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This study aimed to evaluate the occurrence of mycorrhizal fungi and glomalin

content in soil under different cover crops with and without the application of

nitrogen in the cover. The following cover plants were used: Crotalaria juncea

(Crotalaria juncea L.), wild beans from Ceará (Canavalia brasiliensis Mart. ex

Benth.), Guandú ‘BRS mandarin’ [Cajanus cajan (L.) Millsp.], millet ‘BR05’

[Pennisetum glaucum (L.) R.Br.] and sorghum ‘BR 304’ [Sorghum bicolor (L.)

Moench]. The absolute control of the experiment was the treatment without

the use of cover crops, that is, the vegetation of spontaneous occurrence in the

area. The experimental design was randomized blocks in subplots with three

replications. Spore density, mycorrhizal colonization rate, easily extractable

glomalin, and species present in the rhizosphere of the cover crops were

determined. No differences were found in the diversity of mycorrhizal fungi

associated with the different cover crops studied or in the values of spore

density, root colonization, or glomalin content. Nitrogen application did not

influence the mycorrhizal activity in the investigated cover crops. The most

frequent species associated with cover crops were Scutellospora pellucida and

Scutellospora persica in C. juncea; Gigaspora sp. on Sorghum; Glomus

macrocarpum in Guandu; G. macrocarpum and Glomus clavisporum in

mil let; and Glomus microaggregatum and Glomus tortuosum in

Spontaneous Vegetation.
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Introduction

Conservation cultivation systems, such as no-tillage, are at the

forefront of sustainable soil management and water resources (Borie

et al., 2006). One of the premises for the success of this system is soil

vegetation cover that brings numerous benefits, such as erosion

protection, intake of organic material into the soil, nutrient cycling,

and maintenance of an ideal microclimate for microbial

development (Borie et al., 2006; Abdollahi et al., 2014; Bongiorno

et al., 2019).

Cover plants are responsible for soil protection in these

systems and can influence the diversity and richness of the

rhizospheric microorganism community in the soil (Alguacil,

2015). Arbuscular mycorrhizal fungi (AMF) are one of the most

important groups of edaphic organisms, and their activity is

closely linked to plant health and can be used as a bioindicator of

environmental quality in different soil management systems

(Borie et al., 2006; Alguacil et al., 2008; Alguacil, 2015; Moura

et al., 2017; Moura and Cabral, 2019).

Different species of cover crops are used in sustainable

agricultural management in the Brazilian Cerrado region,

which is considered one of the main agricultural frontiers of

today (Hendrix et al., 1988; Beuchle et al., 2015). Among them,

some forages of the Fabaceae and Poaceae families stand out for

being adapted to the edaphoclimatic conditions of the region, in

addition to bringing benefits to agroecosystems such as

biological nitrogen fixation and low decomposition velocity

(Bowles et al., 2017; Boutasknit et al., 2020).

Nitrogen availability is another factor to be considered when

handling vegetation cover in the soils of tropical regions, such as

the Cerrado. Nitrogen contributes to plant biomass protein,

providing more efficient soil protection, and when managed

before planting, vegetation cover promotes more efficient

nutrient cycling for subsequent crops (Alves et al., 2006;

Ahiabor et al., 2007). This makes the practice of nitrogen

fertilization common during the management of cover crops

in the Cerrado.

Given its importance in the regional development of

agriculture in the Cerrado region, understanding the

biodiversity of arbuscular mycorrhizal fungi associated with

the main cover crops used in conservation systems is of

fundamental importance for the effective management of

management practices in this region (Moura and Cabral, 2019;

Aker et al., 2022; Durigan et al., 2022).

The objective of this work was to evaluate the occurrence of

mycorrhizal fungi and glomalin content in soil under different

cover crops cultivated after corn crops, with and without

nitrogen (N) addition in the cover.
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Material and methods

The corn experiment (Zea mays L.) in succession to the cover

crops was planted in 2005 in an area of Embrapa Cerrados in

Planaltina, DF (15°35’30”S, 47°42’30”W, at 1,000 m altitude).

