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Plant roots have important functions, such as acquiring nutrients and water

from the surrounding soil and transporting them upwards to the shoots.

Simultaneously, they must be able to exclude potentially harmful substances

and prevent the entry of pathogens into the roots. The endodermis surrounds

the vascular tissues and forms hydrophobic diffusion barriers including

Casparian strips and suberin lamella. Suberin in cell walls can be induced by

a range of environmental factors and contribute to against biotic and abiotic

threats. Tremendous progress has been made in biosynthesis of suberin and its

function, little is known about the effect of its plasticity and distribution on

stress tolerance. In field conditions, biotic and abiotic stress can exist at the

same time, and little is known about the change of suberization under that

condition. This paper update the progress of research related to suberin

biosynthesis and its function, and also discuss the change of suberization in

plant roots and its role on biotic and abiotic stresses tolerance.
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Introduction

Plant roots acquire nutrients and water from soil and transport them to the shoots,

while toxic compounds must be restricted from entering the plant. To reach the central

vasculature of the root, water and nutrients must cross the major tissue types of the root:

the epidermis, the cortex and the endodermis. The epidermis is the outermost cell layer of

young roots. The endodermis surrounds the vascular tissue. All vascular plants normally

develop an endodermis in their roots, and the majority of angiosperm roots also have an

exodermis which is a cell layer beneath the epidermis. The exodermis is absent in

Arabidopsis, soybean, oats, barley and wheat (Perumalla et al., 1990; Thomas et al., 2007;

Ranathunge et al., 2008; Kreszies et al., 2018).

The differentiation of the endodermis starts by the formation of the Casparian strip, as

root development progresses, another type of barrier is formed, called suberin lamellae. This
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waxy, lipophilic layer is deposited all around the cellular surface of

endodermal cells, impregnating the space between the cell wall and

the plasma membrane (Nawrath et al., 2013; Vishwanath et al.,

2015). The suberin layer appears to act as a transcellular barrier

controlling the uptake or passive diffusion of ions from the apoplast

into the symplastic environment of the endodermal cells (Barberon,

2017; Doblas et al., 2017). Plants have a variety of physiological

response mechanisms when they are subjected to various stresses

from the environment, and the deposition of suberin lamellae in the

endodermis is one of them. This response can control the transport

efficiency of various ions in plants, for reaching the ions balance in

plants and reducing the toxic effect on plant growth and

development. Suberin in cell walls can be induced by biotic and

abiotic stresses (Hose et al., 2001; Enstone et al., 2003;

Krishnamurthy et al., 2011; Tylova et al., 2017). It was also

shown that suberin biosynthesis in Arabidopsis is affected by

nutrient deficiencies such as iron (Fe), manganese (Mn), Zinc

(Zn), potassium (K) and sulphur (S) (Barberon et al., 2016). It

was suggested that plants can adapt to a sub-optimal nutrient

supply in a highly dynamic and ion specific matter, either by an

increasing or by a decreasing endodermal suberization (Barberon

et al., 2016; Doblas et al., 2017). The suberized endodermis isolates

the stele from the rest of the root, and function as a barrier to

nematode entrance and against pathogen invasion into the xylem

and spread throughout the plant (Holbein et al., 2019; Kashyap

et al., 2021).
Establishment of suberin lamellae in
the cell wall

The endodermal differentiation is marked by the deposition

of suberin lamellae, which cover the cellular surface of

endodermal cells (Nawrath et al., 2013; Vishwanath et al.,

2015). From the root tip to the base, the suberized endodermal

cells first form a patchy zone, then a continuous zone (Geldner,

2013; Barberon et al., 2016). The fully suberized zone has some

non-suberized cells, called passage cells, which are always

located close to xylem poles. The establishment of passage

cells is governed by repression of cytokinin signalling in the

root meristem, which ultimately results in non-suberized

endodermal cells (Andersen et al., 2018).

