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Come together now:
Dynamic body-formation
of key regulators integrates
environmental cues in
plant development
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Plants as sessile organisms are constantly exposed to changing environmental

conditions, challenging their growth and development. Indeed, not only above-

ground organs but also the underground root system must adapt accordingly.

Consequently, plants respond to these constraints at a gene-regulatory level to

ensure their survival andwell-being through key transcriptional regulators involved

in different developmental processes. Recently, intrinsically disordered domains

within these regulators are emerging as central nodes necessary not only for

interactions with other factors but also for their partitioning into biomolecular

condensates, so-called bodies, possibly driven by phase separation. Here, we

summarize the current knowledge about body-forming transcriptional regulators

important for plant development and highlight their functions in a possible

environmental context. In this perspective article, we discuss potential

mechanisms for the formation of membrane-less bodies as an efficient and

dynamic program needed for the adaptation to external cues with a particular

focus on the Arabidopsis root. Hereby, we aim to provide a perspective for future

research on transcriptional regulators to investigate body formation as an

expeditious mechanism of plant-environment interactions.

KEYWORDS

transcription factor, transcriptional regulator, body-formation, phase separation,
plant memory, development, adaptation, environmental stimuli
Introduction

Plant growth and development are coordinated by a crosstalk between genetically

inherited intrinsic signals and environmental extrinsic cues. As plants are sessile, they

must adapt to everchanging environments daily, seasonally, and durably. This is

important not only for above-ground organs directly exposed to alternating
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conditions, but also for underground roots, fundamental for

anchorage and the acquisition of nutrients and water. However,

little is known about how roots perceive, transduce, and respond

to environmental stimuli. The balanced homeostasis between

maintenance and differentiation of root stem cells (SCs), located

in the stem cell niche (SCN) at the root tip, is crucial for root

growth and development and requires a robust but dynamic

regulation in response to external cues, involving intricate gene

regulatory networks (Burkart and Stahl, 2017; Strotmann and

Stahl, 2021). Recently, a role of membrane-less bodies

containing key transcription factors (TFs) in root SC

regulation, has been reported. Here, bodies are discussed to

influence SC-fate decisions potentially upon a yet unknown

trigger (Burkart et al., 2022), which could provide a link

between root growth and environmental influences. The

formation of such membrane-less bodies within a liquid

environment like the cytosol or nucleoplasm can originate

from the separation of biomolecules into two phases.

Frequently, both phases are of a liquid-like nature, and the

underlying mechanism is hence liquid-liquid-phase-separation

(LLPS), but also other states are possible, e.g. gel-like or even

solid phases (Alberti et al., 2019).

Other membrane-less bodies were lately reported. They

serve as environmental sensors in response to external stimuli

like heat, cold, humidity, drought, pathogen interactions, light,

day-length, and stress conditions (Zhang et al., 2019; Jung et al.,

2020; Dorone et al., 2021; Huang et al., 2021; Wang et al., 2021;

Zhu et al., 2021; Zhu et al., 2022). This is crucial for our

understanding of how plants adapt to changing environments.

However, most of the underlying molecular processes remain

elusive, especially in the roots. Although reactions of roots to

cold or warm temperatures, factors of the circadian clock, light,

nutrient availability, and pathogens have been reported, their

fundamental regulation, potentially via body-formation,

remains largely enigmatic (Plieth et al., 1999; Yazdanbakhsh

et al., 2011; Chen et al., 2016; Martins et al., 2017; Li et al., 2019;

Gaillochet et al., 2020; Gilbert et al., 2021; Kawa and Brady, 2022;

Sharma et al., 2022; Villacampa et al., 2022).

