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Introduction: The fusion of infrared and visible images can improve image quality

and eliminate the impact of changes in the agricultural working environment on

the information perception of intelligent agricultural systems.

Methods: In this paper, a distributed fusion architecture for infrared and visible

image fusion is proposed, termed RADFNet, based on residual CNN (RDCNN),

edge attention, and multiscale channel attention. The RDCNN-based network

realizes image fusion through three channels. It employs a distributed fusion

framework to make the most of the fusion output of the previous step. Two

channels utilize residual modules with multiscale channel attention to extract the

features from infrared and visible images, which are used for fusion in the other

channel. Afterward, the extracted features and the fusion results from the previous

step are fed to the fusion channel, which can reduce the loss in the target

information from the infrared image and the texture information from the visible

image. To improve the feature learning effect of the module and information

quality in the fused image, we design two loss functions, namely, pixel strength

with texture loss and structure similarity with texture loss.

Results and discussion: Extensive experimental results on public datasets

demonstrate that our model has superior performance in improving the fusion

quality and has achieved comparable results over the state-of-the-art image

fusion algorithms in terms of visual effect and quantitative metrics.

KEYWORDS

distributed fusion, multiscale channel attention, edge attention, image enhancement,
intelligent agriculture
1 Introduction

Infrared images and visible images are important sensing information for intelligent

agricultural systems. The key to intelligent agricultural systems is to utilize perceptual data for

intelligent analysis and decision-making. The infrared imaging technology with anti-

interference solid ability uses the radiation energy released by the target so it can penetrate

smoke, fog, rain, snow, etc., in the environment. However, the visible light sensor uses light
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reflectivity to image with much spectral information and high-

resolution characteristics. As the application range in intelligent

agricultural equipment gradually broadens and the perceived

information environment is usually changeable, a single image

imaging technology cannot sufficiently perceive the environmental

information. It results in the inability of intelligent agricultural

equipment to perceive enough information, which leads to the

failure of intelligent agricultural systems to work regularly.

Therefore, it is of great significance to study the complementary use

of infrared and visible image imaging technology to enhance the

information perception ability of intelligent agricultural equipment

(Aamir et al., 2021).

High-quality enhanced images can be obtained by fusing infrared

and visible images to improve the information perception ability in

intelligent agricultural equipment and meet various subsequent visual

tasks for intelligent agricultural systems. As a branch of information

fusion, image fusion has played an essential role in computer vision

since it can generate more informative images for high-level vision

tasks such as recognition (Basak et al., 2022), detection (Wieczorek

et al., 2022), tracking (Bhatti et al., 2022d; Yan and Woźniak, 2022),

and surveillance (Chen et al., 2021; Chen et al., 2022b). Significantly,

infrared and visible image fusion is a considerable problem and has

striking advantages. It is a task that aims to integrate salient features

extracted from source images into a single image by appropriate

methods (Li et al., 2017). Generally, visible images contain texture

information with high spatial resolution and often lose effectiveness

under dark or extreme environmental conditions. On the contrary,

infrared images can highlight thermal targets in low light or severe

weather and contain little texture information because of their low

spatial resolution. Infrared and visible image fusion can integrate the

complementary virtues from infrared and visible images into

synthetic images, which not only conform to human visual

perception but also adapt to the application in various vision

systems (Bhatti et al., 2022a; Bhatti et al., 2022b).

According to the abstract degree in image information, image

fusion is divided into three levels: pixel level, feature level, and

decision level (Ma et al., 2019a). In this work, we mainly study

pixel-level image fusion methods because they can retain the

information from the source image to the maximum extent. In the

past decades, scholars have proposed numerous infrared and visible

image fusion techniques. These approaches can be broadly classified

into two categories: traditional and deep learning-based methods (Ma

et al., 2019a). Most traditional infrared and visible image fusion

algorithms belonging to pixel-level fusion directly perform

mathematical operations on the image pairs after image

registration, which have achieved good performance. However,

infrared and visible image fusion methods based on deep learning

have emerged with tremendous potential and even better

performance in recent years.

The traditional methods, in general, cover five approaches: multi-

scale transform methods (MST) (Zhu et al., 2018), sparse

representation methods (SR) (Cui et al., 2015; Zhang et al., 2018),

saliency methods, subspace methods, and other methods (Gangapure

et al., 2018). In general, MST-based methods first decompose the

source images into multiple scales, and then the multi-scale features

are fused using the appropriate fusion rule. Finally, an inverse

operation is performed to reconstruct the fused image. The MST
Frontiers in Plant Science 02
based methods usually adopt Laplacian pyramid transform (LP)

(Bulanon et al., 2009), wavelet transform (Wavelet) (Mallat, 1989),

nonsubsampled contourlet transform (NSCT) (Da Cunha et al.,

2006), edge-preserving filter (EPF) (Farbman et al., 2008), curvelet

transform (CVT) (Nencini et al., 2007), and multi-resolution singular

value decomposition (MSVD) (Naidu, 2011). Sparse representation

methods (SR) generally comprise four steps (Ma et al., 2019a): First, a

sliding window strategy is adopted to decompose the source image

into several overlapping patches. Then a learned over-complete

dictionary is used for sparse coding on each patch to obtain the

sparse representation coefficients. Thirdly, a reasonable fusion

strategy is designed to fuse sparse representation coefficients.

