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Weed suppression is an important factor affecting crop yields. Precise

identification of weed species will contribute to automatic weeding by

applying proper herbicides, hoeing position determination, and hoeing depth

to specific plants as well as reducing crop injury. However, the lack of datasets

of weeds in the field has limited the application of deep learning techniques in

weed management. In this paper, it presented a dataset of weeds in fields,

Weed25, which contained 14,035 images of 25 different weed species. Both

monocot and dicot weed image resources were included in this dataset.

Meanwhile, weed images at different growth stages were also recorded.

Several common deep learning detection models—YOLOv3, YOLOv5, and

Faster R-CNN—were applied for weed identification model training using this

dataset. The results showed that the average accuracy of detection under the

same training parameters were 91.8%, 92.4%, and 92.15% respectively. It

presented that Weed25 could be a potential effective training resource for

further development of in-field real-time weed identification models. The

dataset is available at https://pan.baidu.com/s/1rnUoDm7IxxmX1n1LmtXNXw;

the password is rn5h.
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Introduction

Weed suppression is one of the greatest factors affecting crop production. The weeds

could compete with crops for water, light, fertilizer, growth space, other nutrients, etc.,

resulting in reduction of crop yield and production quality (Khan et al., 2021). It could

also be the host of many pathogens and insects, which would damage crop plants.

According to a survey, the worldwide annual loss of crop production caused by weed

suppression was 13.2%, which was equivalent to the annual food ration for one billion
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human beings (Yuan et al., 2020). Thus, weed control plays a

vital role in crop management and food security.

Common weed control methods include manual, biological,

chemical, and mechanical weeding, etc. (Marx et al., 2012;

Stepanovic et al., 2016; Kunz et al., 2018; Morin, 2020; Andert,

2021). Manual weeding provides the most precise management

of weeds in the field. However, the labor intensity and cost are

too high to make it feasible for large-scale cultivation. Biological

weeding is safe and friendly to the environment as it brings little

injury to non-target organisms, while it usually requires a long

period to rebuild the eco-system. Chemical weeding is the most

common approach of weed control, mainly through spraying of

chemical herbicides. However, the overuse of herbicides has

caused many issues, such as environmental pollution, pesticide

residues, and weed resistance. According to the survey, 513

biotypes of 267 species of weeds have developed resistance to 21

types of herbicides in various cropland systems (Heap, 2022).

Thus, the application of technologies such as precise spraying or

mechanical weed management on specific weeds will be of great

significance to avoid the over-input of herbicide. Due to the

concept of organic agriculture, automatic mechanical weeding is

gradually attracting more attention (Cordill and Grift, 2011). It

realized weed control without chemical input and saved much

fuel as unnecessary tillage could be avoided. However, as the

weed identification accuracy is not high enough, unexpected

damage to the plant–soil system has been one of the most

important barriers to the application of intelligent mechanical

weeding (Swain et al., 2011; Gasp̌arović et al., 2020). Therefore, it

is imperative to improve the identification accuracy of weeds in

the fields.

In weed identification research, several traditional machine

learning methods have been applied based on image processing

techniques, including support vector machine (SVM)

(Bakhshipour and Jafari, 2018), decision tree (Bakhshipour and

Zareiforoush, 2020)-based random forest algorithm (Gasp̌arović

et al., 2020), and K-nearest neighbor (KNN) classifiers (Pallottino

et al., 2018). In these algorithms, the color, texture, shape

spectrum, and other characteristics of weed images should be

extracted with complex hand-crafting. Thus, similar weed species

could not be distinguished if the weed image extraction was

incomplete or if there were occluded features.

In 2006, Hinton et al. (2006) proposed the concept of deep

learning, pointing out that the structure of deep learning

networks was deep and closely connected. The larger datasets

would be trained by increasing the speed of algorithms. In recent

years, deep learning technology is developing rapidly, showing

high accuracy and robustness in the field of image identification

(Peteinatos et al., 2020). In particular, ImageNet, a large-scale,

multi-variety dataset containing 3.2 million images, presented

that large-scale datasets played an important role in improving

the identification accuracy of the trained models using deep

learning algorithms (Russakovsky et al., 2015). However, both

the image amount and the weed species of existing datasets for
Frontiers in Plant Science 02
deep learning-based weed identification model training are in a

small scale.