Suberin is a chemically complex heteropolymer, which is a

glycerol-based polymer consisting of a polyaliphatic polyester

linked with phenolic components (Kolattukudy, 1981; Franke

and Schreiber, 2007; Pollard et al., 2008). Transmission electron

microscopy (TEM) shows that the suberin lamellae contain

electron-lucent and electron-dense contrasts, suggested to

consist of polyaliphatics and polyaromatics, respectively

(Graca and Santos, 2007). Suberin is chemically similar to

cutin which is an insoluble lipid polyester deposited outside of

the primary cell wall and which covers the outer face of the
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epidermal wall. However, suberin contains an aromatic domain

which is not present in cutin (Schreiber, 2010).

The chemical composition of suberin in Arabidopsis roots

was analysed by gas chromatography coupled to mass

spectrometry (GC-MS), monounsaturated w-hydroxyacids,
a,w-dicarboxylic acids and glycerol are the major monomers

of suberin, followed by alcohols and unsubstituted fatty acids

(Franke et al., 2005). Suberin consists of polyaliphatic domains

and polyaromatic domains. It was suggested that the aliphatic

domain primarily made suberin a transport barrier for water due

to its high hydrophobicity (Zimmermann et al., 2000; Kreszies

et al., 2018). In barley, the amount of aliphatic suberin in the

primary root was increased in response to osmotic stress, and the

osmotic stress-induced aliphatic suberin markedly reduced the

water flow through the apoplast (Kreszies et al., 2019). In potato,

the aromatic domain of suberin was reported to provide

resistance to pathogen penetration (Lulai and Corsini, 1998),

and it was suggested that the aromatic domains primarily make

suberin as a transport barrier for nutrients (Kreszies et al., 2018).

The composition of suberin between species is similar, however

the content of suberin is strongly species dependent and can be

induced by a range of environmental factors, which affect the

efficiency of suberin as a barrier.
Biosynthesis of suberin

The biosynthetic machinery responsible for suberin

productions is complex due to the chemical diversity of the

suberin polymers. Chemical analysis and biochemical studies

three decades ago were the initial steps to elucidate the

biosynthesis pathways and structure of suberin (Kolattukudy,

1981). After that, approaches of reverse genetics on bark, potato

periderm, cotton fibres, Arabidopsis root endodermis and seed

coats made further progress on suberin biosynthesis (Molina

et al., 2009; Ranathunge et al., 2011; Beisson et al., 2012; Li-

Beisson et al., 2013; Graca, 2015). However, the sequence of

biosynthetic reactions, transport mechanism of monomers and

the site of polymerization of the precursors remain to

be elucidated.

Biosynthesis of suberin monomers involves fatty acid and

phenylpropanoid pathways. In plants, fatty acid synthesis occurs

in the plastid stroma. However, the relationship between

regulation of diffusion or transport of fatty acids through the

lipid membrane of plastid with suberin biosynthesis is not clear

(Figure 1). The core reactions of the suberin biosynthetic

pathway were believed to take place at the endoplasmic

reticulum (ER) (Figure 1) (Li-Beisson et al., 2013). A large

number of genes encoding enzymes involved in the synthesis

of suberin have been identified (Vishwanath et al., 2015).

However, many aspects of suberin biosynthesis remain

undetermined. Whether suberin precursors are exported as

monomers or building blocks is unclear (Beisson et al., 2012).
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The ATP-binding cassette (ABC) transporters, lipid transport

proteins and secretion through vesicles are thought to be

involved in the export of these monomers or building blocks

out of plasma membrane to the site of polymerization (Figure 1)

(De Bellis et al., 2022). The transporters that transport aliphatic

monomers out of the plasma membrane have recently been

identified, and all of them belong to the ABCG subfamily (Do

et al., 2018). In Arabidopsis root, proteins of AtABCG2,

AtABCG6 and AtABCG20 make contribution for the

formation of suberin lamellae in endodermis (Yadav et al.,

2014). Other ABC transporters, like OsABCG5 in rice root

and StABCG1 in potato root and tuber periderm were also

identified and described as suberin monomer transporters

(Landgraf et al., 2014; Shiono et al., 2014).