Finally, the learned over-complete dictionary produces a marked

effect in reconstructing the fused image using the fused coefficients.

Among them, the construction of the over-complete dictionary is key

in SR (Ma et al., 2019a). The saliency-based methods can highlight

regional activity and significance (Meng et al., 2017; Zhang et al.,

2017). The subspace-based methods, including the principal

component analysis (Bavirisetti et al., 2017), independent

component analysis (Mitianoudis et al., 2013), and non-negative

matrix factorization (Kong et al., 2014) can remove the redundant

information existing in most natural images by converting high

dimensional input images into low dimensional spaces or

subspaces. Although the existing traditional fusion methods have

indicated great performance, these methods require the highly

manual design in decomposition and fusion strategies. Their

application is subject to unpredictable constraints in some tasks,

and their performance deteriorates when the source images are

complex due to the degradation of representation (Chen et al., 2022a).

In the past several years, deep learning has been widely applied in

infrared and visible image fusion to solve the shortcomings in

traditional fusion methods. The application of deep learning-based

methods for infrared and visible image fusion mainly reflects in

convolutional neural network CNN-based network frameworks,

such as convolutional sparse representation (CSR) and generative

adversarial network (GAN). The CNN-based fusion frameworks for

infrared and visible image fusion are divided into two categories: the

depth extraction for image features and the construction for fusion

networks. In depth feature extraction, VGG-19 (Ren et al., 2018),

ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152 (Szegedy

et al., 2017) have been proposed, among which VGG-19 and

ResNet152 are commonly applied. The depth of ResNet152 is

deeper than that of VGG-19, and deepening network depth

improves the depth features in the image. Nevertheless, the more

convolution layer parameter maps cause the problems in increasing

the number of parameters, the amount of calculation, and the high

requirement for computing hardware. The CSR-based methods

generally combine PCNN, wavelet transform, and NSCT to

construct a fusion network structure, which has been widely used

in infrared and visible image fusion. They can effectively represent the

salient features in the source images. However, the local modeling

approach adopted by image fusion methods based on sparse

representation is prone to lead to two major defects: loss of

contextualized information and low tolerance of fault matching.

The GAN-based fusion algorithms adopt the CNN network

structure as the framework with strong feature extraction ability,

significantly improve the fusion quality, and use the confrontation
frontiersin.org
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between the source image and the generated image to realize the

supervision in the source image on the learning parameters. Ma et al.

introduced the GAN in the infrared and visible image fusion task for

the first time, namely FusionGAN (Ma et al., 2019b), and then more

GAN-based fusion frameworks are proposed (Ma et al., 2020; Li et al.,

2021b; Ma et al., 2021). Nevertheless, they are limited by the size of

the convolution kernel and the depth of the network, ignoring the

correlation between the feature map channels.

Although a variety of networks to improve the performance in

image fusion have been proposed by many scholars. The CNN-based

network frameworks, such as convolutional sparse representation

(CSR), generative adversarial network (GAN), and other many

network architectures are applied in infrared and visible image

fusion. However, the CNN-based fusion frameworks for infrared

and visible image fusion are divided into two categories: the depth

extraction for image features and the construction of fusion networks.

The extraction for depth features requires a deeper network structure,

resulting in weak interpretability, extensive computation, and other

problems. The construction of the fusion network is also complex and

difficult to control. Although many modelsare superficially similar to

RADFNet, they have not abandoned these two categories. To get rid

of the dilemma in these two kinds of fusion categories, the RADFNet

employs a distributed fusion framework to make the most of the

fusion output from the previous step. Two channels utilize residual

modules with multiscale channel attention to extract the features

from infrared and visible images, which are used for fusion in the

other channel. Because it adopts distributed fusion, the fusion

network does not entirely rely on the extraction in deep features,

and the fusion network is simple to construct, showing strong

robustness. The RADFNet solves the limitations from most current

fusion networks and shows strong adaptability. The main

contributions of our work are summarized as follows:
Fron
(A) A distributed fusion framework based on residual CNN

(RDCNN) for infrared and visible image fusion is proposed in

this paper. The distributed fusion framework is distinct from

the existing fusion framework in infrared and visible image

fusion. It adopts three channels to realize image fusion,

wherein two channels are applied to feature extraction and

the other channel realizes feature fusion.

(B) To obtain coarse-to-fine features and compensate edge

information for fused images, the attention mechanism is

discussed. In this way, the fused images retain more
tiers in Plant Science 03
prominent information and lose less edge information from

source images.

(C) Two loss functions, including the pixel intensity with texture

loss and the structural similarity (SSIM) with texture loss, are

designed to train the RADFNet. Through experiments, it is

found that networks trained by the two loss functions have

their own advantages.