In practice, the weeds should be controlled at the growth

stage between three and six leaves so that the crops could occupy

the dominance in further growth competition. Conventional

algorithms for weed identification used image processing

technology to extract the image features of weeds, crops, and

background. Bakhshipour et al. (2017) presented a model to

distinguish sugar beets and weeds by using wavelet texture

features. The principal component analysis was used to select

14 of the 52 extracted texture features. It demonstrated that

wavelet texture features could be effectively distinguished

between crops and weeds despite many occlusions and

overlapping leaves. The color feature-based models could only

identify crops and weeds that had obvious differences of pixel

values in RGB matrix or other parameter matrixes generated

from that. Generally, the color feature was applied in

combination with other features—for example, Kazmi et al.

(2015) proposed a method which fused surface color and edge

shape for leaf detection and vegetation index integration. The

vegetation index was integrated into local features by obtaining

the accuracy of 99.07%. However, although conventional image

processing methods could distinguish weeds and crops, it was

difficult to distinguish the weeds in different species.

Deep learning network can form abstract high-level

attributes, which will benefit weed identification, rather than

the conventional machine vision network using low-level

attributes such as color, shape, or texture. As is known, deep

learning technique has improved in terms of accuracy and

generalization capabilities in the current target detection

models. The prevalent target detection networks are composed

of Faster R-CNN, Single Shot Detector, You Only Look Once

(YOLO) model, etc. (Redmon et al., 2016; Ren et al., 2017; Quan

et al., 2022). Dyrmann et al. (2016) used convolutional neural

networks to identify 22 different plants with a total of 10,413

images. The result showed that the higher classification accuracy

took place in the weed species which consisted of a larger

number of image resources. Thus, weed identification based

on deep learning technology requires sufficient datasets.

There have been some large datasets for object detection

model training, such as PASCAL VOC (Everingham et al., 2010),

ILSVRC (Russakovsky et al., 2015), COCO (Lin et al., 2014), etc.

Nevertheless, most of the large and open-access datasets

consisted of objects in common life—for example, the

PASCAL VOC was composed of 24,000 images in 20

categories such as cats, dogs, cars, etc. However, relevant weed

datasets were not involved. Many scholars have created some

weed datasets for the identification of weeds in specific plots,

which usually contained just a few categories and were in small

scales. Haug and Ostermann (2015) collected and produced a

labeled and available dataset with 60 images at the Organic

Carrot Farm. Dyrmann et al. (2016) collated images consisting a

total of 10,413 images of 22 crops and weeds from six different
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datasets in the earlier periods, with an average of 400 images per

species. Giselsson et al. (2017) published a dataset of about 960

plants from 12 plant species at different growth stages. Jiang et al.

(2018) established a dataset of four species of weeds with 1,200

images for each. Peng et al. (2019) extracted 1,000 images of

weeds associated with cotton fields from the video for research,

including goosegrass, purslane, and nutgrass. Meanwhile, most

of these datasets are not open-access. Olsen et al. (2019) gathered

a total of 17,509 labeled datasets of eight species of weeds from

Australian ranches, DeepWeeds, which was a large and publicly

available dataset of pasture weeds. Sudars et al. (2020) presented

a public dataset including 1,118 images of six food crops and

eight weeds. On average, each category contained 80 images.