Between 1995 and 2005, the area was in the field. The soil of the

experimental area is classified as typical dystrophic Red Latosol,

Moderate A, and tropical Cerrado phase, with smooth wavy relief,

and clayey texture (Santos et al., 2013). The evaluations were carried

out in the agricultural years 2009/2010 and 2010/2011. The

chemical analysis of the soil collected in the 0–10 cm depth layer

at the end of the 2010/2011 agricultural year, according to Claessen

(1997), presented the following results: pH 5.9 in H2O; 26.3 g kg−1

organic matter; 8.3 mg dm3 of P-Mehlich1; 0.07 cmolc dm3 of Al;

3.6 cmolc dm3 ca + mg; and 0.2 cmolc dm3 of K. The climate is

classified as a tropical station, Aw, according to Köppen, and is

characterized by two well-defined seasons (dry and rainy) and the

occurrence of periods of drought during the rainy season (Cardoso

et al., 2015). In April 2010, the following plant species were sown in

the area for soil cover: Crotalaria juncea (Crotalaria juncea L.), ceará

wild beans (Canavalia brasiliensis Mart. ex Benth.), Guandu “BRS

mandarin” [Cajanus cajan (L.) Millsp.], Millet “BR05” [Pennisetum

glaucum (L.) R.Br.] and Sorghum “BR 304” [Sorghum bicolor (L.)

Moench]. The absolute control of the experiment was the treatment

without the use of cover crops, that is, the vegetation of spontaneous

occurrence in the area (Spontaneous Vegetation). The plant density

was 20 plants per linear meter for C. juncea, Guandu, sorgo, wheat,

and Brachiaria ruziziensis; 40 plants per linear meter for millet and

turnip; and 10 plants per linear meter for wild beans. The spacing

between sowing lines was 0.5 m for all plant species (Carvalho and

Amabile, 2006). The sowing of the cover crops was carried out

directly on the crop remains of corn cultivated in the previous

agricultural year, crop 2009/2010. The experimental design of

randomized blocks was used, with subdivided plots and three

replications. The plots were represented by the cover species

(12 × 8 m), and the subplots (12 × 4 m), by the cutting times in

flowering and physiological maturation, which totaled 3,420 m2 of

total area.

The experiment presented the same sequence of crops (cover

crops in succession to corn) until 2012. In the flowering period

of the cover plants, roots and rhizosphere soil were collected at a

depth of 0–20 cm with Dutch trade in June 2012. From each of

the treatments, a composite sample consisting of three

subsamples of random points in the subplot was taken, and

these composite samples were homogenized and transported to

the Soil Biology Laboratory of Agronomy-UnB.

The spores were extracted from the soil using 50 ml of each

composite sample by the wet sieving technique (Gerdemann and
frontiersin.org
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Nicolson, 1963), followed by centrifugation in water and then in

a 50% sucrose solution. Subsequently, quantification and

separation of spores were performed by morphological

characteristics under a stereoscopic bilocular magnifying glass.

To determine the percentage of colonization, the roots were

clarified and cordoned with 0.05% Trypan Blue in lactoglycerol

(Phillips and Hayman, 1970), and the colonization evaluation

was performed under a stereoscopic microscope, following the

technique of intersection of the quadrants (Giovannetti and

Mosse, 1980). The Bradford method was used to determine

the easily extractable reactive protein (or easily extracted

glomalin) according to the methodology of Wright and

Upadhyaya (Wright and Upadhyaya, 1996). One gram of soil

was weighed in Falcon tubes with a capacity of 50 ml. Duplicates

were made of each soil sample. Eight milliliters of 20 mM

sodium citrate buffer solution, pH 7.0, was added to each tube,

which was autoclaved for 30 min at 121°C. Then, the vials were

centrifuged at 5,000 rpm for 10 min. To determine the

concentration of glomalin, 50 ml of the extract was pipetted

into the test tube, and 1 ml of the Bradford reagent was added to

the tubes. After this procedure, the tubes were taken for vortex

agitation. After 10 min, the absorbance reading was made in a

spectrophotometer at 595 nm.

For the identification of AMF species from morphological

characteristics, spores were separated according to their

morphotypes and mounted on blades with pure polyvinyl-

lactoglycol (PVLG) and PVLG mixed with Melzer (1:1 v/v).