(D) Extensive experiments are conducted on public infrared and

visible image fusion datasets. Compared with existing state-

of-the-art fusion methods, our fusion framework has a

promising even better performance in accordance with

visual effect and quantitative metrics. In addition, we

perform ablation experiments to verify the function in the

corresponding module. Last but not least, unregistered source

image pairs are fed into the proposed network, emerging the

robustness of the proposed framework.
2 Materials and methods

2.1 Related works

2.1.1 Distributed fusion architecture
Distributed fusion architecture is a classical and typical structure

in multi-sensor fusion due to its high speed and reliability (Sun et al.,

2017). In distributed fusion, the measurement results of each sensor

are processed to obtain local estimates and error covariance. Then the

processing results are sent to the fusion node to conflate them into

global state estimation and the estimated error covariance (Wu et al.,

2021). Figure 1 shows a distributed model for the fusion in radar and

infrared sensors (Yang et al., 2016). For single target tracking, radar

and infrared sensors track the target respectively and generate

dependent target trajectories in their local information processing

center, then send the local trajectory information to the fusion center

for data fusion.

2.1.2 Residual network
In some tasks, deeper neural networks can extract higher-level

features and perform excellently. However, too deep networks may

cause the notorious problem of vanishing or exploding gradients and

degrade the accuracy. To solve these problems, He et al. proposed a

residual network composed of a series of residual blocks (He et al.,
FIGURE 1

A distributed fusion model for radar and infrared sensors.
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2016a). Figure 2A shows the original residual module, which can be

expressed as (He et al., 2016b).

yl = h xlð Þ + F xl ,Wlð Þ
xl+1 = f ylð Þ

(1)

where xl and xl+1 are the input and output in the l-th layer, and F
is the residual function. f is a ReLU (Nair and Hinton, 2010) function.

The residual block contains two parts: identity mapping and residual

mapping. The left part of Figure 2A is the identity mapping, and the

right part of Figure 2A is the residual part expressed as F(xl, Wl),

which usually contains 2 or 3 convolutional layers. In many cases, the

dimensions of input xl and output xl+1 are discrepant, so it is

necessary to employ a 1×1 convolution operation to maintain the

dimension in input and output consistent, whose schematic diagram

is shown in Figure 2B, which can be expressed as (He et al., 2016b).

xl+1 = h xlð Þ + F xl ,Wlð Þ
h xlð Þ = W

0
l xl

(2)

where h(xl) is the identity skip connection and W
0
l is the 1×1

convolution kernel.

The residual network can be formulated as (He et al., 2016b)

xL = xl +o
L−1

i=l

F xi,Wið Þ (3)

for any deeper block L and any shallower block l. The formula 3

indicates the feature xL in any deeper residual block L which can be

represented as the feature xl in any shallower block l add the residual

function, which leads to nice backward propagation properties that

the gradient of layers will not vanish even when the weights are

arbitrarily small (He et al., 2016b). Moreover, experiments with the

various usages of activation function were carried out in (He et al.,

2016b). The order of the activation function in the network will affect

the performance of the residual network. The structure of the

improved residual unit shown in Figure 2C has the best

performance. In this structure, the batch normalization (BN) and

ReLU activation function are placed before the convolution layer, and

the activation function after addition is moved to the residual part.
Frontiers in Plant Science 04
2.1.3 Attention mechanism in deep learning
Attention mechanism can be traced to the last century, which was

mostly applied to machine translation tasks. It has become an essential

concept in artificial intelligence because it conforms to some laws of

human cognition and can improve the interpretability of neural

networks. Therefore, the attention mechanism is widely applied, such

as natural language processing, speech recognition and computer vision

(Mnih et al., 2014; Vaswani et al., 2017; Bhatti et al., 2022c). In the

computer vision domain, many researchers have studied attention

mechanism and proposed corresponding methods to acquire nice

performance. A residual attention network built by stacking attention

modules is proposed in (Wang et al., 2017) which are designed to

generate attention-aware features, achieving outstanding recognition

performance. A novel architecture unit termed the “Squeeze-and-

Excitatio”(SE) block that adaptively recalibrates the channel feature

strength by explicitly modelling the interdependence between channels

is introduced in (Hu et al., 2020). The structure of SE block is shown in

Figure 3, where U is a feature map with the size of W×H×C, ⨂ and

refers to channel-wise multiplication, so X and U have the same size.

Moreover, edge-guided attention mechanisms which can produce

visually appealing images also attract the attention of many

researchers (Bhatti et al., 2021). Zhao et al. (Zhao et al., 2019a)

propose an edge guidance network (EGNet) which solves the

problems of rough boundary in object detection through the

complementarity of the object and salient edge information.
2.2 Methods

2.2.1 Overall framework
Enlighted by the advantages of distributed structure and the

residual module, we propose a novel distributed fusion architecture

for infrared and visible images based on the residual module and

attention of edge and multiscale channel, RADFNet. The RADFNet is

an end-to-end fusion network, the overall structure of which is shown

in Figure 4. It contains four parts: the feature extraction for the visible

image, the feature extraction for the infrared image, the fusion for
B CA

FIGURE 2

Three different residual units: (A) Original residual unit; (B) Conv residual unit; (C) Improved residual unit.
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features, and the compensation for edge information. The infrared

and visible image fusion process is formulated as follows.