Tretyakova et al. (2020) sorted out a plant dataset containing

24,284 images of 329 plant species, with an average of 73 images

for each category, which mainly incorporated grain, spring and

winter crops, economic crops, and weeds, so it was not a purely

weed dataset. Khan et al. (2020) proposed a study of four

publicly available datasets, including the Rice Sowing and

Weed Dataset, the BoniRob Dataset, the Carrot Crop and

Weed Dataset, and the Rice Millet Dataset. In order to quickly

identify cotton field weeds, Fan et al. (2021) collected 4,694

pictures in a cotton field including seven types of associated
Frontiers in Plant Science 03
weeds, such as field thistle, crabgrass, and purslane. The datasets

are valuable and available for testing algorithms. However, most

of them only cover specialized crops or weeds, which are often

limited to specific growth stages. Meanwhile, in view of the

current research on weed detection in farmlands, many

researchers tried to cultivate some small samples in the

laboratory and expanded the data through data enhancement,

mainly by expanding, enlarging, shrinking, and rotating the

original image. Thus, there is currently a lack of open-access

large weed datasets.

To enable better training resources for applying computer

vision technology in weed identification, we provided the dataset

Weed25 in this paper. This dataset contains 14 families, including

25 species of weeds. The image amount of each weed species was

nearly 500–550. It could meet various training requirements for

either classification or detection models. Some of the weed

images in Weed25 are shown in Figure 1. Compared to the

farmland weed dataset in the existing literature, the Weed25

dataset is larger and more diverse. Due to the long period of

collection, the morphology of a variety of weeds at different

growth periods was included. The hypothesis is that, with

Weed25, the identification accuracy would be significantly

improved using the common deep learning training model.
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FIGURE 1

Images of partial samples in the dataset.
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Materials and methods

This section mainly introduced the data acquisition,

classification, and labeling of the Weed25 dataset.
Image acquisition

The image resources of Weed25 were acquired from fields

and lawns in Chongqing, China, on 25 weed species which are

prevalent in East Asia. The images were taken between October

2021 and August 2022. Images were taken at a height and angle

of approximately 30–50 cm and 60°–90°, respectively, with a

digital camera (Nikon D5300 SLR, Japan) or a smartphone

(Huawei Enjoy 9S, China), which means that the shooting

angle was as vertical to the weed as possible.

As sunlight intensity and angle would have impacts on the

accuracy of subsequent weed identification, the weed images

were taken at different time points—between 9:00 and 17:00—on

sunny, cloudy, and rainy days, respectively. Therefore, the light

conditions of this weed dataset could represent that in the

natural complex environment. In practice, the issues of mutual

occlusion and interweaving of weed leaves could bring difficulty

to the image acquisition. Meanwhile, to collect the images of

weeds at different growth stages, some species of the weeds were

selected for greenhouse cultivation. Majority of the weed images

were collected when they were at the growth stage of two to nine

leaves (BBCH 12–19). Pictures of pigweed at seedling stage,

three-leaves stage, four-leaves stage, and eight-leaves stage,

respectively, are presented in Figure 2. It could be seen that

there were significant differences in the morphology of this

species of weed at different growth stages.

Most species of grass weeds in the field are very similar in

appearance and shape, such as barnyard grass, green foxtail,

crabgrass, and other Gramineae plants, as shown in Figure 3.

The unique color and similar characteristics of weeds in terms of

shape will bring some difficulty in identifying the weeds.
Frontiers in Plant Science 04
Classification of dataset structures

The classification of weeds inWeed25 was conducted mainly

with reference to Primary color ecological map for identification

and control of weeds in farmland (Ren et al., 2018) and Farmland

Weed Identification Primary Color Atlas (Hun et al., 2012).

Weed25 consisted of 25 weed species from 14 families.

Because each family was made up of many species of weeds,

the different families were classified as a general family. The

different weeds under each family were classified as a specific

species of the general family—for example, Weed25 was mainly

composed of barnyard grass of Gramineae, billygoat weed and

cocklebur of Compositae, and pepper grass of Cruciferaceae.