The identification of mycorrhizal fungi species was performed in

the Mycorrhizas Laboratory of Embrapa Agrobiologia, following

the descriptions of the reference cultures present in the

International Culture Collection of Arbuscular and Vesicular-

Arbuscular Mycorrhizal Fungi (INVAM, 2022).

The data were submitted to variance analysis by the Assistat

(e Silva, 2008) analyses of canonical correspondence were

performed by the Past (Hammer, 2021) software. Spore

density variables and the rate of mycorrhizal colonization were

determined by a 5% Tukey test. The presence of identified genera

was used as the parameter for multivariate analysis. Data were

normally distributed. Canonical correspondence analysis was

performed based on the presence/absence data of AMF in

samples or sites.
Results

The analysis of variance (Table 1) showed that there was a

statistically significant difference only for the spore density,

which showed a minimally significant difference in relation to

cover crops. Table 2 presents spore density data (in 50 ml of soil)

of cover crops under nitrogen application.

The soil under Guandú and C. juncea had the highest

number of spores compared with the other treatments, and

the soil under millet had the lowest spore density values. The
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treatments using wild beans from Ceará, sorghum, and

spontaneous vegetation showed intermediate values of spore

density (Table 2).

There was no significant difference between the cover crops

or between the application or not of cover N in the maize crop in

mycorrhizal colonization, which varied between 63.07% and

78.97% among the different plant species (Table 3), and there

was no significant effect of cover crops and N application in

topdressing on easily extractable glomalin (Table 4).

The principal component analysis points to the correlation

of cover plant species with the presence and frequency of

associated arbuscular mycorrhizal fungi species in the

rhizosphere. All the cover plant species studied show similar

behavior in relation to the frequency of arbuscular mycorrhizal

fungi species that colonize the rhizosphere of these cover

plants (Figure 1).

The C. juncea treatment and application of nitrogen as a top

dressing in the predecessor culture differs from the C. juncea

treatment without nitrogen application in relation to the most

frequent arbuscular mycorrhizal fungi species in rhizospheric

soil (Figure 1). The species A. tuberculata, G. macrocarpum, and

Gigaspora sp. are more commonly present in the rhizosphere of

C. juncea with nitrogen application, while Ar. leptoticha,
TABLE 1 Analysis of variance of easily extracted glomalin contents,
mycorrhizal colonization rate and number of soil spores.

Source of Variation Test F

Glomalin Colonization Spores

Vegetation Cover (F1) 2.4862 ns 1.6936 ns 4,8520*

Nitrogen (F2) 0.2522 ns 0.0106 ns 0.2844 ns

Interaction (F1 × F2) 1.2453 ns 1.0037 ns 1.8369 ns
fronti
*Significant at the 5% probability level (p <.05).
ns, not significant (p ≥.05).
TABLE 2 Spore density (n°/50 ml) of cover crops after maize
cultivation, with and without nitrogen fertilization in top-dress, in
maize. Log transformed data (x + 1).

Cover Plant Nitrogen fertilization Average

With N Without N

Crotalaria 552.33 833.00 692.67a

Wild beans from Ceará 560.67 465.00 512.83ab

Sorghum 411.33 680.33 545.83ab

Guandu 921.00 587.67 754.83a

Millet 235.50 398.00 316.74b

Spontaneous Vegetation 495.50 443.00 468.25ab

Average 529.05A 567.83A

CV%- cover crops = 5.43 CV%- Nitrogen fertilization = 5.40
Means followed by the same uppercase letter in the rows and lowercase in the columns do
not differ from each other by the Tukey test (p <0.05)
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G. tortuosum, and S. persica are closer to the treatment without

N application in topdressing in corn.

The soil under millet, regardless of nitrogen application,

showed an approximation of the species S. persica, Ar. leptoticha,

and G. tortuosum. The species G. microaggregatum, S. gregaria,

G. clavisporum,and A. foveata, according to the analysis of

principal components (Figure 1), were not frequently found in

the rhizosphere of the cover plants analyzed, indicating that

these species were present by chance in the rhizospheric soil of

cover crops.

