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Salt stress is one of the significant environmental stressors that severely affects

plant growth and development. Plant responses to salt stress involve a series of

biological mechanisms, including osmoregulation, redox and ionic

homeostasis regulation, as well as hormone or light signaling-mediated

growth adjustment, which are regulated by different functional components.

Unraveling these adaptive mechanisms and identifying the critical genes

involved in salt response and adaption are crucial for developing salt-tolerant

cultivars. This review summarizes the current research progress in the

regulatory networks for plant salt tolerance, highlighting the mechanisms of

salt stress perception, signaling, and tolerance response. Finally, we also

discuss the possible contribution of microbiota and nanobiotechnology to

plant salt tolerance.
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Introduction

Soil salinization is one of the most adverse environmental stressors, severely limiting

plant growth and development and threatening agricultural production worldwide. In

addition to naturally occurring soil salinization, the situation is even exacerbated by

excessive chemical fertilizers and soil amendments, improper irrigation practices, and the

effect of seawater exposure (Munns and Tester, 2008; Sahab et al., 2021). It is estimated

that crop production on at least 20% of global irrigated land is impaired. About 2 million

ha (~1%) of world agricultural land is under accelerating salinization each year (Tuteja,

2007). Salt stress causes plant growth inhibition, abnormal development, and metabolic

disturbance (van Zelm et al., 2020). The detrimental effects of elevated salinity on plants

include (i) osmotic stress as sodium accumulates in the soil and (ii) ionic stress (Figure 1)

(Yang and Guo, 2018a; Yang and Guo, 2018b; Ludwiczak et al., 2021). Osmotic stress

caused by hyperosmotic soil solution disrupts plant cell turgor. In contrast, ionic stress is

characterized by disordered sodium (Na+)/potassium (K+) balance inside the cell,

disrupting various metabolic and physiological processes (Zhang et al., 2018). These
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two processes were reported to be temporally and spatially

separated in plants during the salt stress response (van Zelm

et al., 2020). However, there exists a significant overlap between

osmotic and ionic stress in both early and downstream signaling

(Geng et al., 2013; van Zelm et al., 2020). In addition, the

elevated content of reactive oxygen species (ROS) in plants is

also observed upon salt exposure (Figure 1) (Yang and Guo,

2018a). Electrons leaked from the electron transport chain

(ETC) can react with O2 during aerobic metabolism to

produce ROS (Møller, 2001). The toxic level of ROS seriously

disrupts normal cellular metabolism through the oxidation of

macromolecules like lipids, proteins, and nucleic acids, resulting

in severe oxidative damage (Apel and Hirt, 2004; Miller

et al., 2010).

In general, there are two plant types regarding their distinct

salt tolerance. Some plants, termed halophytes, naturally grow in

or even adapt to the saline environment with more than 200 mM

NaCl (Duarte et al., 2014). By contrast, most other plant species

are salt-sensitive glycophytes, and their growth and development

are adversely inhibited by soil salinization (Assaha et al., 2017).

Due to their sessile lifestyle, plants have evolved with

sophisticated but effective strategies with considerable

plasticity in morphology, physiology and metabolism to deal

with multiple environmental stimuli (Genoud and Métraux,

1999; Fraire-Velázquez et al., 2011). Therefore, a series of

signaling pathways have been established in plants in response

to salt stress, including the sensory mechanisms, the networks

that mediate osmotic adjustment, redox balance and ionic

homeostasis, and other stress response mechanisms (Figure 1)

(Zhao et al., 2021). In this review, we briefly summarize the new

findings of salt stress responses in plants, focusing on recent

advances in salt-induced signal perception and transduction.

Phytohormone and light signal are essential for plant

development and stress response, and some of their regulatory

elements in have been also found to play essential roles in
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coordinating salt stress response in plants (van Gelderen et al.,

2018; Kovacs et al., 2019; Waadt et al., 2022). Here we also

summarize the mechanisms of phytohormone and light signal-

mediated salt tolerance of plants. Finally, we discuss the possible

roles of plant microbiota in plant salt tolerance. Understanding

the mechanisms of plant salt tolerance provides new

opportunities for engineering salt-tolerant plants even grown

in saline regions, making it a promising way to keep agricultural

productivity and ecological security worldwide.
Perception of salt stress in plants

Plants might sense the alteration of salt concentration in the

extracellular space and the change of mechanical effects on

cellular structures caused by salt stress, triggering a series of

signal transduction processes in plants (Figure 2). The initial salt

stress signals mainly include excess apoplastic Na+, cytosolic

Ca2+ ([Ca2+]cyt) level increase, ROS accumulation, and 3,5-cyclic

guanosine monophosphate (cGMP) production (Shabala et al.,

2015; Park et al., 2016a). Under saline condition, excess Na+

enters plant roots through nonselective cation channels

(NSCCs), which mediate toxic sodium (Na+) influx into the

cell across the plasma membrane (PM) (Demidchik and Tester,

2002; Demidchik and Maathuis, 2007). Cyclic nucleotide-gated

channels (CNGCs) are the main NSCCs, which are implicated in

ionic homeostasis during salt response. The initial salt-induced

signals might contribute to regulating NSCCs in plants during

salt response. NSCCs can be blocked by Ca2+ (Leng et al., 2002;

Demidchik and Maathuis, 2007; Demidchik et al., 2018). The

apoplastic Ca2+ concentration in root cells is probably in the

region of 0.2-0.4 mM (Legué et al., 1997), which is enough to

reduce NSCCs-mediated flux by 30-50% (Essah et al., 2003). The

remaining flux can be further diminished by channel blockers

like Gd3+ and La3+ (Demidchik and Maathuis, 2007). Other

channels and transporters may also contribute to salt stress

perception, but their regulatory role in sodium sensing and

import in planta is debated (van Zelm et al., 2020; Wang

et al., 2022).