Gramineae, Asteraceae, and Cruciferaceae were the general

families in this classification system. The specific weed

included in the classification belonged to a general family. The

main hierarchy is shown in Figure 4. The main occurrence areas

and crops of these weeds are summarized and listed in Table 1.
Data annotation

All images in Weed25 were manually annotated and verified

by three weed scientists. LabelImg was selected as the annotated

software, which was a visual graphical image annotation tool

created in Python environment. The labels were generated as

COCO files for further training.
Description and division of datasets

The Weed25 dataset contained 14,023 images in 25

categories, which was more diverse than the existing dataset,

with most of the weed images collected from the field. The

collected weed dataset was divided into training, validation, and

test datasets with a ratio of 6:2:2. Specifically, all images of

Weed25 were divided into 8,409 training images, 2,807
B C DA

FIGURE 2

Morphological appearance of purslane at different growth stages.
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validation images, and 2,807 testing images, as shown in Table 2.

For object detection, all dataset images labeled were divided into

9,955 images as the training dataset and 4,068 images as the

validation dataset.
Comparison with other datasets

To show the advantages of Weed25 in terms of species

diversity and species average (species diversity: the number of all
Frontiers in Plant Science 05
weed species in the dataset, abbreviated as diversity, that was

characterized in this paper by the number of species; species

average: the mean of the image number of each weed,

abbreviated as diversity average, that was used in this paper to

characterize the average number ofweeds),Weed25was compared

with several existing datasets related to weed identification, as

shown in Table 3. In terms of diversity, the largest dataset

(Tretyakova et al., 2020) was comprised of 329 categories,

while the smallest dataset (Jiang et al., 2018) had only four

categories. Although the dataset created by Tretyakova et al.
FIGURE 4

Classification structure hierarchy of Weed25 dataset. The dataset includes 25 weed species from 14 families.
B C DA

FIGURE 3

Similarity of grass weeds in the field.
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(2020) contained 329 categories, the images were not only weeds

but also plants such as grains and economic crops. The species

average of this dataset was 73, which was usually not sufficient for

model training. Moreover, most datasets were not open-access

(Jiang et al., 2018; Sudars et al., 2020; Tretyakova et al., 2020).

Majority of the existing datasets had a certain imbalance on

species diversity and evenness (Giselsson et al., 2017; Sudars

et al., 2020; Fan et al., 2021), which led to difficulties in practical

applications. According to the previous survey, we created

Weed25 in the fields such as farmland and lawn. The diversity

and average should bemore reasonable compared with the existing

weed datasets.
Frontiers in Plant Science 06
Evaluation test

To verify whether the image in Weed25 could be applied for

weed identification model training, several deep learning

detection networks were employed for the model training with

this dataset.
Training platform

The device for deep learning model training was a desktop

workstation with a processor of Ryzen threadripper 3970x 32-
TABLE 1 Some of the main crops with weed growth characteristics and hazards.

Family Species Features Main distribution
area

Seasons
that occur

Main crops

Gramineae Barnyard
grass

Strong vitality and reproductive ability, salt
resistance

Temperate regions of the
world

Spring,
summer, and
autumn

Rice, wheat, etc.

Crabgrass Tenacious vitality and strong reproductive
ability

Australia, Argentina,
Vietnam, China, etc.

Spring,
summer, and
autumn

Corn, soybeans, cotton, peanuts, tobacco,
sugarcane, sorghum, etc.

Green
foxtail

The root system is well developed. The ability
to absorb soil moisture and nutrients is
strong

Temperate, subtropical,
and tropical on all
continents

Summer and
autumn

Millet, corn, sorghum, wheat, soybeans,
cotton, vegetables, fruit trees, and other dry
crops

Cyperaceae Sedge It prefers shade and has strong moisture
resistance

China, Australia, Vietnam,
Philippines

Spring,
summer, and
autumn

Rice

Compositae Cocklebur The root system is developed. The
regeneration ability is strong

Canada, USA, Mexico,
Australia, China

Summer and
autumn

Corn, cotton, soybeans, peanuts, etc.

Billygoat
weed

Strong branching, warm and hardy, easy to
spread

Africa, India, Cambodia,
Vietnam, and China

Spring,
summer, and
autumn

Corn, sugar cane, sweet potatoes, etc.

Portulacaceae Purslane Drought tolerant and flood tolerant Temperate and tropical
around the world

Spring and
summer

Vegetable gardens, farmland, etc.