Recently some regulatory genes of suberin synthesis have

been descr ibed. In Arabidopsis , the transcr ipt ion

factorAtMYB41, AtMYB53, AtMYB92 and AtMYB93 are

positive regulators of suberin biosynthesis in roots (Shukla

et al., 2021). AtMYB107, AtMYB9 are required for suberin

assembly in the Arabidopsis seed coat which were revealed

highly conserved in angiosperms (Lashbrooke et al., 2016; Gou

et al., 2017) and MdMYB93 was also described as a regulator of

suberin deposition in apple fruit skins (Legay et al., 2016).
Deposition of suberin in cell wall

Suberin separates the cell wall from the plasma membrane

and it can be found in root endodermis/hypodermis, seed coats,

bark, and potato tuber skin (Schreiber, 2010). Suberin also

deposits at the wound edges of potato periderm (Lulai et al.,

2008) and at the site of lateral root emergence, where the CSs are
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disrupted (Li et al., 2017). The distribution of suberin in different

plant tissues suggests that plants can synthesise and deposit

suberin whenever and wherever they need to form a barrier

(Kolattukudy, 2001; Franke and Schreiber, 2007). Recently, it is

report that GELPs (GDSL-type Esterase/Lipase Protein family)

play a key role in suberin polymerization and degradation both

in the context of lateral root emergence and endodermal layer

(Ursache et al., 2021). However, the mechanisms that regulate

the onset of suberization are unclear.

The deposition of suberin in Arabidopsis roots starts in a

patchy manner, then more and more endodermal cells are

suberized until the whole endodermis is suberized except for

some passage cells located close to xylem poles (Geldner, 2013).

Suberization patterns in other plant species were also reported,

there is variation between plant species due to the difference of

root anatomy (Thomas et al., 2007; Waduwara et al., 2008;

Ranathunge et al., 2017). In barley from root tip to root base, the

deposition of suberin in endodermis was described as four

different zones including non-suberized zone, patchy zone,

continuous zone and fully suberized zone, and fully suberized

zone was always the longest zone, accounting for about 50% of

the root length, followed (in length) by the continuous, non-

suberized and lastly the patchy zone (Chen, et al., 2019).
Abiotic and biotic stress tolerance

Besides the function as a barrier for water and nutrients,

suberin lamellae in plant roots also contribute to abiotic and

biotic stress tolerance. It has been found that suberization is

induced during salt stress, cadmium (Cd) toxicity and

ammonium stress, which suggest that the function of suberin
FIGURE 1

Biosynthesis and transport of suberin. Mostly biosynthesis of suberin monomers take place at the endoplasmic reticulum (ER). After a series of
complex enzyme-induced reactions, fatty acids and other lipids in plastid are transported to the ER to synthesize fatty alcohols,
monoacylglycerols and other monomers. Monomers, oligomers or polymers are probably transported cross the plasma membrane by ATP-
binding cassette (ABC) transporters or Extracellular Vesiculo-tubular containing Bodies (EVBs).
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is to block the entry of toxic elements into the cytoplasm

(Krishnamurthy et al., 2009; Liska et al., 2016; Ranathunge

et al., 2016). Suberization is also induced under drought and

waterlogged conditions, suggesting a role for suberin in

preventing water and oxygen loss (Kotula et al., 2009; Shiono

et al., 2014; Liska et al., 2016). In rice, suberization is enhanced

during salt stress and the extent of suberin deposition in the

primary roots is negatively correlated with Na uptake into the

shoots as is also the case for hydraulic (Krishnamurthy et al.,

2009; Krishnamurthy et al., 2011). In Arabidopsis, horst and

gpat5 mutants with reduced suberization show increased water

transport and higher sensitivity to salt stress (Beisson et al., 2007;