Calcium signal functions as an essential secondary messenger,

and salt stress leads to rapid and transient [Ca2+]cyt elevations to

trigger salt tolerance responses (Knight et al., 1991; Knight et al.,

1997). During initial salt response, calcium signal plays a vital role in

osmosensing within seconds of exposure to osmotic stress caused by

the saline conditions. REDUCED HYPEROSMOLALITY-

INDUCED [Ca2+]cyt INCREASE1 (OSCA1) was initially

identified as a hyperosmolality-activated Ca2+-permeable cation

channel responsible for [Ca2+]cyt increase, might be a potential

osmosensor in plants (Yuan et al., 2014). A Ca2+-responsive

phospholipid-binding BONZAI (BON) protein was recently

reported to mediate hyperosmotic stress tolerance by positively

regulating osmotic stress-induced [Ca2+]cyt increase, ABA

accumulation, and gene expression, indicating a possible role of
FIGURE 1

A simplified model of plant salt stress response. Salt stress
primarily causes osmotic stress, oxidative stress, and ionic stress.
By sensing such stresses, plants activate effective stress signaling
networks to accumulate substances for osmotic adjustment, and
to maintain ionic and redox homeostasis, leading to salt
tolerance in plants.
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the membrane-associated Ca2+-responsive BON proteins in

osmotic sensing and signaling (Chen et al., 2020). Considering

that salt stress triggers osmotic stress, it is possible that the

aforementioned Ca2+ transporters and Ca2+-responsive BON

protein might participate in initial salt sensing and signaling by

mediating Ca2+ signal in plants. Recently, the Arabidopsis thaliana

(Arabidopsis) PM glycosyl inositol phosphorylceramide (GIPC)

sphingolipids was found to function as a sensor to sense Na+

level and regulate salt stress response by gating ionic stress-induced

Ca2+ signaling (Jiang et al., 2019). GIPC sphingolipid biosynthesis is

catalyzed by the protein of monocation-induced Ca2+ increases1

(MOCA1), and extracellular Na+ ions can bind GIPC sphingolipids

to gate PM Ca2+ influx channels. Consistently, themoca1mutant is

hypersensitive to salt stress and lacks cation-evoked Ca2+ spikes and

waves (Jiang et al., 2019).

High salinity stress rapidly triggers H2O2 bursts in plant

cells, which might function as essential salt stress signal (Wang

et al., 2020). HYDROGEN-PEROXIDE-INDUCED CA2+

INCREASES1 (HPCA1) functions as a H2O2 sensor that

perceives the stress-induced extracellular H2O2 burst and

generates increased [Ca2+]cyt under stress stimuli (Wu et al.,

2020). Mathematical modeling showed that under salt stress,

crosstalk between ROS and Ca2+ signaling is necessary to spread

the Ca2+ signal between cells (Evans et al., 2016). Accordingly,

the atrbohd atrbohf double mutant, which is hypersensitive to

salt stress, exhibited a reduction in cytosolic free Ca2+ and PM

Ca2+ influx (Ma et al., 2012). Importantly, Jiang et al., showed

that lack of AtrbohF causes hypersensitivity of shoots to soil

salinity with high Na+ accumulation in root vasculature cells and
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xylem sap (Jiang et al., 2012). AtrbohF-mediated ROS

production in root vasculature contributes to Na+

concentration limitation, thus protecting shoot cells from

transpiration-dependent excess Na+ delivery (Jiang et al.,

2012). Moreover, the Ca2+ signaling complex CBL1/9-CIPK26

interacts with and phosphorylates AtRbohF (Drerup et al.,

2013). Thus, in the early stages of salt stress, ROS and Ca2+

signals work together to affect ionic homeostasis in plants.

The rise of cellular cGMP can be detected within seconds

after applying salinity and osmotic stress (Donaldson et al.,

2004). Furthermore, cGMP inhibits Na+ influx in several plant

species (Maathuis and Sanders, 2001; Essah et al., 2003; Rubio

et al., 2003), while it can regulate transcription of various genes

related to salinity stress and promote K+ uptake (Maathuis, 2006;

2014; Isner and Maathuis, 2016). Importantly, cGMP has a

negative effect on the inward Na+ flux acrried by NSCCs

(Maathuis and Sanders, 2001).

Peptide ligands have also emerged as essential mediators of cell-

to-cell communication during plant growth and stress responses,

possibly through the action of their PM-localized receptors,

RECEPTOR-LIKE KINASEs (RLKs) (Gancheva et al., 2019; Xie

et al., 2022). For instance, the defense-related peptide PLANT

ELICITOR PEPTIDE AtPep3 and its receptor PEP1 RECEPTOR

1 (PEPR1) are implicated in plant salt response, and PEPR1 loss of

function nearly abolishes AtPep3-induced salt resistance in

Arabidopsis (Nakaminami et al., 2018). Recently, Zhou et al.,

reported that the RECEPTOR-LIKE KINASE 7 (RLK7), another

PM receptor kinase in Arabidopsis, can be recognized by a secreted

peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), and
FIGURE 2

Salt stress sensing and signaling in plant cells. Osmotic alternation and Na+ import trigger a rise of cytosolic secondary messengers, which are
sensed by specific sensors or receptors, therefore multiple signaling pathways involved in a variety of components are activated to maintain
ionic balance and osmotic homeostasis or to regulate osmotic stress response. The arrows and bars indicate positive and negative regulation,
whereas solid lines and dashed lines indicate direct regulation and indirect regulation, respectively.
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form an active ligand-receptor signaling cascade that modulates

plant salt tolerance in Arabidopsis by activating MPK3/MPK6

cascade (Zhou et al., 2022). Furthermore, LEUCINE-RICH

REPEAT EXTENSINs, RAPID ALKALINIZATION FACTOR

peptides and FERONIA (FER), a member from the Catharanthus

roseus RLK1-like (CrRLK1L) family in Arabidopsis, may form a

functional module that connects salt stress-induced cell-wall

alterations to salt stress responses (Zhao et al., 2018). In addition,

FER-dependent signaling may elicit a cell-specific Ca2+ signal to

maintain cell wall integrity during salt stress and root growth

recovery after salt exposure (Feng et al., 2018). Although some

peptides are implicated in plant salt response, upregulation of their

coding genes and the maturation of these peptides during salt stress

response might depend on the initial signals such as Ca2+.
Salt responses in plants

