our framework effectively improved the disease

recognition accuracy when taking RGB images as raw data

and had achieved excellent results in disease detection. The

experiment findings demonstrated the efficiency and

practicability of our framework, and it is successfully

accomplished to detect infected maize under various

conditions especially in the complex environment conditions.

In the future, we plan to combine our theory with practice to

resolve problems in agriculture production. The disease

detection agricultural robots need to receive real-time data to

make quick judgement. On account of the high-cost and time-

consuming characteristics of the hyperspectral imaging system,

it is almost impossible to apply it to field real-time disease
Frontiers in Plant Science 11
detection. However, the framework we proposed offers

this possibility.
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