In this perspective article, we will highlight examples of

body-forming transcriptional regulators (TRs), potentially

reacting to environmental changes and discuss their possible

roles in Arabidopsis development, e.g., in root SCN regulation

(Figure 1 and Table 1).
Protein domains responsible for
body-formation

Body-formation often depends on disordered domains in the

amino acid sequence of proteins, as reported for PLT3 (Burkart

et al., 2022). As the nomenclature found in literature with many

ambiguous terms is confusing, an overview of the existing

different domains is provided.
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Intrinsically disordered regions (IDRs) in proteins are

characterized by the lack of a defined 3D-structure, their

flexibility, and the potential to switch conformation (Oldfield

and Dunker, 2014). They are involved in protein-protein

interactions, chromatin organization, gene expression, and

LLPS initiation (Oldfield and Dunker, 2014; Cuevas-Velazquez

and Dinneny, 2018; Covarrubias et al., 2020; Musselman and

Kutateladze, 2021; Shukla et al., 2022). Importantly, IDRs are

enriched in eukaryotic TFs, including plants (Liu et al., 2006;

Salladini et al., 2020).

Low-complexity domains (LCDs) have a reduced amino acid

diversity and are usually, but not exclusively, located inside

IDRs. They are intrinsically unfolded in their native state, but

also possess structuring effects on IDRs that can be modulated by

interaction partners (Romero et al., 2001; Gonçalves-Kulik et al.,

2022), and can mediate phase-separation (Molliex et al., 2015).

Prions are proteins that can adopt distinct conformations

and convert between different structural and functional states,

e.g., self-perpetuation. They are involved in neurodegenerative

diseases (Aguzzi et al., 2013), but also have functional roles.

Their flexibility facilitates the adaptation to environmental

changes, and their self-propagation can act epigenetically to

replicate biological information (Shorter and Lindquist, 2005;

Chernova et al., 2014; Franzmann et al., 2018). Prionogenic

proteins contain “prion-like domains” (PrDs) (Alberti et al.,

2009) that mediate phase-separation (Franzmann et al., 2018),

which depends on the amino acid composition of the PrD

(Bremer et al., 2022).

In the plant kingdom ~500 proteins were identified carrying

PrDs (Chakrabortee et al., 2016). Typically, PrDs harbor

asparagine (N)- or glutamine (Q)-rich regions that induce

protein-aggregation (Michelitsch and Weissman, 2000).

Because of the enrichment of certain amino acids in their

sequence, PrDs are a subclass of LCDs (Cascarina et al., 2021).

However, not all proteins containing polyQs or polyNs display

prion-like behavior (Toombs et al., 2010). Like IDRs, also polyN

and polyQ tracts are enriched in plant TFs (Kottenhagen et al.,

2012). Like prions, polyQ-containing proteins are associated

with pathogenic behavior, but also harbor functional traits

(Mikecz, 2009), e.g., enhancing the transcription activation

potential of TFs (Atanesyan et al., 2012). They are often

located within flexible structures lacking resolvable 3D

domains, and mediate protein-protein interaction (Totzeck

et al., 2017). Like IDRs, LCDs and PrDs, polyQ tracts also

mediate phase transitions (Langdon et al., 2018).
Body-formation of TRs
choreographing root development

Recently, a novel model of root SCN regulation was

proposed, describing how external signals could be perceived

and forwarded, resulting in a reaction of the Arabidopsis root
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(Burkart et al., 2022). Here, a key TF in SCN homeostasis,

PLETHORA3 (PLT3), forms PrD-dependent NBs that contain

RNA, and are sites for interaction with another important TF,

WUSCHEL-RELATED-HOMEOBOX5 (WOX5), pivotal for
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root SC maintenance (Pi et al., 2015). PLT3-body formation is

concentration-dependent and, interestingly, is only observed at

distinct timepoints in specific cells undergoing cell fate decisions,

e.g., in distal root SCs and young lateral root primordia.
B

C

D

E

A

FIGURE 1

Body-formation of transcriptional regulators during Arabidopsis thaliana development. (A) The TF PLT3 (red) localizes to NBs (orange circles) in
cells undergoing stem cell fate decisions, either with RNA (left) or together with WOX5 (cyan, right). (B) ARF TFs form cytosolic bodies (small
orange circles) in certain cell types of the Arabidopsis root, initiating a cell type specific auxin response. (C) The response to vernalization is
regulated by NB formation (orange circles) containing FRI (brown), VRN1 (blue) or FCA (pink). (D) Photobodies (small orange circles) form in
response to light and contain HY5 (purple), ELF3 (green) and PIFs (grey). (E) ELF3 forms NBs (orange circle) in response to warm temperatures
and is also involved in circadian clock responses raising the question if this is needed for plant memory. Created with BioRender.com.
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Therefore, NB-formation is hypothesized to function as a