Osmotic adjustment

The immediate problem plants face is dehydration due to

osmotic stress caused by high salinity, and plants can initiate

osmotic adjustment to maintain cell volume and turgor under

salt stress (Figures 1, 2) (van Zelm et al., 2020). The osmotic

adjustment is a process by which plants enhance their water

availability by synthesizing compatible solutes, known as

osmolytes, in their cells. The osmolytes mainly include organic

substances and inorganic ions, and proline, glycine betaine, and

soluble carbohydrates, have been proven effectively regulate

osmotic pressure by lowering the osmotic potential in the

cytosolic compartment, thus preventing cellular dehydration

during salt stress (Yang and Guo, 2018a; Jogawat, 2019). Due

to its strong hydration ability, proline accumulation is an

effective strategy to prevent protein dehydration and

denaturation under osmotic stress in plants (Liang et al.,

2013). Data showed that treatment with proline to two

contrasting cultivars of Brassica juncea could alleviate the

adverse effects of salinity on photosynthesis and seed yield

(Wani et al., 2019). Furthermore, proline can function as an

O2 quencher, thus removing excessive ROS produced under

stress (Rejeb et al., 2014; Rehman et al., 2021). Glycine betaine, a

water-soluble amphoteric quaternary ammonium compound, is

also an essential osmotic regulator in higher plants, playing a

vital role in stress alleviation (Ashraf and Foolad, 2007).

Exogenous application of glycine betaine can mitigate salt-

induced damage in maize seedlings (Hossain et al., 2021; Bai

et al., 2022). Non-structural carbohydrates, such as glucose,

sucrose, fructan, and starch, are also found to accumulate in

plants under salt stress and function in osmotic adjustment,

therefore enhancing the salt tolerance of plants (Munns and

Tester, 2008; Li and Sheen, 2016; Wang et al., 2021).
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Significantly, carbohydrates also act as sugar signaling in plant

response to an environmental stimulus (Bhattacharya and

Kundu, 2020), making it another layer of regulation in plant

salt tolerance. Apart from organic solutes, inorganic ions have

been demonstrated as significant contributors to osmotic

adjustment during saline conditions. Sodium and chloride are

toxic to plants, but salt-tolerant plants might take them as

essential osmolytes to maintain the external osmolarity to

avoid osmotic imbalance and sustain growth (Munns and

Tester, 2008; Tanveer and Shah, 2017; Hussain et al., 2021).

Plants enhance their environmental adaptability by

accumulating inorganic ions like K+ under salt stress. It has

been revealed that K+ is an influential contributor to osmotic

regulation (Wang et al., 2013; Kumari et al., 2021), making it a

crucial element for plant growth and stress response.
ROS homeostasis and redox regulation

ROS in plant cells mainly includes oxygen radicals, like

superoxide (*O2
-), hydroxyl radical (*OH), and some non-

radicals, such as hydrogen peroxide (H2O2), singlet oxygen

(1O2), and ozone (O3) (Gill and Tuteja, 2010). The generation

sites of ROS in salt-stressed plants mainly include chloroplasts,

mitochondria, apoplast, and peroxisomes (Sharma et al., 2012).

ROS might damage cells at excess levels while act as crucial

signaling molecules essential for stress signaling at lower

concentrations (Figure 2) (D'Autréaux and Toledano, 2007;

Sewelam et al., 2016). The interaction between ROS and ethylene

(ET) has been identified as the primary signal that mediates salinity

stress in rice (Steffens, 2014). Excessive accumulation of ROS

induced by salt stress is toxic to plants and causes oxidative

damage to cellular constituents, leading to cell death (Ahanger

et al., 2017; Ye et al., 2021). A high level of ROS (especially H2O2)

leads to DNA damage and distorts genomic stability (Figure 1)

(Lin et al., 2020). To detoxify ROS generated by salt stress, plants

have evolved a set of antioxidant strategies, mainly including

enzymatic (Racchi, 2013) and non-enzymatic (Khazaei and

Aghaz, 2017) systems to protect cells from oxidative damage

(Figure 1). Enzymatic systems include a set of superoxide

dismutase (SOD), peroxidase (POD), catalase (CAT), and

ascorbate peroxidase (APX). Numerous studies have shown that

salt-tolerant species improve their salt tolerance by enhancing the

antioxidant defense system under salt stress (Souana et al., 2020;

Challabathula et al., 2022). Non-enzymatic antioxidants, such as

glutathione (GSH), ascorbate (AsA), monodehydroascorbate

reductase (MDHAR), and dehydroascorbate reductase (DHAR),

can effectively scavenge some highly toxic ROS in plants (Maurya,

2020). Data showed that GSH and AsA levels increase with an

elevated level of *O2
- and H2O2 in Camellia sinensis (L.) exposed to

300 mM NaCl stress (Li et al., 2019). Enhanced activities of
frontiersin.org
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MDHAR and DHAR enzymes were reported to be induced by salt

stress, thus decreasing cell membrane damage in sugar beet M14

(Li et al., 2020a). Consequently, plant antioxidant defense is

proficient in maintaining ROS balance for salt tolerance.