Table 5 presents species of arbuscular mycorrhizal fungi

found in the rhizosphere of Crotalaria (C), the wild bean from

Ceará (FBC), sorghum (S), guandú (G), millet (M), and

spontaneous vegetation (VE) with and without the addition of

nitrogen in no-tillage in the cerrado.

The soil under the cover crops Guandú and wild beans from

Ceará, in addition to spontaneous vegetation with nitrogen

application and the same treatment without nitrogen in cover,

showed similar behavior in relation to the presence of AMF

species. The species G. macrocarpum, Gigaspora sp., S. pellucida,

and A. tuberculata were more frequent in the rhizospheres of

plants under nitrogen application, and A. scrobiculata, S. persica,
Frontiers in Plant Science 04
Ar. leptotic, and G. tortuosum are closer to the species without

nitrogen application.

The species Ar. leptoticha and S. persica were only identified

in the rhizosphere of C. juncea under nitrogen application, while

A. tuberculata, S. gregaria, and Gigaspora sp. were only

associated with C. juncea without nitrogen application. The

species A. scrobiculata, G. macrocarpum, and S. pellucida were

identified in the rhizosphere of C. juncea with and without

nitrogen application.

The species S. gregaria occurred only in the rhizosphere of

wild beans from Ceará with the application of nitrogen in

topdressing in corn. In the treatment without the application

of nitrogen, A. foveata and Ar. leptoticha were identified. The

species A. scrobiculata, G. tortuosum, G. macrocarpum,

Gigaspora sp., S. persica, and S. pellucida were identified in the

rhizosphere of wild bean plants, with and without

nitrogen application.

The species G. macrocarpum occurred only in the sorghum

rhizosphere without nitrogen application in corn, and the

species that occurred in the soil with sorghum use only under

nitrogen application were the following: Ar. leptoticha and

Gigaspora sp. The species A. scrobiculata, A. tuberculata, G.

tortuosum, S. persica, and S. pellucida were identified in the

sorghum rhizosphere, with and without application of nitrogen

in topdressing in corn.

Among the species identified in the rhizosphere of Guandú,

A. scrobiculata, A. tuberculata, G. macrocarpum, Gigaspora sp.,

S. gregaria, S. persica, and S. pellucida occurred both in plots with

nitrogen addition and without N application in corn cover. The

species Ar. leptoticha was found only in areas of Guandú without

nitrogen application.

In millet rhizospheric soil, with and without nitrogen

application in topdressing in the corn predecessor crop, the

following species were identified: A. scrobiculata, Ar. leptoticha,

G. macrocarpum, Gigaspora sp., and S. pellucida. In treatments

without nitrogen application in topdressing in corn, the species

G. clavisporum was still identified, while in areas with nitrogen

application in topdressing, the presence of the species A.

tuberculata, G. tortuosum, and S. persica were detected. In the

rhizosphere of the plants of spontaneous occurrence in the area

(spontaneous vegetation), with the application of nitrogen in the

corn cover, the species G. microaggregatum, Gigaspora sp., and S.

persica, which occurred only in this treatment. On the other

hand, in the treatments without the application of nitrogen in

topdressing in the corn crop, the identified species were A.

scrobiculata and G. tortuosum. The species Ar. leptoticha, G.

macrocarpum, S. gregaria, and S. pellucida were identified in

both treatments, with and without nitrogen application.

When considering only the cover crops (Figure 2), the

species G. microaggregatum, S. gregaria, G. clavisporum, and

A. foveata present little proximity to the analyzed cover, which

indicates the chance of the appearance of these species in the

rhizosphere of the plants studied.
TABLE 3 Mycorrhizal colonization (%) of cover crops after corn
cultivation, with and without Nitrogen fertilization in cover, in corn.

Cover Plant Nitrogen fertilization Average

With N Without N

Crotalaria 75.55 77.69 76.62

Wild beans from Ceará 63.62 62.51 63.07

Sorghum 74.62 83.33 78.97

Guandu 75.55 73.62 74.59

Millet 71.74 81.67 76.70

Spontaneous Vegetation 68.48 71.30 69.89

Average 71.60 75.02

CV%- cover crops = 14.71; CV%- Nitrogen fertilization = 13.99.
TABLE 4 Easily extractable glomalin (mg kg soil−1) from cover crops,
after corn cultivation, with and without nitrogen fertilization in
cover, in corn.