reversible readout for cell-fate determination, potentially in

response to, to date unknown, extrinsic or intrinsic signals

(Burkart et al., 2022) (Figure 1A).

Furthermore, root TFs of the AUXIN RESPONSE

FACTORS (ARFs) family were shown to accumulate

cytoplasmic bodies depending on root cell type (ARF7 and

ARF19). They contain polyQs in their middle region as well as

PrDs necessary for phase-separation, which may act as

sequestration sites for cell-type specific auxin responsiveness of

ARF proteins (Powers et al., 2019). Yet, a potential

environmental trigger for body-formation remains to be

determined (Figure 1B).
TR-bodies synchronizing flowering
time with the environment

Additional examples of TRs forming membrane-less bodies

are mostly involved in the reaction to the environment. The

FLOWERING LOCUS C (FLC) is a repressor of floral transition

in Arabidopsis, downregulated in cold but activated by FRIGIDA

(FRI) in warm temperatures. FRI, a major determinant in

flowering time, forms cold-induced NBs (Zhu et al., 2021).

The FRI-complex binds to the FLOWERING LOCUS C (FLC)

promoter during warm temperatures, and the NBs sequester FRI

away from the FLC locus in cold conditions (Figure 1C). The

FRI-body formation depends on both IDRs and coiled-coil

domains. Furthermore, FRI binds to the COOLAIR locus

located at the 3´-end of FLC, which produces an antisense

RNA and represses FLC in cold conditions. At this site, the

FRI binding is stronger at low temperatures, and a COOLAIR
Frontiers in Plant Science 04
splicing variant in turn interacts with FRI to promote cold-

induced body formation.

Ano t h e r TR impo r t a n t f o r v e r n a l i z a t i o n i s

VERNALIZATION 1 (VRN1) that, like FRI, contains an IDR

and undergoes LLPS to form NBs (Zhou et al., 2019).

Interestingly, VRN1 binds DNA non-specifically, and the

DNA-binding is crucial for phase-separation, leading to DNA-

containing bodies. Their function is unknown, but a

spatiotemporal regulation of gene expression is essential for

the determination of cell fate and identity, and DNA-phase-

separation can lead to super activation of gene expression

(Sabari et al., 2018). An involvement of environmental

signals in VRN1-phase-separation remains unclear, but a

temperature-dependency is likely, as VRN1 is involved in

vernalization and silences FLC in long cold periods (Levy

et al., 2002) (Figure 1C).

Another prominent example of phase-separation exists at

the FLC locus, the alternative 3′-end processing of the FLC

antisense transcript COOLAIR, which requires the RNA-binding

protein FLOWERING CONTROL LOCUS A (FCA). FCA

phase-separates PrD-dependently, together with other RNA-

processing factors, to enhance polyadenylation at specific sites

(Fang et al., 2019) (Figure 1C). FCA is a TR that reduces

transcriptional read-through by promoting proximal

polyadenylation and DNA-methylation at many sites in the

Arabidopsis genome (Sonmez et al., 2011). The environmental

influence on FCA-phase-separation is not known, yet a

temperature-dependence is also likely, because of the

regulation of the FLC locus. Consistently, FCA has been

shown to mediate thermal adaptation of stem growth through

interaction with PHYTOCHROME INTERACTING FACTOR4

(PIF4) (Lee et al., 2014).
TABLE 1 Body-forming transcriptional regulators in Arabidopsis thaliana.