Importantly, as the interaction between O2 and reduced ETC

components leads to ROS production, one effective strategy to

reduce toxic ROS level is to prevent ETC over-reduction (Maxwell

et al., 1999). The mitochondrial alternative oxidases (AOXs)

participate in electron overflow when the cytochrome ETC chain

is saturated with electrons due to impaired electron transport

under challenging conditions, preventing further reduction of

ubiquinone and stabilizing the whole ETC (Millenaar et al.,

1998; Vanlerberghe, 2013). Our recent work demonstrates that

SIZ1-mediated SUMOylation of R2R3-MYB transcription factor

MYB30 modulates plant salt tolerance through the action of

AOX1a. MYB30 binds the promoter of AOX1a and upregulates

its expression in response to salt stress to maintain the cellular

redox homeostasis through enhanced alternative respiration

pathway (Gong et al., 2020).
Ionic balance regulation

Under salinity stress, excess toxic sodium ions (Na+) enter and

accumulate in plant cells, disrupting ion homeostasis, especially

Na+/K+ balance (Figures 1, 2) (Munns and Tester, 2008; Zhao

et al., 2021). Keeping ionic homeostasis is a prerequisite for plant

growth during salt stress, since disordered ionic homeostasis leads

to the disruption of cellular metabolism (Zhu, 2003; Amin et al.,

2021). Plants have developed sophisticated and effective

mechanisms to keep optimal levels of Na+ by removing or

vacuolar compartmentalizing Na+ from the cytoplasm, and a

variety of carrier and channel proteins, symporters, and

antiporters participate in this process (Figures 1, 2) (Tester and

Davenport, 2003; Munns and Tester, 2008; Wu, 2018). On the

other hand, K+ retention in the cytosol is esstisal for Na+/K+

balance during salt response (Yang et al., 2014; Yang and Guo,

2018a). The Na+/H+ antiporters that transport Na+ in exchange

for H+ achieve the regulation of Na+ levels in the cytoplasm in

plant cells. The PM-localized Na+/H+ antiporters can transport

Na+ to the apoplast, and the vacuole-localized Na+/H+ antiporters

are responsible for vacuolar sequestration of Na+ (Qiu et al., 2004;

Keisham et al., 2018; Akhter et al., 2022). The increased

accumulation of Na+ in vacuoles might also act as an

osmoticum, enhancing salt tolerance ability (Solis et al., 2021).

NHXs are putative Na+/H+ exchangers that transport Na+ from

the cytoplasm to the vacuole, holding plant resistance to salt stress

(Yokoi et al., 2002; Su et al., 2020). Several reports showed that

overexpression of NHX confers salinity tolerance in many plant

species. For example, constitutive overexpression of AtNHX1

significantly increases salt tolerance in rice (Fukuda et al., 2004),

wheat (Xue et al., 2004), tomato (Zhang and Blumwald, 2001),

and cotton (He et al., 2005). Taken together, Na+ exclusion,
Frontiers in Plant Science 05
vacuolar Na+ sequestration, and K+ retention in the cytosol are

essential for plant salt tolerance (Figure 2).

The Salt Overly Sensitive (SOS) regulatory pathway plays a

pivotal role in regulating ionic homeostasis through modulating

the activity of Na+/H+ antiporters under salt stress (Figure 2) (Yang

et al., 2009; Ji et al., 2013). The SOS pathway effectively maintains

the Na+ homeostasis by transporting excess Na+ from the cytosol

to the apoplast, thus preventing the accumulation of Na+ to toxic

levels (Halfter et al., 2000; Yang et al., 2009; Quintero et al., 2011).

The SOS signaling pathway includes Salt Overly Sensitive-1

(SOS1), a PM Na+/H+ antiporter, the serine/threonine protein

kinase SOS2, and two calcium sensors, SOS3 and SCaBP8/CBL10

(SOS3-like calcium-binding protein 8) (Yang and Guo, 2018a).

When grown in normal condition, SOS pathway is “off” via the

action of 14-3-3 proteins and GIGANTEA (GI) which interact

with SOS2 and repress its kinase activity (Kim et al., 2013; Zhou

et al., 2014). High salinity initiates a calcium signal that activates

the SOS pathway (Figure 2). Under salt stress, 14-3-3 proteins are

released from SOS2 and degraded through proteasomal pathways

(Tan et al., 2016); SOS3/SCaBP8 protein perceives the increased

[Ca2+]cyt, recruits SOS2 to the PM, and activates its activity (Halfter

et al., 2000; Quan et al., 2007; Lin et al., 2009). Subsequently, the

activated SOS2 phosphorylates SOS1, thus enhancing the transport

activity of SOS1 and transporting Na+ from cytosol to apoplast

(Quintero et al., 2011). In addition, SOS3/SCaBP8-SOS2 module

might also positively regulate the activities of other transporters

involved in ionic homeostasis like vacuolar Na+/H+ exchanger

(NHX) (Zhao et al., 2021). Remarkably, SOS1-mediated Na+

exclusion in plants during salt response is regulated by

MITOGEN-ACTIVATED PROTEIN KINASE (MAPK)

signaling pathways (Figure 2). For instance, MITOGEN-

ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6

physically interact with and phosphorylates SOS1 and salt stress-

induced PA (Yu et al., 2010), and thus mediate salt response and

suppresse Na+ accumulation via in shoots (Ji et al., 2013).

Phosphatase MAP KINASE PHOSPHATASE1 (MKP1) can be

phosphorylated by MPK6 (Park et al., 2011), and MKP1 exhibits a

negative effect on MPK3/6 activity (Bartels et al., 2010; Besteiro

et al., 2011). A recent study revealed that the mkp1 mutation

improves salt tolerance by restraining Na+ accumulation in shoots

(Uchida et al., 2022). The salt tolerance in mkp1 might be

attributed to the activation of SOS1 via the elevation of MPK6.