Cover Plant Nitrogen fertilization Average

With N Without N

Crotalaria 1.96 1.42 1.69

Wild beans from Ceará 1.76 1.77 1.74

Sorghum 1.71 2.23 1.99

Guandu 1.71 2.03 1.87

Millet 1.48 1.56 1.51

Spontaneous Vegetation 1.57 1.57 1.57

Average 1.70 1.76

CV%- cover crops = 16.12; CV%- Nitrogen fertilization = 22.08.
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The canonical correspondence analysis showed a correlation

between the occurrence of the species of arbuscular mycorrhizal

fungi identified with the cover crops with and without N

application (Figure 3).

In the C. juncea rhizosphere, the frequency of AMF species

did not differ in treatments with and without nitrogen

application (Figure 3A). There was no differentiation of groups

of organisms identified; therefore, the species present in

treatments with nitrogen application were the same as those

occurring in areas without nitrogen application. This behavior

was also observed in the principal component analysis

(Figure 1). S. pellucida and S. persica are not commonly found
Frontiers in Plant Science 05
in the rhizosphere of this cover plant species, indicating causality

in their appearance.

In the rhizosphere of wild beans from Ceará, the frequency

of AMF species did not differ in treatments with and without

nitrogen application (Figure 3B). There was no differentiation of

groups of arbuscular mycorrhizal fungi identified between

treatments with and without N application in the top dressing.

Therefore, the species present in the plots with nitrogen are the

same as those occurring in areas without nitrogen application.

This behavior was also observed in the principal component

analysis (Figure 1). All species of arbuscular mycorrhizal fungi

identified are commonly found in the rhizosphere of wild beans.
FIGURE 1

Analysis of principal components of the frequency of arbuscular mycorrhizal fungi species found in the rhizosphere of Crotalaria (C), bean—
bravo-do-ceará (FBC), sorghum (S), guandú (G), millet (M) and spontaneous vegetation (VE) with and without nitrogen addition. (Af, A. foveata;
At, A. tuberculata; Ar, Ar. leptoticha; Gc, G. clarum; Gmi, G. microaggregatum; Gt, G. tortuosum; Gi, Gigaspora sp.; Sg, S. gregaria; Sp, S.
pellucida; Spe, S. persica; Gm, G. macrocarpum; As, A. scrobiculata).
TABLE 5 Species of arbuscular mycorrhizal fungi found in the rhizosphere of Crotalaria (C), wild bean from Ceará (FBC), sorghum (S), Guandú (G),
millet (M) and spontaneous vegetation (VE) with and without addition of nitrogen in planting straight into the savannah.

Species C FBC S G M VE C FBC S G M VE
With N Without N

A. foveata − − − − − − − + − − − −

A. scrobiculata + + + + + − + + + + + +

A. tuberculata − − + + + − + − + + − −

Ar. leptoticha + − + − + + − + − + + +

G. clavisporum − − − − − − − − − − + −

G. tortuosum + + + − + − − + + − − +

G. microaggregatum − − − − − + − − − − − −

G. macrocarpum + + − + + + + + + + + +

Gigaspora sp − + + + + + + + − + + −

S. gregaŕia − + − + − + + − − + − +

S. peŕsica + + + + + + − + + + − −

S. pellucida + + + + + + + + + + + +

Total species 6 7 7 7 8 7 6 8 6 8 6 6
frontiersin
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The frequency of arbuscular mycorrhizal fungi found in the

sorghum rhizosphere did not differ between treatments with and

without nitrogen application in topdressing in the corn

predecessor crop (Figure 3C). There was no differentiation of

groups of arbuscular mycorrhizal fungi identified; therefore, the

species present in the treatments with nitrogen were the same as

those occurring in areas without nitrogen application coverage.

This behavior was also observed in the principal component

analysis (Figure 1). Gigaspora sp. was not found in the sorghum

rhizosphere, indicating causality in its appearance. All other

species of arbuscular mycorrhizal fungi identified in the

rhizosphere of wild bean-do-ceará were commonly associated

with this cover plant species.