The visible image features extraction branch can be formulated as

Vi = ATTi VRi Vi−1ð Þð ÞⓜEVi
 i = 1, 2, 3, 4 (4)

EVi
= EATi EVi−1

� �
 i = 1, 2, 3, 4 (5)

where V0, the visible image input in the architecture, is the V in the

Figure 4. Vi is the representation of V0 after the residual module,

multiscale channel attention and compensation of edge information.

VRi means the residual module acting on the Vi-1 and ATTi is the

multiscale channel attention module designed to obtain coarse-to-fine

features from the outcome of VRi-1. Vi represents the features in

different levels of V0 with different scales, wherein Vi has a higher

level thanVi-1. EVi is the edge information feature map obtained by EATi
with input EVi−1

configured to compensate for the edge information of

the feature map achieved by residual module and multiscale channel

attention module. ⓜ refers to the maximum value in the homologous

channel and position in the feature map. The features in the visible

image with separate scales are extracted through the above steps. Then,

they are fed into the fusion channel to fuse at each layer, which can fully

utilize the multi-scale information from perceptible images. In this

method, more texture information with high spatial resolution retains,

which can enhance the quality of the fused image.

The infrared image feature extraction branch can be formulated as

Ii = ATTi IR
i
Ii−1ð Þ

� �
ⓜ EIi i = 1, 2, 3, 4 (6)

EIi = EATi EIi−1
� �

 i = 1, 2, 3, 4 (7)

where I0, the infrared image input in the architecture, is the I in

Figure 4. Ii is the representation of I0 after the residual module,
Frontiers in Plant Science 05
multiscale channel attention and compensation of edge information.

IRi means the residual module acting on the Ii-1 and ATTi is the

multiscale channel attention module designed to obtain coarse-to-fine

features from the outcome of IRi-1. Ii represents the features in

different levels of I0 with different scales, wherein Ii has ahigher

level than Ii-1. EIi is the edge information feature map obtained by

EATi with input EIi−1 configured to compensate for the edge

information of the feature map achieved by residual module and

multiscale channel attention module. ⓜ refers to the maximum value

in the homologous channel and position in the feature map. The

features in the infrared image with distinct scales are extracted

through the above steps. Then they are constituted into the fusion

channel to fuse at each layer, which can fully utilize the multi-scale

information from infrared images. As a result, rich target information

is used for highlighting the target in the fused image.

The channel of feature fusion can be defined as

FUIi =
Fi Vi, Iið Þ i = 0

Fi Vi, Ii, FUIi−1ð Þ i = 1, 2, 3, 4

(
(8)

where V0 and I0, which are visible image and infrared image

inputs in the fusion architecture, are the V and I in Figure 4

respectively. FUI1, FUI2, FUI3, and FUI4 are the fusion results with

different level features using corresponding rules. Fi refers to the

fusion rule of the relevant layer features. FUIi is the fusion result of the

i-th extracted features Vi, Ii and the different scales from previous

fusion result FUIi-1. It realizes the layer-by-layer fusion so it can make

the best use of the information from multisource images and then

improve the quality of the fused image.

2.2.2 Network structure
The infrared and visible image fusion model RADFNet set out in

the present paper is constituted of three channels. The RADFNet
FIGURE 4

The overall structure for infrared and visible image fusion.
FIGURE 3

A Squeeze-and-Excitation block, where GP means global average pooling, FC refers to fully-connected layers, ReLU refers to the ReLU function, and
Sigmoid refers to the sigmoid function.
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structure is exhibited in Figure 5. RADFNet contains four parts: the

features extraction branch of the visible image and infrared image, the

features fusion branch, and the edge attention module compensating

edge information for the extracted features. The left and right

branches in Figure 5 are intended to extract the features in visible

and infrared images respectively. The middle branch fuses the

features extracted by the two branches with the results from the

previous step layer by layer, and the last layer generates the fused

image. For a convolutional layer, ‘k×k,(in,out)’ means the kernel size

is k×k, the input channel is in and the output channel is out. In the

network, BN indicates batch normalization that is utilized to speed up

the training and make the training more stable, and ReLU denotes the

linear rectification function.

The RADFNet adopts four-layers network structure. The VR1−4

and IR1−4 are the residual networks which extract image features.
Frontiers in Plant Science 06
Because the residual network has the advantages of mitigating gradient

disappearance or gradient explosion and protecting the information

integrity, the networks we designed can extract meaningful features and

ensure the information integrity simultaneously. Besides, ATTi

processes the features extracted by residual block VRi or IRi to

obtain coarse-to-fine features. EATi acquires the edge information

and then compensates edge information for the extracted feature

map. The ⓜ refers to the operation for achieving the maximum value

in the homologous channel and the homologous position in the feature

map. The FUPi generates FUIi by fusing features extracted by the other

two branches with the FUIi−1 generated by FUPi−1 when i is not 1.