Besides Arabidopsis thaliana, SOS genes have been identified in

many other plants, such as Triticum aestivum L. (Jiang et al., 2021)

andOryza sativa (Kumar et al., 2012). Overexpression of SOS genes

could improve salt tolerance by regulating ionic homeostasis

(Baghour et al., 2019; Gupta et al., 2021). Importantly, it is worth

noting that the entry of Na+ across the tonoplast membrane or PM

is driven by the protonmotive force established by proton pumps in

the tonoplast or PM. Activation of H+-ATPase (Conde et al., 2011)

and H+ pyrophosphatases (Maeshima, 2000) generates such proton

motive force across the PM, thus activating most of the ion and

metabolite transport. Vacuolar H+-ATPase (V-ATPase) is the most
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prevailing H+ pump in the plant cells (Dietz et al., 2001). Studies

have revealed that enhancing the expression level of V-ATPase

could improve salt tolerance (Zhang et al., 2012). Interestingly, both

V-ATPases and PPase are also thought to be regulated by the SOS

components (Batelli et al., 2007; Silva and Gerós, 2009).

Under salinity stress, excessive Na+ leads to K+ loss in plant

cells (Park et al., 2016a; Zhao et al., 2021). The transporters HAK/

KT/KUP play an essential role in maintaining Na+/K+

homeostasis during salt stress, which is involved in enhancing

K+ absorption and reducing Na+ accumulation inside the

cells (Almeida et al., 2017). In rice, OsHAK1 dominates the

Na+-sensitive high affinity K+ uptake system (Chen et al., 2017).

Constitutive expression of OsHAK5 in BY2 cells enhances K+

accumulation under saline condition and confers salt tolerance in

these cells (Horie et al., 2011; Yang et al., 2014). OsHAK5 might

mainly function in shoot tissues and its overexpression leads 43-

115% increase in K+/Na+ ratio compared to WT plants in shoot

but not root (Yang et al., 2014). OsHAK21 is also reported to

mediate K+ absorption across the PM and play an essential role in

maintaining the Na+/K+ homeostasis in rice under salt stress

(Shen et al., 2015). The mutant of oshak21 accumulates less K+

and considerably more Na+ in both shoots and roots compared

with the wild type. Research also suggests that Arabidopsis

NADPH oxidases ARABIDOPSIS THALIANA RESPIRATORY

BURST OXIDASE HOMOLOG D (AtrbohD) and AtrbohF

function in ROS-dependent regulation of Na+/K+ homeostasis

under salinity stress possibly regulating inward K+ currents under

both normal and salt stress conditions (Ma et al., 2012).
Phytohormone signaling and plant
salt tolerance

Phytohormones are small chemicals that play an essential role

in plant growth and development. Evidence indicates that

phytohormones mediate various stress resistance, such as salt,

osmotic, drought, cold, and pathogen stress (Carvalho et al., 2013;

Verma et al., 2016; Yu et al., 2020; Waadt et al., 2022). Numerous

studies have shown that plant hormone signaling plays integrated

and sophisticated roles at different vegetative stages, in different

tissues, or under various environmental stimuli (Ku et al., 2018;

Waadt et al., 2022). How plant hormones, including abscisic acid

(ABA), brassinosteroid (BR), ethylene (ET), gibberellin (GA),

salicylic acid (SA), and jasmonic acid (JA), mediate salinity

signals to regulate plant salt stress tolerance is briefly summarized

here (Figure 3).
ABA signaling

ABA functions as an essential central integrator to activate

adaptive signaling cascades during the salt stress response in

plants. Under abiotic stresses, including salinity and water
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deficit, endogenous ABA levels increase rapidly, and enhanced

ABA signaling activates sucrose nonfermenting 1-related protein

kinases (SnRK2s) (Zhu, 2016). SnRK2s are the central

components in ABA signaling networks and play critical roles

in ion transport, osmoregulation, ROS production, gene

transcription, and the closing of stomata (Yang G et al., 2019).

Stomata are the primary place for plant transpiration, and ABA-

regulated stomatal opening and closing are critical for plants to

respond to salt stress. OST1/SnRK2.6 interacts with and

phosphorylates specific ion channels, such as the potassium

channel KAT1 and the slow anion channel SLAC1, to mediate

K+ efflux and anion currents in guard cells, thus enhancing

stomatal closure during salt and osmotic stress (Brandt et al.,

2015). SnRK2.2/2.3/2.6 phosphorylate and positively control

various ABA-responsive element (ABRE)-binding protein/

ABRE-binding factor (AREB/ABF) transcription factors,

further regulating osmotic stress response in plants (Cai et al.,

2017). ABA-activated SnRK2s also regulate osmotic stress

tolerance by controlling the BAM1- and AMY3-dependent

degradation of starch into sugar and sugar-derived osmolytes

(Thalmann et al., 2016). It is deserved to determine whether

similar mechanisms are involved in the osmotic regulation

during salt stress in plants.

Salt stress leads to the increase of [Ca2+]cyt (Yang Y et al.,

2019). Ca2+ signaling plays a real-time and influential role in

response to salinity stress. ABA effectively helps plants survive salt

stress by integrating with the versatile second messenger Ca2+ via

provoking PM-bound channels or releasing Ca2+ from

intracellular Ca2+ pools (Edel and Kudla, 2016). The damage to

the cell wall caused by Na+ can be perceived by the kinase FER,

which mediates salt stress signaling by increasing [Ca2+]cyt. In

contrast, ABA flexibly controls FER activity through the

dephosphorylation of ABA INSENSITIVE 2 (ABI2) (Chen

et al., 2016). In addition, ABA-activated SnRKs can

phosphorylate the membrane-bound NADPH oxidase AtrbohF,

modulating ROS homeostasis in plant response to high salinity

(Szymańska et al., 2019). A recent study has demonstrated that

salt-induced ABA and Ca2+ signaling can fine-tune AtrbohF

activity by activating SnRK2.6 and CIPK11/26 signaling

modules (Han et al., 2019). Together, ABA, Ca2+ and ROS

exhibit complicated signaling crosstalk to control plant

resistance to salt stress.
BR signaling

BRs are a class of steroid phytohormones in plants and

play pivotal roles in plant growth, development, and response

to adverse stresses (Ahanger et al., 2018; Nolan et al., 2020).