The frequency of arbuscular mycorrhizal fungi found in the

rhizosphere of Guandú did not differ between treatments with

and without nitrogen topdressing (Figure 3D). There was no

differentiation of groups of arbuscular mycorrhizal fungi

identified; therefore, the species present in the plots with

nitrogen were the same as those occurring in areas without

nitrogen application. This behavior was also observed in the

principal component analysis (Figure 1). G. macrocarpum. It is

not commonly found in the rhizosphere of Guandú, indicating

its appearance by chance. All other species of arbuscular

mycorrhizal fungi found in the rhizosphere of Guandú are

commonly associated with this cover plant species.

The frequency of arbuscular mycorrhizal fungi found in the

millet rhizosphere did not differ between treatments with

nitrogen application and treatments without application

(Figure 3E). There was no differentiation of groups of

arbuscular mycorrhizal fungi identified; therefore, the species

present in treatments with nitrogen applied to the previous crop

are the same as those occurring in areas without nitrogen

application. This behavior was also observed in the principal

component analysis (Figure 1). G. macrocarpum and G.

clavisporum are not commonly found in the millet
Frontiers in Plant Science 06
rhizosphere, indicating their occurrence by chance. All other

arbuscular mycorrhizal fungi found in the millet rhizosphere are

commonly associated with this cover plant species.
Discussion

There are few studies that evaluate the influence of the effect

of applying nitrogen fertilizer to corn crops in succession to

cover crops on the mycorrhizal population. However, Benedetti

et al. (2005) evaluated the spore density in soil under corn

cultivation after sowing of millet, Crotalaria, Guandú, velvet

bean, jack bean, and spontaneous vegetation (with the

application of nitrogen in spontaneous vegetation) and

without application of nitrogen in cover plants. The authors

found much lower values in the soil under the corn crop in the

treatments under spontaneous vegetation. The spore density in

the corn crop varied between 39 and 50 spores 50 cm−3,and there

was no significant difference between the cover crops. In the

present work, the number of spores in the cover crops was

evaluated, and they presented a very high number of spores

ranging from 316 to 692 spores 50 cm−3, indicating that the use

of these cover crops stimulates the formation of spores in the

soil. The average number of spores (529.05 spores/50 g of soil) in

the treatment with nitrogen application in topdressing in the

corn crop was lower than that in the treatment without nitrogen

application (567.83 spores/50 g of soil).

Ahiabor et al. (2007) evaluated spore density under the use

of different cover crops and found spore density values in the soil

under Crotalaria of 142 spores/50 g of soil in a savanna region in

northern Ghana, lower than those obtained in the present work.

When evaluating spore density in soybean and corn in

succession to millet, crotalaria, and weeds, Angelini et al.

(2012) found that the spore density was higher in corn after

the cover crops were mentioned, with spore densities of 608, 414,
FIGURE 2

Analysis of principal components of the frequency of arbuscular mycorrhizal fungi species found in the rhizosphere of crotalaria (C), wild bean
from Ceará (FBC), sorghum (S), Guandú (G), millet (M) and spontaneous vegetation (VE). (Af, A. foveata; At, A. tuberculata; Ar, Ar. leptoticha; Ge,
G. etunicatum; Gm, G. macrocarpum; Gmi, G. microaggregatum; Gt, G. tortuosum; Gi, Gigaspora sp.; Sg, S. gregaria; Spe, S. persica).
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and 306, respectively, when compared to soybeans from the

same cover crops, with spore densities of 608, 414, and 306,

respectively. 239, 287, and 259, respectively.

The verified spore density data can be considered high. This

finding can be explained by the seasonal characteristics of the

region where the plants were grown. The Cerrado is a region that
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has two well-defined climatic seasons, the dry season and the

rainy season (Cardoso et al., 2015). The behavior of mycorrhizal

fungi in Cerrado soils is closely linked to this seasonal variation

(Vieira Junior et al., 2020). During the dry period, the

mycorrhizal colonization rate is benefited from the need to

support the water supply that fungi provide to plants, which in
A B

D

E F

C

FIGURE 3

Canonical correspondence analysis of the frequency of arbuscular mycorrhizal fungal species in Crotalaria (A), wild bean from Ceará (B), sorghum (C),
Guandú (D), millet (E), and spontaneous vegetation (F) with and without nitrogen application. (Ar, Ar. leptoticha; Gc, G. clarum; Gm, G. macrocarpum;
Gmi, G. microaggregatum; Gt, G. tortuosum; Gi, Gigaspora sp; Gl, Glomus sp.; Sg, S. gregaria; Sp, S. pellucida; Spe, S. persica).
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turn also promotes greater spore production by mycorrhizal

fungi (Moura and Cabral, 2019).