Ranathunge and Schreiber, 2011). In Arabidopsis, it was shown

that suberization was reduced under Fe, Mn and Zn deficiencies,

whereas S and K deficiencies lead to enhanced suberin (Barberon

et al., 2016). The decrease in suberin was shown to be mediated

by ethylene, whereas the increased suberization was controlled

by abscisic acid (ABA). This endodermal suberin plasticity may

reflect an adaptation of plant roots to cope with fluctuating

nutrient availability by modulating the uptake of Fe, Mn and Zn

and retain K and S in the stele (Barberon, 2017; Doblas et al.,

2017). In the primary axis of barley roots, it was found that the

suberization also responds to Mn deficiency, thus confirming the

results from Arabidopsis. However, this response is not a linear

process, as suberization was first reduced during mild Mn

deficiency and then enhanced during strong Mn deficiency.

Since the reduced suberin has secondary effects on the uptake

of other nutrient elements, such as promoting K leakage from

the stele, the enhanced suberization during strong Mn deficiency

might favour retainment of K in the stele, thus maintaining

nutrient homeostasis (Chen, et al., 2019).
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Moreover, suberin might act as a barrier to prevent

penetration by pathogens and nematode (Figure 2). The

suberized endodermis serves as a line of defense preventing

pathogens from invading the vascular tissues and spread

throughout the plant (Ranathunge et al., 2008; Holbein et al.,

2019; Kashyap et al., 2022). In soybean, it has been shown that

there is a strong correlation between the exent of suberin and

resistance to the fungus (Thomas et al., 2007). To colonize the

root vasculature, the fungal hyphae have to penetrate the

suberized layers and it was found that it took more time for

hyphae growth in cultivars with high content of suberin

(Ranathunge et al., 2008). Suberin also play important role in

beneficial biotic interactions and the coordination between root

suberin and the microbiome leads to a balancing of the plant

ionome, which make plants adapt to abiotic stress condition

(Salas-Gonzalez et al., 2020).
Perspectives

The growth of the human population will increase the

demand for food in the future. However, the change of climate

will intensify extreme weather conditions, for example drought,

which might lead to decreased crop production. It is important

to develop crops with increased yield and these crops should also

be adapted to the specific soil conditions and climatic

environment. The CSs and suberin lamellae in the endodermis

of plant roots seem to play pivotal roles in controlling the uptake

of water and nutrients and protect plants against biotic and

abiotic threats (Barberon, 2017; Doblas et al., 2017; Kreszies

et al., 2018). Understanding of the mechanisms underlying the
FIGURE 2

Model of abiotic induced/reduced suberization and its effect on pathogens and nematodes infection plants. Under normal conditions, plant
roots deposit suberin in the endodermis. However, once the plant is stimulated by extern environment (nutrient deficiency or toxicity), it will
deposit more or less suberin in the endodermis, thus protecting the plant from extern damage. Simultaneously, the change of suberization
probably promote (decreased suberin) or prevent (enhanced suberin) the entry of pathogens and nematodes into the roots.
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functions of these root barriers is important, as this knowledge

might help to develop crop varieties with improved nutrient use

efficiency and better tolerance towards e.g. nutrient deficiencies,

drought, salt stress and pathogens.

Suberin is not only deposited in the endodermis of plant

roots but also in the bundle sheath of plant leaves, the vascular

tissues in roots and leaves are thus surrounded by suberized cells.

As a transcellular barrier, suberin has a similar function both in

root and leaves, which affects the fluxes of solutes and pathogen

penetration. Since the vascular tissues are continuous in the

whole plant, it is necessary to analyse the function of suberin as a

barrier in leaves and roots at the same time. Thereby, better

understanding of the function of suberin as a barrier can be

obtained. Finally, the biotic and abiotic (nutrient deficiency or

toxic) stress can exist at the same time in the field condition. It is

necessary to analysis the effect of suberization on pathogen

penetration under abiotic condition.
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