Prescarts Plantain Hardiness and drought tolerance, can be used
medicinally

Japan, Nepal, Malaysia,
China, etc.

Spring,
summer, and
autumn

Corn

Chenopodiaceae Goosefoots Can be used medicinally Temperate and tropical
around the world

Spring,
summer, and
autumn

Wheat, cotton, beans, potatoes, peanuts,
corn

Commelinaceae Common
dayflower

It prefers temperature and humidity and is
highly resistant to drought

China, Vietnam, North
America, Russia, etc.

Spring,
summer, and
autumn

Soybeans, wheat, corn, peanuts

Polygonaceae White
smartweed

Strong adaptability; can be used in medicine China, North Korea,
Japan, India, etc.

Spring,
summer, and
autumn

Corn, rice, wheat, beans, potatoes, shallots,
cotton, sesame, etc.

Amaranthaceae Pigweed Adaptable, shade intolerant, edible All over the world Spring,
summer, and
autumn

Cotton, peanuts, beans, potatoes, vegetables,
and other dry crops

Brassicaceae Rorippa
globosa

The edges of the leaves are jagged and do not
require much soil

Temperate regions of the
world, China

Spring,
summer, and
autumn

Corn, beans, potatoes, etc.

Pepper
grass

The growing environment is harsh Asia, Europe, Africa,
North America

Spring,
summer, and
autumn

Winter wheat
The information was mainly derived from Ecological management of agricultural weeds (Liebman et al., 2001), Primary color ecological map for identification and control of weeds in
farmland (Ren et al., 2018), and Primary color atlas of farmland weed identification (Hun et al., 2012)].
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core processor ×64 (AMD®, California, USA). The running

memory was 32G. The graphics processing unit was GeForce

RTX3060ti (NVIDIA Corporation, Santa Clara, CA, USA). The

Pytorch deep learning framework that supports numerous

neural network algorithms was processed under Ubuntu20.4.
Frontiers in Plant Science 07
Evaluation indicators

In this study, the precision (P), recall (R), and mean average

precision (mAP) were used as the evaluation indexes of the

trained target detection models. The value range of the three
TABLE 2 Division of training/validation/testing (denoted as Train/Val/Test) datasets.

Family Species Amount Train Val/Test

Gramineae Barnyard grass 563 337 112

Crabgrass 594 356 118

Green foxtail 552 331 110

Cyperaceae Sedge 594 356 118

Compositae Horseweed 192 115 38

Field thistle 565 339 339

Cocklebur 745 447 447

Indian aster 510 305 306

Bidens 612 367 367

Ceylon spinach 536 321 322

Billygoat weed 599 359 359

Polygonaceae White smartweed 671 402 134

Asiatic smartweed 490 294 98

Chinese knotweed 390 234 78

Amaranthaceae Alligatorweed 637 381 118

Pigweed 742 444 127

Brassicaceae Shepherd purse 224 131 46

Portulacaceae Purslane 730 438 146

Commelinaceae Common dayflower 562 337 112

Chenopodiaceae Goosefoots 593 355 118

Plantain Plantain 556 333 111

Violaceae Viola 523 313 104

Solanaceae Black nightshade 606 363 121

Rosaceae Mock strawberry 615 369 123

Malvaceae Velvetleaf 622 373 124

Weed25 – 14,023 8,409 2,807
fron
TABLE 3 Weed25 compared with other weed datasets.

Authors Year Species Number Average Illustration

Tretyakova et al., 2020 2020 329 24,284 73 Datasets of plants such as grains, crops, and weeds

Jiang et al., 2018 2018 4 4,800 1,200 Cornfield weeds

Sudars et al., 2020 2020 14 1,118 80 Includes six food crops and eight weeds

Fan et al., 2021 2021 7 4,694 670 Cotton field weeds

Giselsson et al., 2017 2017 12 960 80 Laboratory cultivated

Dyrmann et al., 2016 2016 22 10,413 400 Collated six early datasets, including 22 crops and species