Pedro et al. (2012) evaluated the influence of Guandú,

C. juncea, millet, Guandú + millet, C. juncea + millet, and

spontaneous vegetation with the application of four nitrogen

rates (zero, 30, 60, and 90 kg ha−1) on the rate of mycorrhizal

colonization and did not find significant differences between the

treatments. The mycorrhizal colonization was between 58% and

63% in the soil under the different cover plants.

Despite the mycorrhizal colonization rate being similar

among cover crops, other works, such as Angelini et al. (2012),

found cover crops alter mycorrhizal colonization in the crop in

succession. The authors verified that the mycorrhizal

colonization rate in soybean and corn followed by millet,

crotalaria, and weeds showed higher spore density in corn

when followed by the mentioned cover crops, 98.7%, 95.5%,

and 94.5%, respectively. Soybeans succeeded from the same

cover crops, with 91.5%, 94.5%, and 80.7%, respectively.

Cordeiro et al. (2007) found spore density and mycorrhizal

colonization in sorghum that were statistically lower than those

found in areas with spontaneous vegetation and native cerrado.

However, areas with grasses such as sorghum and millet showed

higher values of colonization and spore density than areas with

legumes such as Crotalaria, soybean, and jack bean. On the other

hand, Silva et al. (2013) evaluated easily extractable glomalin in

soil under C. juncea, jack bean, Guandú, velvet bean, and

sorghum in succession to crops in agroforestry systems in the

Cerrado and found that the highest levels of glomalin were

observed in treatments with velvet bean and C. juncea in

succession to maize and beans. Lower levels were observed in

bean plots in succession to jack bean and Guandú.

Although it is not possible, with the analyses carried out in

this work, to state that the quantified glomalin is totally

produced by soil mycorrhizal fungi, its values constitute an

important parameter of microbial activity in the soil (Purin

and Rillig, 2007). Soil glomalin levels are altered by vegetation

cover and soil management (Rillig and Steinberg, 2002; Borie

et al., 2006; Roldán et al., 2007), as plants provide more

photostimilation to AMF, favoring the production of

glomalina by these microorganisms (Treseder and Turner,

2007). In addition, increases in soil carbon levels favor the

formation and maintenance of aggregates (Winck et al., 2014).

There are positive correlations between glomalin fractions and

soil organic carbon content (Franzluebbers et al., 2000; Bird

et al., 2002; Nichols and Wright, 2006). Several studies have also

reported that glomalin production can be influenced by the type

of land use, being lower in agricultural soils than in native soils

(Rillig et al., 2003; Moura et al., 2019).

Soil turning destroys fungal hyphae and thus negatively

influences AMF production of glomalin. Aggregate and

glomalin t values, in areas even after 3 years of no-tillage
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system, were substantially lower when compared to values

observed in areas of continuous pasture for 15 years (Wright

and Upadhyaya, 1999). Species of the genera Acaulospora,

Archeospora, Glomus, Gigaspora, and Scutellospora were

identified in the rhizosphere of C. juncea, sweet bean,

sorghum, Guandú, millet and spontaneous vegetation, with

and without nitrogen application (Table 5). These same genera

were found in other surveys carried out in Cerrado soil (Moura

et al., 2019; Vieira Junior et al., 2020; dos Santos et al., 2021;

Moura et al., 2022; dos Santos Lucas et al., 2022).