BRs have been widely reported to improve salt stress

tolerance in a range of plants, including Arabidopsis, rice

(Oryza sativa), tomato (Lycopersicon esculentum), and

mustard (Brassica napus) (Özdemir et al., 2004; Wani et al.,
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2019; Jia et al., 2021). BR can significantly inhibit ROS

generation by enhancing antioxidant capacity under saline

conditions (Fariduddin et al., 2013; Li S. et al., 2020).

Exogenous treatment with 24-epibrassinolide (EBL), an

active by-product from brassinolide biosynthesis, effectively

improves salt tolerance in soybean through regulating

enzymatic antioxidants and osmolyte accumulation

(Soliman et al., 2020). The exogenous application of BR has

been reported to improve photosynthetic efficiency in

different plant species. In a recent study, EBL application

could alleviate the detrimental effects of salt stress on

chloroplasts and photosynthesis in Robinia pseudoacacia L.

seedlings (Yue et al., 2019). Moreover, exogenous BR

application could also relieve salt toxicity by regulating the

activity of Na+/H+ antiporters and NHX (Su et al., 2020).

These results highlight the potential role of BR in plant

salt resistance.
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BR-induced enhanced tolerance to salinity is closely

associated with BR signaling. When extracellular BR hormones

directly bind to one of its membrane-localized receptors,

BRASSINOSTEROID-INSENSITIVE 1 (BRI1), BRI1-LIKE 1

(BRL1) or BRL3, and the coreceptor BAK1(SERK3) in

Arabidopsis, an efficient phosphorylation cascade, to relay BR

s igna l s to BRI1-EMS-SUPPRESSOR1 (BES1) and

BRASSINAZOLE-RESISTANT1 (BZR1) family TFs, therefore

controlling BR-regulated gene expression (He et al., 2000; Nolan

et al., 2020). Salt stress leads to root growth inhibition in plants

due to a reduced level of BZR1 in the nucleus and the repression of

BR signaling (Srivastava et al., 2020). However, exogenous BR

application can even partially enhance salt-induced growth

inhibition (Liu et al., 2014; Guedes et al., 2021). Studies indicate

that overexpression of vascular BR receptor BRL3 promotes the

accumulation of osmoprotectant metabolites, including proline

and sugars, which play essential roles in osmoregulation under salt
FIGURE 3

Schematic diagram of phytohormone, light signal, and microbiota-mediated plant salt tolerance. Phytohormone and light signal are essential for
plant development and stress response, and some of their regulatory elements in have been also found to play essential roles in coordinating
salt stress response in plants. Plant hormone signaling plays integrated and sophisticated roles at different vegetative stages, in different tissues,
or under various environmental stimuli. Light signaling networks in plants begin with the perception of light signals, and are vital in shaping plant
salt stress response. Plant microbiota plays a vital role in plant adaptation and resistance to saline soil. PGPR is essential to improve plant
tolerance to high salinity, possibly by regulating ionic homeostasis, accumulating osmolytes, activating antioxidant capacity, and enhancing
essential nutrient uptake.
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stress (Fàbregas et al., 2018). Overexpression of SERK2, an

interacting partner of BR receptor in rice, significantly enhances

grain size and salt stress resistance (Dong et al., 2020). The

accumulation of SERK2 induced by salt stress confers early BR

signaling on the PM to enhance the salt stress response. SlBZR1, a

BZR/BES TF in tomatoes, positively regulates BR signaling and

salt stress tolerance in tomatoes and Arabidopsis (Jia et al., 2021).

BIN2 is a critical negative component of BR signaling, which also

acts as an essential molecular switch to balance plant growth

recovery and salt stress response in Arabidopsis; however, BR

signaling might not be implicated in BIN2-SOS2 module during

salt response and growth recovery regulation (Li et al., 2020b).

Importantly, multilayer crosstalks between BR and ABA have

been observed. BIN2 activates ABA signaling through the

phosphorylation of SnRK2.2 and SnRK2.3 (Cai et al., 2014). In

contrast, phosphatases ABI1 and ABI2, two major negative

players in ABA signaling, can mediate the dephosphorylation of

BIN2, abolishing the activity of BIN2 and enhancing the

transduction of the BR signaling pathway (Wang et al., 2018). It

is possible that BR and ABA together control plant growth and

salt stress response
Other phytohormone signaling pathways

ET and GA have been also reported to be involved in plant

salt stress response. Plants rapidly generate gaseous ET under

salt stress (Zhang et al., 2016). Increased endogenous ET or

treatment with ACC, an ET precursor, both can enhance plant

salt tolerance (Tao et al., 2015; Gharbi et al., 2017). ET promotes

plant salt tolerance by maintaining the homeostasis of Na+/K+

and reducing ROS by inducing antioxidant defense (Yang et al.,

2013; Wang et al., 2020). ET signaling is essential in plant salt

tolerance. Loss of function of ET receptor ETHYLENE

RESPONSE 1(ETR1) and ETHYLENE INSENSITIVE 4

(EIN4) or CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), a

negative regulator of ET signaling, confers enhancement of salt

tolerance (Wilson et al., 2014; Dubois et al., 2018), while loss-of-

function mutants of ETHYLENE INSENSITIVE 3 (EIN3) and

EIN3-LIKE 1 (EIL1), two ET-activated TFs, exhibited higher salt

sensitivity in contrast to wild-type plants (Peng et al., 2014). As a

well-known regulator of seed germination, GA positively

regulates plant growth (Sun and Gubler, 2004). By contrast,

reduced bioactive GA levels or signaling after germination is

required for plant tolerance to salt stress (Magome et al., 2004;

Magome et al., 2008). Consistently, the GA-deficient mutant

ga1-3 exhibits remarkable tolerance to salt stress (Magome et al.,

2004); the growth of seedlings lacking GA signaling repressors

GAI, RGA, RGL1, and RGL2 is less inhibited by salt stress

compared with the corresponding wild-type plants (Achard

et al., 2006; Achard et al., 2008). Moreover, overexpression of

the GA catabolic gene CYP71D8L improves rice tolerance to
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salinity stress by affecting GA homeostasis (Zhou et al., 2020).