Haug and Ostermann, 2015 2015 – 60 – Carrot farm weed dataset

Olsen et al., 2019 2019 8 17,509 2,188 Ranch weed dataset

Peng et al., 2019 2019 – 1,000 – Cotton field weeds

Weed25 2022 25 14,035 561 Datasets for different growth stages in farmland, lawns, and laboratories
tiersin.org
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indexes is [0, 1]. Meanwhile, the average of the harmonization of

precision and recall (F1 score) was also introduced to reconcile

the average evaluation, where precision represents the ratio

between the number of correctly detected weeds and predicted

weeds of a certain species. Recall represented the proportion of

targets for a class of weeds in the sample that were correctly

predicted. The specific evaluation calculation formula is as

follows:

P =
TP

TP + FP
� 100% (1)

R =
TP

TP + FN
� 100% (2)

where TP represents the number of samples correctly

divided into positive samples, FP represents the number of

incorrectly divided positive samples, and FN represents the

number of incorrectly divided negative samples.

The average precision indicates the detection effect of the

detection network on a certain category of targets. The larger the

value is, the better the overall detection effect will be. The average

precision is mainly reflected in the precision–recall curve (also

known as the PR curve). In the PR plot, the horizontal axis is the

recall rate, which reflects the ability to cover the positive sample,

and the value of the vertical axis reflects the precision of

predicting the positive sample. The calculation of the average

precision is taken as the integral of the precision and recall curve

on [0,1]:

Ap =
Z 1

0
P(R)dR (3)

The mean of average precision represents the mean of the

average precision of all categories in the dataset. It is calculated

as the ratio of the sum of the average precision of all categories to

the number of all categories:

mAP = oAP

n
(4)

The F1 value is a comprehensive evaluation index based on

accuracy and recall, which is defined as the average of the

harmonization of precision and recall:

F1 =
2PR
P + R

� 100% (5)
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Deep-learning-based detection

To verify the application capacity of Weed25 in weed

detection, the YOLO models based on the single-stage

detection of convolutional neural networks as well as the two-

stage detection of regional convolutional neural network Faster

R-CNN were selected as the training algorithm. The main

difference was that Faster R-CNN used the most advanced

regional recommendation box extraction algorithm Region

Proposal Network (RPN). The feature map of the image can

be extracted using the feature extraction network. It will be

shared by the RPN network and the Faster R-CNN network.

Finally, the position of the candidate box was obtained by anchor

regression, while the YOLO model transforms object detection

into an end-to-end regression problem and improves the

detection real-time. The thresholds IoU of 0.5 and batch size

of 4 were adjusted for YOLOv3, YOLOv5, and Faster R-CNN.

Each model was trained for 100 epochs.
Test results

The training results are listed in Table 4. It presented that the

YOLO model training indicators using Weed 25 were generally

acceptable. The difference of mAP between YOLOv5 and

YOLOv3 was very small as the values were 92.4% and 91.8%,

respectively. The precision was 88.0% and 89.0%, respectively.

Moreover, the recall for both reached 99.0%. It showed that

Weed25 was available for the YOLO models. For the sake of

excluding the advantages of the YOLO model on the training

results, Faster R-CNN was employed for the training as well. The

results showed that the mAP of Faster R-CNN network was

92.15% (Figure 5), which was lower than the mAP of the

YOLOv5 networks. It indicated that Weed25 would be capable

for precision weed identification model training in

future studies.

Figure 6 presents the training results of YOLO networks. It

could be seen that the box_loss, obj_loss means, and cls_loss

means of the training and validation datasets during the training

of the model were constantly decreasing. The average precision

under mAP_0.5 was constantly increasing. The mAP_0.5 of both

YOLOv3 and YOLOv5 was close to 0.9. It indicated that the

training effect was good with the dataset Weed25.
TABLE 4 Weed identification model training results using YOLO and Faster R-CNN networks with Weed25.