Transcriptional
regulator

body-forming
domain

phase
separation

proposed function environmental
trigger

references

ARF7, ARF19 PrD yes
(liquid-to-
solid)

sequestration of ARFs for cell-type specific auxin
response

? Powers et al., 2019

ELF3 PrDs yes switch for activation/
inactivation of ELF3 and
short-term memory

warm temperature Jung et al., 2020;
Murcia et al., 2022

FRI IDR and coiled-coil ? sequestration from FLC-locus cold temperature Zhu et al., 2021

FCA PrD yes RNA-processing of the FLC antisense transcript
COORLAIR

? Fang et al., 2019

HY5 IDR ? light-controlled switch for gene expression and plant
development

light? Yoon et al., 2006;
Ang et al., 1998

PIFs ? ? light-dependent protein degradation; regulation of phyB
levels and gene expression

light Al-Sady et al., 2006;
Leivar et al. 2008a,b

PLT3 PrD ? SC-fate determination ? Burkart et al., 2022

VRN1 IDR yes spatiotemporal regulation or super-activation of gene
expression

? Zhou et al., 2019
PrD, prion-like domain; IDR, intrinsically disordered region; ? , unknown/uncertain.
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TR bodies in response to light,
temperature, and other signals

PIFs form light-dependent bodies (Al-Sady et al., 2006;

Leivar et al., 2008a), so-called photobodies, in which

phytochrome and cryptochrome photoreceptor families, but

also many TRs, e.g., PIFs, EARLY FLOWERING3 (ELF3) and

ELONGATED HYPOCOTYL 5 (HY5) light-dependently co-

localize (van Buskirk et al., 2012; Wang and Lin, 2020).

Photobodies have been proposed to act as sites for protein

storage or degradation, transcriptional regulation, component

sequestration, and RNA modification (van Buskirk et al., 2012;

Ronald and Davis, 2019; Wang et al., 2021). There are recent

indications that they are formed by LLPS (Wang et al., 2021), yet

their precise composition and function remain obscure. PIFs as

key components of photobodies interact with phytochromes

(PHYs) and cryptochromes (CRYs) and are important for the

nuclear import and accumulation of PHYB (Ni et al., 1999;

Pfeiffer et al., 2012; Pedmale et al., 2016). PIFs are basic helix–

loop–helix (bHLH) TFs with a PHY-binding motif that regulate

the expression of light-responsive genes by transducing light-

signals perceived by PHYs or CRYs, thereby regulating plant

growth (Martıńez-Garcıá et al., 2000; Leivar et al., 2008a; Leivar

et al., 2008b; Soy et al., 2012; Soy et al., 2014; Ma et al., 2016;

Pedmale et al., 2016; Cordeiro et al., 2022). Apart from light, they

are proposed to serve as central hubs for integrating diverse

external stimuli in Arabidopsis and crops, including circadian

rhythms, temperature, drought, and salinity (Cordeiro et al.,

2022). Besides photoreceptors, PIFs interact with several other

factors like ELF3, FCA and ARF6, providing potential links to a

plethora of key developmental processes (Lee et al., 2014; Oh

et al., 2014; Jiang et al., 2019) (Figure 1D).

ELF3, as part of the evening complex, is a key node

regulating photosynthesis, circadian clock, and flowering time

in addit ion to diverse signals as temperature and

phytohormones (Zagotta et al., 1996; McWatters et al., 2000;

Ezer et al., 2017). It acts as a TR repressing PIF4 and PIF5 in the

evening to regulate hypocotyl growth (Nusinow et al., 2011).

Furthermore, ELF3 may link shoot and root responses to

external stimuli (Joseph et al., 2015), and it regulates rhythmic

root elongation (Yazdanbakhsh et al., 2011), thereby integrating

the circadian clock into root growth. Like PLT3, the ELF3

protein contains PrDs including poly-Q tracts important for

the perception of environmental cues as they mediate sensitivity

for thermal responsiveness and for the temperature-dependent

formation of liquid-like bodies, allowing ELF3 to quickly shift

between an active and inactive state via temperature-dependent

phase-transition (Jung et al., 2020) (Figures 1D, E).