The phytohormone SA is also repeatedly reported to take part in

salt tolerance. For example, the exogenous application of SA

together with nitric oxide (NO) significantly alleviates the NaCl-

mediated oxidative damage in Vigna angularis by enhancing the

synthesis of osmotic substances and improving photosynthesis

(Ahanger et al., 2019). A recent study showed that priming the

seed germination of Leymus chinensis in SA solution relieves

salt-induced osmotic damage by accumulating K+ (Hongna

et al., 2021). It might be due to the improved ATP content

and H+-ATPase activity in the membrane of root cells

(Ghassemi-Golezani and Farhangi-Abriz, 2018). In addition,

SA might also crosstalk with other hormones, such as ABA,

ET, and GA, which are closely correlated with the activation of

osmotic adjustment and maintenance of ionic homeostasis

(Khan et al., 2014; Jayakannan et al., 2015).

As a stress-related hormone, JA has been also found to be

involved in salt-induced growth inhibition (Valenzuela et al.,

2016). Salt stress induces the expression of JA biosynthesis-

related genes in leaves and roots, leading to increased JA

production (Du et al., 2013; Delgado et al., 2021). Exogenous

application of JA significantly alleviates salt-induced damage by

increasing the antioxidative enzyme activities and maintaining

Na+/K+ balance (Qiu et al., 2014; Gao et al., 2021). JA signaling

plays an essential role in plant salt tolerance. The crucial

component activating JA signaling, MYC2, is implicated in

salt-mediated JA-dependent inhibition of cell elongation in the

elongation zone of Arabidopsis primary roots (Valenzuela et al.,

2016; Verma et al., 2020). Additionally, MYC2 contributes to salt

tolerance by regulating the proline biosynthesis gene in

Arabidopsis (Verma et al., 2020). Jasmonate ZIM-domain

(JAZ) proteins are the core components of the JA signaling

pathway, and their roles in plant salt stress response have been

characterized in many species. A recent study has shown that

GaJAZ1 interacts with GaMYC2 to inhibit the expression of

downstream genes, increasing salt tolerance in Gossypium

hirsutum (Zhao et al . , 2020). On the other hand,

overexpression of CYP94C2b, a cytochrome P450 family

protein involving JA catabolism, enhanced viability under salt

conditions and delayed the salt stress-induced leaf senescence in

rice (Kurotani et al., 2015).
Light signaling and plant
salt tolerance

The light signaling networks in plants begin with the

perception of light signals, ultimately leading to changes in

plant development and stress response (van Gelderen et al.,

2018). Emerging evidence shows that light signaling is vital in

shaping plant salt stress response (Figure 3) (Carvalho et al.,

2011; Kovacs et al., 2019). For example, light signaling can affect
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salt stress-induced transcriptional memory response of P5CS1-

mediated proline accumulation in Arabidopsis (Feng et al.,

2016). In addition, PHYTOCHROME-INTERACTING

FACTOR 4 (PIF4), a negative regulator of the phytochrome

signaling pathway, negatively regulates plant salt tolerance by

downregulating the expression of stress tolerance genes (Leivar

and Quail, 2011; Sakuraba et al., 2017). CONSTITUTIVE

PHOTOMORPHOGENIC1 (COP1), a master of the light

signaling pathway, also regulates salt stress tolerance. Salt

treatment can promote the translocation of COP1 to the

cytosol; the cop1 mutants exhibited a significantly impaired

resistance to salt stress than the wild-type plants at the

germination and seedling stages (Yu et al., 2016). A recent

study further confirmed that COP1 controls plant salt stress

tolerance by modulating sucrose content (Kim et al., 2022).

Moreover, constitutive nuclear-localized ELONGATED

HYPOCOTYL 5 (HY5), a bZIP family TF acting as a critical

regulator in light signaling and seedling development (Cluis

et al., 2004; Gangappa and Botto, 2016), can promote proline

biosynthesis by connecting light and salt stress signals (Kovacs

et al., 2019). Recently, a study on tobacco suggests that NtHY5

enhances salt stress tolerance by positively regulating light-

mediated flavonoid biosynthesis (Singh D et al., 2022).

Circadian clock regulates many physiological and

developmental processes in plants, and its phase and period are

adjusted by light, temperature, and nutrient input (Greenham and

McClung, 2015; Greenwood and Locke, 2020). It has been found

that salt tolerance is also regulated by the circadian clock via

modulating the expression of salt-responsive genes like RD29A

and SOS1 (Park et al., 2016b). The protein abundance of PM Na+/

H+ antiporter SOS1 appears to occur in a diurnal cycle (Park et al.,

2016b). Interestingly, a recent work revealed that SOS1 specifically

functions as a salt-specific circadian clock regulator via GI in

Arabidopsis. SOS1 directly interacts with GI in a salt-dependent

manner and stabilizes this protein to sustain a proper clock period

under saline conditions for the homeostasis of the salt response

under high or daily fluctuating salt levels (Figure 3) (Cha et al.,

2022). The regulatory role of light signals in plant salt tolerance

needs to be clarified next.
Microbiota and plant salt tolerance

Plants host a diverse community of microorganisms on and

inside organs such as roots and leaves, collectively termed the

plant microbiota (Vandenkoornhuyse et al., 2015; Dastogeer

et al., 2020). Accumulating evidence indicates that plant

microbiota plays a vital role in plant adaptation and resistance

to saline soil (Ha-Tran et al., 2021; Chialva et al., 2022). Notably,

multiple groups of root-associated microbes, including plant-

growth-promoting rhizobacteria (PGPR) and endophytic

bacteria, are essential to improve plant tolerance to high
Frontiers in Plant Science 09
salinity (Figure 3) (Qin et al., 2016; Vives-Peris et al., 2018).