Networks Precision (%) Recall (%) F1 score Mean average precision (%)

YOLOv3 89.0 99.0 0.88 91.80

YOLOv5 88.0 99.0 0.89 92.40

Faster R-CNN 65.9 98.0 0.78 92.15
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Figure 7 presents the confusion matrixes summarizing the

identification performance of the YOLOv3 and YOLOv5

models. It could be seen that the classification accuracy of 18

weed species in the YOLOv3 model and 19 weed species in the

YOLOv5 model was higher than 0.9. In particular, the

identification accuracy of Ceylon spinach reached 1.0. It

showed that the model had good recognition capability of this

weed. Among the six weed species with a classification

accuracy less than 0.9 in the YOLOv5 model, it was found that

the classification accuracy of crabgrass and green foxtail in the

Gramineae family was 0.76 and 0.85, respectively. For the

majority of incorrect identification cases, they were predicted

as background maps, which showed that the background would

have some interference with the detection results. An impressive

identification case occurred on the horseweed. With as less as

192 pictures for training and validation in total, the classification

accuracy of horseweed reached 0.85. There might be two main

reasons that could contribute to this result. Firstly, the

appearance features of horseweed were significant. Secondly,

the images of the horseweed were not disturbed and occluded by

other weeds. Meanwhile, the classification accuracy of Asiatic

smartweed with 490 images was as low as 0.56. The features of

Asiatic smartweed were not significant as it was a vine weed

growing in the soil during the process of collection. On the other

hand, the area of soil was larger than the area of weeds in most

Asiatic smartweed images. That might be the reason for the

incorrect generalization of this weed into the background image.

The weed identification results of the YOLO models are shown
Frontiers in Plant Science 09
in Figure 8, which displays the identification of weeds in a

complex context.

In Figure 5, the mAP of training result using Faster R-CNN

network is displayed. Faster R-CNN used RPN to generate high-

quality regional suggestion boxes, which could effectively

improve the identification accuracy of weeds. It was found that

the mAP of weeds was 92.15%, with a steady upward trend. The

mAP tended to be convergent when the number of iterations was

greater than 50. In addition, the identification results of all the

weed species are shown in Table 5. The AP of Asiatic smartweed

was 62.92%, and the precision was only 20%. The average

precision of velvetleaf reached 99.70%.
Discussion

Although there are many kinds of weeds in the field, we have

just collected 25 weed species in this paper. However, many

other weeds could also affect crop production. The proposed

weed dataset is still insufficient. Therefore, more species of weeds

in the crop field will be appended to improve the intelligent

weeding technology in the future.

Through the training results of YOLO models and Faster R-

CNN, it was found that the AP of weeds such as Asiatic

smartweed was not high. For such weeds, more image

resources should be collected. Meanwhile, it would be of great

significance to take pictures of these weeds avoiding a large-scale

background. Because of the narrowness and insignificant
FIGURE 5

mAP curve of Faster R-CNN (the meaning of mAP_0.5 is that when IoU was set to 0.5, the average precision (AP) of all images in each category
would be calculated. Then, the AP of all categories was calculated; that was mAP).
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appearance features of grasses, the identification of Gramineae

weeds was relatively difficult. Quan et al. (2022) used the trained

model to identify the broadleaf and Gramineae weeds in the

maize fields, resulting in an average accuracy of 94.70% and

87.10%, respectively. It could be seen from the confusion matrix

(Figure 7) that the predicted values of crabgrass and green foxtail

were both also lower than 0.9 in our research. Furthermore, the

classification accuracy of crabgrass was just 0.76. Although the

classification accuracy of barnyard grass reaches 0.93, barnyard

grass could be easily misjudged as crabgrass with the possibility
Frontiers in Plant Science 10
of 0.01. Otherwise, sunlight could also cause some influence on

weed identification. Li et al. (2021) collected 1,000 images of

weeds on sunny, cloudy, and rainy days. In that study, the

parameters of the feature extraction network ResNet-101 were

optimized using the feature extraction network. The training

results showed that the rate of identification reached 96.02% on

sunny days and 90.34% on rainy days. Moreover, the

overlapping of leaves was also a main issue, reducing the

identification accuracy at present. Pahikkala et al. (2015)