When i is 1, the concatenated infrared and visible image is fed into the

FUP1 to generate FUI1. The ⊕ is the concatenation operation in

channel-wise, and the 1×1 244 convolution layer in the last fusion layer

constructs fusion images.
FIGURE 5

The structure of RADFNet. ‘ATT1−4’ denote the multiscale channel attention module and ‘EAT1−4’ denote the edge attention module. ‘3 × 3,(1, 32)’ means
the kernel size is 3 × 3, input channel is 1 and output channel is 32 in a convolutional layer.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1056711
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Feng et al. 10.3389/fpls.2022.1056711
2.2.3 Multiscale channel attention network
In the process of infrared and visible image fusion, image feature

extraction is exceptionally significant. However, in practical

situations, numerous detailed information loses in the process of

feature extraction. Inspired by SENet (Hu et al., 2020), the multiscale

channel attention network is proposed to process the features

extracted by the residual network to obtain the coarse-to-fine

features, which can retain more detailed information in the feature

map. As shown in Figure 6, the structure enclosed by the dotted line is

the multiscale channel attention module. The features which lose a lot

of details extracted by VRi or IRi are used as input in ATTi. Then, the

1×1, 2×2, and 4×4 average pooling operations are performed to

generate multiscale features which contain more necessary spatial

information. Moreover, the channel attention mechanism is utilized

to enhance channel correlation information between features. The

multiscale channel attention network is trained to learn the weight

Wk
ti for the k-th feature f kti of the t-th pooling scale in the ATTi which

can be formulated as

Wk
ti = s w2d w1G zð Þð Þð Þ (9)

G zð Þ = ox,yf
k
ti x, yð Þ

H �W
(10)

where G(z) denotes the global average pooling operation.

ox,yf
k
ti (x, y) means the sum of the k-th feature with the t-th pooling

scale in ATTi. (x, y) refers to the position in feature map, and H,W

means the height and width of the feature map. d refers to the ReLU

function, w1∈Rk×k and w2∈Rk×k , s denotes the sigmoid function.

Then the channel-wise multiplication is implemented between Wk
ti

and the up-sampled features which can be expressed as UP(f kti ) ,

ensuring the multiscale features have the same size as the input. Based

on this, the reweighted features are obtained and then the attention

map can be achieved as follows:

Fi = p Wk
1i*UP f k1i

� �� �
ⓜ p Wk

2i*UP f k2i

� �� �
ⓜ p Wk

3i*UP f k3i

� �� �
(11)

where p denotes the instance normalization (Ulyanov et al., 2016)

and ⓜ refers to the operation for acquiring the maximum value in the

homologous channel and position in the feature map. Through the above

method, the coarse-to-fine attention map Fi is obtained. The attention
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map not only emphasizes more critical features and neglects secondary

ones but also reserves more necessarily detailed information.
2.2.4 Edge attention module
Generally, the edge information of an image refers to the sudden

change in local grayscale value, color component and texture

structure. The edge information from images which is helpful to

distinguish objects, can effectively attract attention of people due to

human visual characteristics. Enlightened by previous work, we utilize

an edge feature map extraction model from the shallower to deeper to

obtain the enhanced edge maps, which are designed to compensate

for textural information for the fused image.

For the sake of acquiring the edge information used to

compensate fused images, we obtain the gradient map from the

source images. The process of obtaining the gradient maps ∇g by

inputting a gray-scale image f with the size h×w is defined as

∇ g = o
x=h−1,y=w−1

x=1,y=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇gh x, yð Þ� �2+ ∇gw x, yð Þð Þ2

q
(12)

∇gh x, yð Þ = f x, yð Þ − f x + 1, yð Þ
∇gw x, yð Þ = f x, yð Þ − f x, y + 1ð Þ

(13)

where f(x, y) means the pixel at position (x, y). Moreover, we

perform the enhanced operation to obtain the more obvious gradient

information:

G = max
y∈W

 max
x∈H

(∇ g x + 1, y + 1ð Þ,∇g x, yð Þ) : (14)

where H={1,…,h–1} and W={1,…,w–1}. The (x, y) represent the

position at the gradient map. Through the above steps, we get the

gradient image G with the abundant enhanced edge information.

Subsequently, we feed the gradient images from infrared and

visible images into the edge attention module to generate edge

attention feature maps with enhanced edge information. Then, the

feature maps will be entered into the extraction branch to compensate

edge information for the extracted features by IRi or VRi. The

structure diagram of the edge attention module is shown in

Figure 7. The edge attention module generates EVi and EIi layer by

layer, which is then used to compensate edge information for the
FIGURE 6

The multiscale channel attention network. The features extracted by residual network(VRi or IRi) are fed into the ATTi to generate attention map. GP, FC,
RL, SG denote the global average pooling operation, fully connected layer, ReLUfunction and sigmoid function respectively. ⊲ stands for the up-sample
operation and ⨂ denotes the element-wise multiplication.
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feature maps Vi and Ii extracted by VRi and IRi respectively.

Therefore, compensated feature maps fused to generate the fused

images retain more edge information.

2.2.5 Loss function
For infrared and visible image fusion, it is difficult to provide the

ground truth of fused images for networks to train a model. However,

the requirement to retain salient target information in the infrared

image and the texture information in the visible image is determined.