PGPR alleviates the toxicity of salt stress on plants mainly by

regulating ionic homeostasis, accumulating osmolytes, activating

antioxidant capacity, and enhancing essential nutrient uptake

(Santos et al., 2018; Ha-Tran et al., 2021; Shabaan et al., 2022).

For instance, a recent study suggested that the bacterial strain E.

cloacae PM23 mediated salt tolerance in maize by modulating

plant physiology, antioxidant defense, and compatible solute

accumulation (Ali et al., 2022).

Furthermore, PGPR can produce ACC deaminase, which

reduces the excessive ET production in plants caused by salt

stress. Plants with reduced ET level would finally cope with salt-

induced growth inhibition by associating with ACC deaminase-

producing microbes (Glick et al., 2007; Barnawal et al., 2014;

Misra and Chauhan, 2020). Studies also indicate that PGPR can

improve plant salt tolerance by producing a wide range of

phytohormones as signal molecules in the rhizospheric region

(Khan et al., 2020; Jalmi and Sinha, 2022). For instance, it has

been revealed that an Algerian Sahara PGPR named strain Pp20

confers maize root tolerance to salt stress via producing and

secreting plant growth-promoting hormone indole-3-acetic acid

(IAA) and ACC deaminase (Zerrouk et al., 2019). In addition,

the endophytic bacteria penetrating into the plant root cells

possess similar functions in improving salt tolerance compared

with PGPR (Sgroy et al., 2009; Yaish et al., 2015). For example,

ACC deaminase-containing endophytic bacteria can ameliorate

salt stress in Pisum sativum through reduced oxidative damage

and induction of antioxidative defense systems (Sofy et al.,

2021). Remarkably, some root-associated fungal endophytes

are also shown to improve plant salt tolerance in terms of

growth, ion homeostasis, and osmoregulation (Rodriguez et al.,

2009; Bouzouina et al., 2021; Moghaddam et al., 2021). Taken

together, both rhizospheric and endophytic bacteria can be

employed as effective and eco-friendly adjuncts to promote

plant tolerance to salinity (Figure 3).
Nanobiotechnology and plant
salt tolerance

In recent years, the plant nanobiotechnology approach has

shown great potential to modulate plant stress response

(Hofmann et al., 2020; Li et al., 2022). Nanotechnology is the

application of small-sized materials with a basic structure of 1–

100 nm (Farokhzad and Langer, 2009). A variety of

nanomaterials (NMs) have been reported to enhance plant salt

tolerance for growth under saline condition (Almutairi, 2016;

Zulfiqar and Ashraf, 2021). For instance, some metal-based

nanoparticles, cerium oxide nanoparticles, silica nanoparticles,

titanium dioxide nanoparticles, and zinc oxide nanoparticles,

can improve salt resistance in multiple plant species (Newkirk

et al., 2018; Gaafar et al., 2020; Liu et al., 2021). NMs enhance
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plant salt tolerance mainly by improving plant photosynthesis

performance, promoting ROS detoxification, and maintaining

ionic homeostasis and resoring osmotic balance (Newkirk et al.,

2018; Liu et al., 2021). Compared with the non-nanoparticle

control, the application of cerium oxide nanoparticles

significantly improved cotton salt tolerance by b maintaining

cytosolic Na+/K+ ratio (Liu et al., 2021). In addition, zinc oxide

nanoparticles have been shown to enhanc salt tolerance in

seedlings by improving photosynthetic pigments and

antioxidative systems (Singh A et al., 2022). Remarkably,

exogenous application of biocompatible poly (acrylic acid)-

coated cerium oxide nanoparticles can improve the production

of gasious signaling molecules (i.e., NO), therefore maintaining

the redox and ionic homeostasis in rice under salt stress (Zhou

et al., 2021). Although the underlying mechanisms need to be

furtherly elucidated, nanobiotechnology could be a promising

approach to increase crop yield in saline soils by enhancing plant

salt tolerance.
Concluding remarks and
perspectives

Over the past decades, much progress has been made in

understanding how plants respond and adapt to salt stress. Plants

have evolved various regulatory mechanisms to cope with the

damages caused by excessive saline ions in the soil. Osmotic

adjustment, redox, and ionic homeostasis regulation, and

metabolic adjustment are the significant factors associated with

plant salt tolerance (Figure 1). To cope with salt stress, plants have

to rapidly and effectively perceive changes in Na+ levels and

osmotic pressure caused by salt stress. Different sensors mediate

stress-signaling sensing, which relays stress signals to secondary

messengers that activate signaling cascades and downstream

regulatory networks via multiple hormone-mediated signaling

pathways. The mechanisms of plant salt response involve a

variety of signaling components, transcription factors, and

functional genes that directly mediate ionic homeostasis,

osmoregulation, and antioxidation (Figures 2, 3). The

phytohormone and light signals also mediate salt stress response

in plants. Plant microbiota might also contribute to plant

resistance. Exploring the molecular mechanisms of plant salt

tolerance remains a great challenge. Many salt-responsive new

genes still need to be annotated via advanced biotechnologies. The

current knowledge of the salt-responsive molecular mechanisms

in plants, from salt sensing and signaling to the development of

adaptive tolerance mechanisms, still requires further studies. To

date, the integration of multi-omics techniques and physiological

phenotyping has proven to be a fast and effective method for
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probing the regulatory mechanism of plant salt tolerance (Song

et al., 2020; Pazhamala et al., 2021). In particular, identification of

upstream components regulating salt stress sensing is of

paramount importance. Furthermore, the crosstalk between salt

stress signaling networks and phytohormones still requires further

investigation. Together, these findings provide valuable

knowledge for breeding salt-tolerant crops through

biotechnological approaches in the future.
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