Similar to ELF3, the bZIP TF HY5 represents an

environment-dependent link between shoot and root, as it is a

shoot-to root mobile TF regulating shoot growth, carbon

assimilation, root growth and nitrogen uptake in response to

light (Chen et al., 2016). HY5 has an IDR needed for its
Frontiers in Plant Science 05
interaction with the ubiquitin–protein ligase CONSTITUTIVE

PHOTOMORPHOGENIC 1 (COP1) (Yoon et al., 2006) and

localizes to COP1-dependent photobodies that may serve as a

switch for light-dependent gene regulation (Ang et al., 1998).

Furthermore, HY5 was shown to act as a shoot signaling module

together with PIFs and phytochromes to control root responses

to high ambient tempera tures (Gai l lochet e t a l . ,

2020) (Figure 1D).
Discussion

As IDR- or PrD-containing bodies exist in numerous

biological pathways, studying the mechanisms of their

formation and, most importantly, their functional relevance is

keenly interesting. Here, we summarized the putative roles of

plant TR-bodies, spanning SC-regulation, sequestration,

spatiotemporal regulation of gene expression, RNA

modification, protein degradation, and switches in response to

stress, temperature, light or until now unknown triggers.

It is striking that many of the body-forming TRs are involved

in diverse pathways with multiple partners and integrated

environmental signals. Body-formation could act as a fast and

stimulus-dependent switch for spatiotemporal regulation of

diverse outputs, e.g., gene expression in response to external

cues. A similar spatiotemporal regulation has been discussed for

signal transduction of dynamic microdomain-forming receptors

at the plasma membrane (Burkart and Stahl, 2017). The most

evident example of a body-forming TR that might actively

control gene expression is VRN1, as it phase-separates with

DNA (Zhou et al., 2019). Phase-separated NBs, which

accumulate TFs, enhancers, co-activators and factors of the

transcription machinery at high density, may even serve as

sites for the super-activation of gene-expression (Sabari

et al., 2018).

Furthermore, most TFs contain IDRs or PrDs with polyQs

that are often linked to phase-separation (Liu et al., 2006;

Cuevas-Velazquez and Dinneny, 2018) and are known to

enhance their transcription activation potential (Atanesyan

et al., 2012). Consistently, Brodsky et al. (2020) reported that

the IDRs located outside of the DNA-binding domains of TFs

are necessary and sufficient to find most target-promoters. The

IDR-directed binding-specificity depends on low-affinity

interactions between IDR and DNA. The target-promoter will

be found by a two-step-process where the IDR first localizes the

TF to a broad DNA-region and then the DNA-binding domain

finds the precise binding site. This two-step model was further

adapted suggesting that the IDRs mediate protein-protein

interaction, bringing together several factors that search and

bind the target-sites specifically (Staller, 2022).

Additionally, DNA-containing bodies could also act as

chromatin-remodeling-sites. Supporting this, VRN1 silences

FLC during long cold periods through chromatin-
frontiersin.org
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modifications (Levy et al., 2002; Bastow et al., 2004; Mylne et al.,

2006), possibly in DNA-containing VRN1-bodies. Moreover,

FRI associates with many regulators of the FLC-locus, including

TFs and chromatin modification factors, to control the

transcription of FLC (Choi et al., 2011). In addition to

chromatin-modification, the association of FRI with TFs also

supports the above-mentioned two-step model of TF-interaction

and subsequent DNA-target-binding (Staller, 2022), indicating

that several processes could overlap and synergize. Furthermore,

cell-type-specific chromatin-modeling on a submegabase scale

regulates the cell fate of mammalian SCs (Phillips-Cremins et al.,

2013), and could similarly influence plant SC fate, e.g., PLT3-

dependently in distal root SCs. A role in chromatin-remodeling

has also been reported for PIF-regulated genes leading to fast,

light-controlled transcriptional induction (González-Grandıó

et al., 2022).