Inspired by this requirement, the loss function we employ is as

follows:

LF = Lpixel + aLtexture (15)

where the Lpixel constrains the fused image to contain more target

information from the image pair facilitating target tracking and the

Ltexture forces the fused images to contain more texture details which

can effectively improve the identification of objects in images.

Specifically, the exact definition of Lpixel is expressed as follows:

Lpixel =
1
mo

m

j=1
∥ Ijf −max   Ijir , I

j
vis

� �
∥2 (16)

where m is the batch size that is the number of training samples

used in each iteration. The If means the fused image with the input

image pair {Iir, Ivis}, and the max (·) denotes the element-wise

maximum selection. Through the maximum selection strategy, the

fused images have the prominent target information.

Moreover, we hope the fused images contain significant target

information and simultaneously preserve great textural details from

source images. However, the Lpixel has very limited constraints on

textural details. Therefore, the Ltextureis introduced to force the fused

image to retain more textural information and the Ltexture is defined as:

Ltexture =
1
mo

m

j=1
∥ ∇Ijf

			 			 −max   ∇Ijir

			 			, ∇Ijvis

			 			� �
∥2 (17)

where the m is the batch size, the If means the fused image with

the input image pair {Iir, Ivis}, and the max (·) denotes the element-

wise maximum selection. The ∇ indicates the Sobel gradient operator

and the |·| means the absolute operation. The element-wise maximum

selection strategy can make the fused images obtain the most

significant edge textural information.
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3 Experimental results and analysis

3.1 Experimental configurations

To evaluate the proposed fusion algorithm in many aspects, we

conduct extensively qualitative and quantitative experiments on the

RoadScene (Xu et al., 2020) dataset. We evaluate the performance of

our method by making a comparison with six state-of-the-art

approaches, including two Nest-based methods, i.e., NestFuse (Li

et al., 2020) and RFN-Nest (Li et al., 2021a), and four CNN-based

methods: DenseFuse (Li and Wu, 2018), IFCNN (Zhang et al., 2020),

U2Fusion (Xu et al., 2022), and SDNet (Zhang and Ma, 2021). The

subjective visual perception system is vulnerable to human factors,

such as personal emotion and visual environment, and the fused

images using different approaches resemble somewhat. Therefore,

there are six evaluation statistical metrics which are selected to

quantify the evaluation, including mutual information(MI) (Qu

et al., 2002), entropy(EN) (Roberts et al., 2008), visual information

fidelity(VIF) (Han et al., 2013), stand deviation (SD), spatial

frequency(SF) (Eskicioglu and Fisher, 1995) and average gradient

(AG) (Zhao et al., 2019b). MI quantifies the amount of information

obtained from the source image by the fused image, and EN assesses

the amount of information contained in the fused image based on

information theory. VIF mainly computes information fidelity in a

fused image, which is in line with human visual perception. SD

reflects the contrast of an image based on statical concepts, a larger SD

value indicates a higher contrast distribution in an image, and the

image carries more information. SF reflects the change rate of image

gray scale. AG can measure the fused image clarity, which can be

considered that the greater AG, the better the image clarity and the

better the fused image quality. EN, SF and SD are reference-free

metrics. Moreover, a fusion method with larger MI, EN, VIF, SD, SF,

and AG represents better performance.
3.2 Details of implementation

In the training process of the RADFNet model, we use images

from the OSU (Davis and Sharma, 2007) dataset to construct the

training dataset. Due to different imaging sensors, the image pairs in

the OSU dataset are not strictly registered resulting in black edges in
FIGURE 7

The architecture of edge attention module. The EAT1-4 are designed to generate shallow to deep edge feature maps EV1−4
or EI1−4. For convolution layer,

the ‘k×k,(in,out)‘ means that the convolution kernel size is k×k , the input channel is in and output channel is out. In addition, the ‘rate 2’ denotes the
dilated convolution operator with a dilation rate of two.
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infrared images. Therefore, we crop both infrared and visible images

at the same size 280 × 200. Based on the above operations, we can get

8,544 image pairs. It is worth nothing that the visible images in the

OSU dataset are color images, but the infrared images are grayscale.

To make the number of channels with the input image pair the same,

we perform the process that converts the visible images to grayscale

images in advance. Moreover, all images are normalized to [0,1]

before being fed into the network to accelerate model convergence.

The hyper-parameter of the loss is set as a = 10. Adam optimizer

(Kingma and Ba, 2015) with b1 of 0.9, b2 of 0.999, epsilon of 10−8,

weight decay of 0, the initial learning rate of 0.001 is used to optimize

our fusion model with the guidance of loss function LF. All

experiments are conducted on the Quadro RTX6000 GPU and 2.90

GHz Intel(R) Xeon(R) Gold 6226R CPU.

The RoadScene dataset contains color visible images, but we

employ the input grayscale images to train the proposed network.

To get better visuals in the test phase, we adopt the strategy

(Prabhakar et al., 2017) to process color images instead of

converting the input color images to grayscale images. Precisely, we

first convert the color image to the YCbCr color space, then the

infrared image and the Y channel of visible image are entered into the

RADFNet. Finally, the fusion result is concatenated with Cb andCr

channels from visible image along channel-wise and then converted

into the RGB color image. The RGB color image is the result of the

proposed network.
3.3 Results analysis on RoadScene datasets

To fully evaluate the performance of the RADFNet, we compare

the RADFNet with the other six methods on the Roadscene dataset.