Benedetti et al. (2005) investigated the diversity of arbuscular

mycorrhizal fungi in the rhizospheres of different cover crops

and found that A. delicata, A. spinosa, G. caledonium, G.

etunicatum, G. tortuosum, and S. persica were associated with

the millet rhizosphere. A. laevis, G. microaggregatum, and G.

etunicatum were associated with the rhizosphere of Guandú, A.

spinosa, A. scrobiculata, G. etunicatum, G. geosporum, and

Glosmus sp. in the C. juncea rhizosphere. The species A.

spinosa, G. microaggregatum, G. claraideum, G. etunicatum, G.

geosporum, and Scutellospora sp. were associated with

spontaneous plants without nitrogen application. A. spinosa,

A. scrobiculata, G. microaggregatum, G. etunicatum, G.

geosporum, S. gregaria, and S. persica were detected in the

rhizosphere of spontaneous plants with nitrogen application.

In this work, a result similar to that found by Benedetti et al.

(2005) was obtained for the species G. microaggregatum that

does not occur in the rhizosphere of cover plants, with or

without the addition of N, but, only in the rhizosphere of

spontaneous vegetation with the addition of N. Thus, it can be

inferred that this species is adapted to soils with vegetation

occurrence spontaneous in the area. However, further studies are

needed on the dynamics of the diversity of this and other species

of mycorrhizal fungi that occur in the rhizosphere of

cover crops.

When analyzing the arbuscular mycorrhizal fungi

community of cover crops in Cerrado agricultural systems,

Angelini et al. (2012) observed the approximation of the

frequent species in C. juncea, millet, and spontaneous plants,

as well as in the data of this work presented in Figure 1. Li et al.

(2007) analyzed the population of arbuscular mycorrhizal fungi

in spontaneous vegetation of uncultivated areas and found a

total of 47 species of AMF, of which 31 species belonged to the

genus Glomus, eight to Acaulospora, six to Scutellospora, one to

Entrophospora, and one to Gigaspora.

In soybean and corn rhizospheres cultivated in succession

with C. juncea, Angelini et al. (2012) verified that the species A.

scrobiculata, A. mellea, Acaulospora sp., Gigaspora sp., G.

tortuosum, S. scutata, and S. gregaria. Angelini et al. (2012)

found that the species A. scrobiculata, A. scavata, A. mellea, Ar.

leptoticha, Gigaspora sp., G. macrarpum, G. tortuosum, S.

scutata, and S. gregaria. The frequency of arbuscular
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mycorrhizal fungi found in the rhizosphere of spontaneous

vegetation did not differ between treatments with and without

nitrogen application in the top dressing (Figure 3F). There was

no differentiation of groups of arbuscular mycorrhizal fungi

identified; therefore, the species present in treatments with

nitrogen in topdressing in corn are the same that occur in

areas without application of nitrogen in topdressing. This

behavior was also observed in the principal component

analysis (Figure 1). G. microaggregatum and G. tortuosum are

not commonly found in the soil rhizosphere under spontaneous

vegetation, indicating their occurrence by chance. All other

arbuscular mycorrhizal fungi found in the rhizosphere of wild

plants are commonly associated with these cover plant species.

Massenssini et al. (2014) analyzed the correlation of 19

species of mycorrhizal fungi associated with the rhizosphere of

spontaneous vegetation in soils of Minas Gerais and found no

significant difference in root colonization between the studied

areas. Angelini et al. (2012), in areas of spontaneous vegetation

in the cerrado, verified the presence of A. scrobiculata, A.

scavata, A. mellea, Gigaspora sp., G. microaggregatum,

G. tortuosum, S. scutata, and S. gregaria.
Conclusions

No influence of nitrogen application on soil spore density

was verified, and among the cover crops studied, Guandu and

Crotalaria presented the highest numbers of spores in the soil.

There were no differences in the diversity of arbuscular

mycorrhizal fungal species associated with the studied cover

crops. The most frequent species associated with cover crops

were S. pellucida and S persica in C. juncea; Gigaspora sp. in

sorghum; G. macrocarpum in Guandu; G. macrocarpum and G.

clavisporum in millet; and G. microaggregatum and G. tortuosum

in spontaneous vegetation.
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Semina: Cie ̂ncias Agrárias 33, 115–130. doi: 10.5433/1679-0359.2012v33n1p115

Benedetti, T., Antoniolli, Z. I., Giracca, E. M. N., and Steffen, R. B. (2005).
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