Moreover, environmentally induced VRN1-dependent

epigenetic chromatin-silencing was shown to be mitotically

but not meiotically stable (Mylne et al., 2006). Thereby,

biological information about vernalization will be inherited by

the next generation of cells and throughout the rest of the plant’s

life but will be reset for the next plant generation. Thus, VRN1

contributes to a cold-induced memory of winter. Since the

chromatin-modification could happen in DNA-containing

bodies, they may play a critical role in plant memory. A

vernalization-induced VRN1-dependent histone-methylation

within the FLC locus has been reported earlier and was

proposed to act as an epigenetic memory of winter (Bastow

et al., 2004).

The role of TF-bodies as memory of certain environmental

cues is intriguing, as plant life strongly depends on its

surroundings and on the anticipation of rhythmic

environmental changes. Therefore, memory plays a crucial role

in optimal adaptation. The role of prions as protein-based

memory is an attractive emerging theory. Prions can self-

propagate conformations that are epigenetically stable,

allowing the storage of biological information that can even be

inherited. Prions are debated as basis for long-term memory

(LTM) in humans (Sudhakaran and Ramaswami, 2017). Here,

RNA-binding proteins with PrDs enable the storage of mRNA

needed for LTM and even the formation of RiboNucleoProtein

granules via phase-separation, mediated by LCDs, is proposed.

Functional prion-proteins are discussed to convert to an

insoluble form upon a physiological trigger and that their

subsequent self-perpetuation has a physiological function, e.g.,

maintaining long-term changes in synaptic efficacy, contributing

to LTM (Si and Kandel, 2016).

A similar function of prion-proteins in plant memory is

intriguing because of their ability to react to previous

physiological conditions. Recently, the response of the plant

not only to current but also to preceding temperatures was

reported, thereby providing a short-term memory for previous
Frontiers in Plant Science 06
conditions. Here, the day-time temperature affects nuclear PIF4

and HY5 levels during the next night. This process requires ELF3

which is sequestered into phase-separated bodies. The ELF3

concentration and the capability of body-formation vary during

the day-night cycle, depending also on the previous night-time

temperature. Warm night-time temperatures promote the

formation of ELF3-NBs in hypocotyl cells during the

afternoon but not in the morning. The formation of ELF3-

bodies shows hysteresis, as the sensitivity to cooling shifts

significantly compared to warming. PIF4 promoter activity

correlates with ELF3 body-formation, as ELF3 achieves

hysteresis and drives the PIF4 promoter into the same

behavior, thus setting a memory of preceding temperature-

conditions (Murcia et al., 2022) (Figure 1E). This aspect could

be investigated further, as PIF4 and HY5 are additional

regulators in light-signaling. The temperature-dependent

variation of nuclear PIF4 and HY5-concentrations could

therefore influence their capability of possibly light-dependent

photobody-formation, thereby regulating the light-response

mechanism in dependence of the memorized daytime-

temperature. In this case, the formation of bodies would serve

as protein-based and environment-dependent memory. It

remains to be elucidated if not only temperature, but also

other environmental cues could cause similar hysteretic effects

in body-formation, thereby serving as a plant memory for

diverse external influences.

Like the shoot, also the plant root is exposed to

environmental changes and rhythms and thus also needs a

mechanism to memorize. The root SCN is essential for

efficient plant growth and development, which relies on the

delicate balance of SC maintenance and differentiation. This

could be optimized by the plant in response to memorized

environmental conditions. The observed body-formation of

PLT3 could represent such a mechanism, thereby driving SC

fate in the needed direction. However, further research is needed

to confirm this hypothesis. Finally, we propose that dynamic TR-

body formation could represent a fast and reversible switch to

respond to current external stimuli, important for the plant’s

immediate reaction to the environment, or serve as memory for

later adaptation of plant growth and development. Further

research is needed to understand not only the molecular

mechanism responsible for dynamic body-formation in

response to differential environmental cues, but also set their

physiological context associated with plant growth

and development.
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