The Roadscene dataset mainly contains road scenes, including

pedestrians and cars, in the daytime and at night. We select two

images in the daytime and two in the nighttime for evaluation

subjectively so as to exhibit some intuitive fused images on the

fusion performance. The fused images of the proposed RADFNet

and the other six methods are presented in Figure 8. In the daytime

scenes, the fused images with exceptional visual quality have rich

texture information from visible images and enhanced prominent

target information from infrared images. In the first column images in

Figure 8, RADFNet makes the pedestrians in the image have the most

incredible vigorous light intensity. The fused images of U2fusion and

SDnet show they tend to darken the entire color of the images. For

example, the color of the sky is darker than the fusion images with

other methods. In the second column, all six methods enhance the

pedestrian. Still, all other methods, except the RADFNet, dim the

streetlamp to a certain extent, thus losing information. Moreover, the

fusion image of the proposed approach has more obvious color

contrast and texture details, so the buildings in our fused image

have a richer structure sense than the fused images with other

methods. In the nighttime scenes, the ability of both infrared

images and visible images to provide information is limited.

Therefore, sufficiently retaining meaningful data from the source

images is challenging. In the third column, all fusion methods

inevitably integrate useless information into the fused image, which
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degrades the visual quality of the image. Regardless, the proposed

approach best protects the information from the visible image while

using the meaningful information from the infrared image to enhance

the target information. In the last column, compared with other fused

images, the fused image in the proposed method failsto remove the

halo on the streetlamp altogether. Nonetheless, the signs on the road

are most conspicuous in the fusion image, while signs on the street in

other images even tend to disappear. In a word, the proposed method

can efficiently utilize the information of the infrared and visible

images to generate high-quality fused images.

To avoid human factors and other factors affecting the subjective

evaluation. We conduct quantitative assessments with the six

approaches and the proposed method. The results of six metrics on

the Roadscene dataset, which contains 221 image pairs, are shown in

Figure 9. It can be noted that our results achieve better performance

on six metrics. The best MI means that our method transfers the most

information from the source image to the fused image and the best

EN represents the fused image thatcontains the most information.

The proposed method represents the best on VIF, which indicates our

fused image gets a better human visual perception effect. The best SF

and AG suggest that the proposed approach generates the clearest

image with remarkable quality. In addition, our RADFNet displays

the best SD, illustrating our fused images have the highest contrast.

Combined with subjective and quantitative evaluation results, these

results prove that RADFNet can convert more meaningful

information from infrared and visible images to fused images while

ensuring the best quality.
3.4 Ablation experiment

To verify the effectiveness of the edge attention module, we

conduct ablation experiments. We employ edge attention and

ignore edge attention to create two models, then the same image

pair is used as input to test the difference between the two models, and

the visual results are presented in Figure 10. The red and green box

parts are magnified for a more intuitive comparison. In the first row,

the telegraph pole in the red box with edge attention has a clearer

texture, while that without edge attention even becomes blurred. In

addition, the leaves with edge attention in the green box also have

more precise texture details than that not using edge attention. The

words in the red box of the images in the second row are difficult to

identify because of the blurred source image. In contrast, words in the

fused image using edge attention are more beneficial to observe than

that in the image not using edge attention because the edge attention

module compensates for the edge information for the fused image.

In addition, to comprehensively evaluate the impact of edge

attention in fused images, we make quantitative evaluations for the

four images in Figure 10, and the result is listed in Table 1. It is noted that

only the fused images with edge attention have a slightly lower metric SD

than that without edge attention. The fused images with edge attention

are higher for the other five metrics, i.e., EN, SF, SD, MI, VIF, and AG in

both Street and House images. The results show that the generated edge

information from the edge attention module compensating for the fused

image can improve the image quality effectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1056711
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Feng et al. 10.3389/fpls.2022.1056711
3.5 Discussion on loss function

For the sake of comprehensively considering the improvement in

model training on fused image quality, we design another loss

function LFS, which can be defined as follows:

LFS = bLSSIM + Ltexture (18)

where Ltexture is represented by Equation 17, the value of b is 5,

and the LSSIM is the structural similarity (SSIM) loss, which can be

expressed as

LSSIM = 1 − w · SSIM (F, Ið Þ + 1 − wð Þ · SSIM (F,V)) (19)

where the SSIM(·) means the structural similarity (Wang et al.,

2004). F denotes the output result from the proposed model. V and I

refer to the homologous input visible and infrared images
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respectively. In addition, to balance the structural similarity loss

between the fused image and infrared and visible image, the weight

w is taken as 0.5.

The loss functions LF and LFS are used to train the proposed

network respectively, and the results are exhibited in Figure 11. In the

first row, the zebra crossing in the green box of fused image output

after the network trained with LF is more prominent than that trained

with LFS. However, the halo on the streetlamp in the red box in the

image output by the network trained by LF is not completely removed.