identified the species of mixed sativa and dandelions based on
B

A

FIGURE 6

Graph of the You Only Look Once model training results (Train/val box_loss: the bounding box loss of the training dataset or validation dataset;
the smaller the box is, the more accurate. Train/val obj_loss: train or val is speculated to be the mean loss of the target detection, and the
smaller the target detection is, the more accurate the detection. Train/val cls_loss: train or validation is speculated to be the mean of
classification loss, and the smaller the classification is, the more accurate).
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different textures. It indicated that leaf textures should be

specifically considered when identifying weeds under harsh

conditions as overlapping was commonly existing in the

images. Thus, factors such as different intensities of
Frontiers in Plant Science 11
illumination and the overlapping leaf have a great impact on

weed identification. Methods on overcoming the problems were

proposed, but they still lack versatility and robustness (Wang

et al., 2019).
B

A

FIGURE 7

Confusion matrix of You Only Look Once models.
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FIGURE 8

Effect diagram of weed prediction of the You Only Look Once model (in the notes above the detection box, the name of the weed is on the
left, and the precision of the weed is on the right).
TABLE 5 Training results of Faster R-CNN (precision represents the ratio between the number of correctly detected weeds and predicted weeds
of a certain type).

Species Recall (%) Precision (%) F1 Average precision (%)

Alligatorweed 97.14 47.44 0.64 90.31

Asiatic smartweed 90.85 20.00 0.33 62.92

Bidens pilosa 100.00 76.00 0.86 99.26

Black nightshade 97.85 48.15 0.65 95.59

Ceylon spinach 100.00 80.00 0.89 99.69

Chinese knotweed 94.00 29.94 0.45 84.24

Common dayflower 100.00 66.67 0.8 98.95

Indian aster 94.37 33.33 0.49 85.18

Mock strawberry 98.99 30.06 0.46 73.50

Shepherd purse 100.00 71.74 0.84 98.32

Viola 100.00 48.10 0.65 97.13

Velvetleaf 100.00 78.38 0.88 99.70

Barnyard grass 96.36 53.54 0.69 92.80

Billygoat weed 100.00 63.72 0.78 97.73

Cocklebur 100.00 62.73 0.77 98.43

Crabgrass 93.33 39.55 0.56 81.53

Field thistle 100.00 65.17 0.79 98.66

Goosefoots 93.65 60.82 0.74 93.49

Green foxtail 96.30 41.60 0.58 94.62

(Continued)
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While the images of Weed25 were collected under different

light intensities, the overlapping leaves and light intensity had

not yet been considered for investigation as to their impact on

weed classification accuracy. Therefore, subsequent studies

would be continued focusing on the investigation of the

photography factors which affect the weed classification

accuracy. The precise weed identification in farmlands remains

a challenge, which limits the development and application of

intelligent weeding machines based on deep learning algorithms.
Conclusion

In this paper, we created a dataset of weeds, Weed25. The

images of the dataset were mainly collected from farmlands and

lawns. A total of 14,035 images including 25 different weed species

were included. Compared with the existing weed dataset, Weed25

contains the weeds that are prevalent in fields. It has the advantages

in diversity and average. In addition, YOLOv3, YOLOv5, andFaster

R-CNN were employed to train weed identification models using

the Weed25 dataset. The average precision was 91.8%, 92.4%, and

92.15% respectively, which indicated that the proposed dataset has

the capability for further development of preciseweed identification

models, which would contribute to the application of intelligent

weed control technology in practice.
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TABLE 5 Continued

Species Recall (%) Precision (%) F1 Average precision (%)

Horseweed 91.30 63.64 0.75 88.55

Pigweed 96.51 59.29 0.73 93.54

Plantain 97.22 60.87 0.75 97.42

Purslane 98.15 44.54 0.61 97.42

Sedge 96.72 64.84 0.78 95.37

White smartweed 99.02 63.52 0.77 95.48
Recall manifests the proportion of targets for a class of weeds in the sample that were correctly predicted. F1 is defined as the average of the harmonization of precision and recall, and
average precision demonstrates the detection effect of the detection network on a certain category of targets.
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