In the second row, it can be seen that no matter the definition of the

whole image or the details, the network output image using LF
training is better. In a word, the output image from the network

trained by LF can highlight more important information in the

nighttime scenes. But that trained by LFS can essentially eliminate

the halo in the image. In the daytime scenes, the quality of the output
FIGURE 8

The visual results comparison with different methods on the Roadscene dataset.
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FIGURE 9

The quantization results of six metrics on the 221 image pairs from the Roadscene dataset. The abscissa x refers to the number of image pairs and the
ordinate y refers to the metric value.
FIGURE 10

The results of ablation study about the influence of edge attention module in two image pairs from the Roadscene dataset.
TABLE 1 The quantitative results on the four images shown in Figure 10.

EN SF SD MI VIF AG

Street Edge 7.514 0.077 10.492 3.890 0.730 7.763

No-Edge 7.533 0.061 10.721 2.376 0.590 5.905

House Edge 7.586 0.072 10.334 3.946 0.937 6.846

No-Edge 7.573 0.056 10.605 2.686 0.709 5.427
F
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The Street means the first row images and House denotes the second row images. Edge and No-Edge refer to edge attention and no edge attention during image fusion, respectively.
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images from the network trained by LF is better in both overall and

detail. Therefore, we choose fusion loss LF as the training loss function

in our experimental test.

To set the best optimal coefficients for the proposed method, the

parameter a is set as 1, 10, 50 and 100. The epoch and batch size are 4

and 4, respectively. One a is needed to choose for the image fusion

task based on the test images. Six metrics are employed to evaluate the

performance of RADFNet with different a. The values are shown in

Table 2. The best values are indicated in red and the second-best

values are denoted in blue. It is worth nothing that three of the six

metrics are best when a=1. However, the metrics MI and VIF are

unstable. When a=10, the values of all metrics are considerable and

stable, which indicates the proposed network can achieve better

fusion performance than other values of a. So, a is set as 10

in experiments.
3.6 Fusion of unregistered image pairs

In general, it is difficult to obtain the source image pairs that have

been strictly registered for image fusion because the imaging

characteristics of different sensors are quite different. Therefore, at

the training stage, we train our model without using the infrared and

visible image pairs that are strictly registered. Aiming to verify that

our method performs well in fusing image pairs without strict

registration, we randomly translate the infrared images in the

source image pairs with [-5,5], [-8,8]and [-10,10] pixels on the

Roadscene dataset to get the misregistered infrared and visible

image pairs, and then use the proposed method to fuse these
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misregistered image pairs. The fusion results of these unregistered

images are displayed in Figure 12. From these fusion results, the

proposed method can preserve the target information from the source

image. At the same time, the texture details from the source images

are also fused into the fused image, which improves the quality of the

fused image. The numbers in the red box of the fused images are still

vivid, even under different unregistered degrees. The experimental

results demonstrate the proposed method with strong robustness still

has good performance in fusing images without registration.
4 Discussion

For the sake of avoiding the impact of changes in the agricultural

working environment on the information perception for the

intelligent agricultural system, we utilize infrared and visible image

fusion to improve the image quality, so that the fused images can be

used normally and even efficiently for various subsequent vision tasks

in the intelligent agricultural system. Specifically, we propose a

distributed fusion architecture for infrared and visible image fusion,

termed RADFNet, which fuses images through three channels based

on residual (RDCNN), edge attention, and multiscale channel

attention. The proposed method can most retain the salient target

information in the infrared image and the textural details information

in the visible image. In addition, we introduce the multiscale channel

attention module, which can extract coarse-to-fine features to

preserve more information from source images to fused images. We

also adopt an edge attention module that can compensate edge

information for the fusedimage to make the fused image lose less
FIGURE 11

The results of RADFNet trained by SSIM loss LFS and Fusion loss LF.
TABLE 2 The quantitative results on the RoadScene dataset with different a.

a=1 a=10 a=50 a=100

EN 7.612254 7.604088 7.5805 7.58722

SF 0.088493 0.075895 0.076245 0.073816

SD 10.41727 10.50972 10.35863 10.38415

MI 2.670785 3.468535 3.501638 3.156152

VIF 0.698988 0.836942 0.832764 0.787895

AG 8.19272 7.033987 6.88297 6.939895
fron
The red word represents the best, and the blue word represents the second best.
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edge information from source images. The comparative experiments

are conducted on the Roadscene dataset, and the results demonstrate

that the proposed method has superior performance in improving the

fusion qualityand has achieved comparable results over the state-of-

the-art image fusion algorithms in terms of visual effect and

quantitative metrics. Finally, we send the unregistered image pairs

into our network, and the results demonstrate that our method with

strong robustness still performs well in fusing images without

registration. The RADFNet performs well for infrared and visible

image fusion due to the robust feature extraction ability of the

network. The distributed fusion framework endows it with strong

robustness, but the network parameters are still relatively large, which

is not simple enough in the actual project deployment. In the future, it

is necessary to improve the parameters of the network and the actual

deployment of the model.
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FIGURE 12

The results of fusing unregistered images with the proposed method on the Roadscene dataset. The infrared images are randomly translated, which
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