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The goal of this study was to establish a comprehensive growth index (CGI) of

grassland vegetation for monitor the overall condition of the grassland. Taking the

desert grassland inOtuokeBanner,OrdosCity, InnerMongolia as the researchobject,

this study integrates five indicators. First, the optimal band of the unmanned aerial

vehicle hyperspectral data is optimized using the correlation analysis, successive

projection algorithm (SPA), optimum index factor method, and band combination

index method. A dual-band spectral index in good correlation with the CGI is then

constructed in the optimal band. Afterwards, a CGI characterization model is

established in accordance with the partial least squares regression (PLSR) algorithm

and its accuracy is analyzed. Finally, the CGI of the study area is estimated. The

experimental results areas follows. 1)TheR2ofmodels built using the trainingsamples

of the spectral indices corresponding to the optimal spectra screened by the SPA

methodwas0.7835, RMSEwas0.0712, andREwas 6.89%, less than 10%.TheR2of the

Validation samples was 0.7698, RMSE was 0.0471, and RE was 6.36%, less than 10%,

highest precision. 2)Modelswerebuilt using the spectral indices corresponding to the

optimal spectra screenedby theSPAmethod, and theCGImeanvalueswere inverted.

Acomparisonof themeanmeasuredCGI valuesof the samplequadratof the test area

showed that the mean relative error was 3.82%. The results show that the vegetation

growthofdesert-steppegrasslandscanbeadequatelymonitored,providing technical

support for the rapid and accurate diagnosis of grassland conditions. However, there

are still shortcomings in this study. 1) The research area for this studywasmainly in the

desert steppe in Otuoke Banner, Ordos, hence the relevance and universality of the

findings need to be verified, and subsequent experiments need to be carried out on

desert steppes inother regionsorevenother typesofgrasslands totest theuniversality

of themodel. 2) In this study, the influenceof soil backgroundand litter on the spectral

reflectance is not considered indepth. Inaddition, the influenceof sensorobservation

angle and solar elevation angle on the inversion model demands further

investigation efforts.

KEYWORDS

comprehensive growth index, spectral analysis, UAV, desert steppe, gradation
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1050999/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1050999/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1050999/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1050999/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1050999&domain=pdf&date_stamp=2023-01-24
mailto:peizhiyong1979@126.com
https://doi.org/10.3389/fpls.2022.1050999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1050999
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2022.1050999
1 Introduction

Desert steppe is a terrestrial ecosystem that transitions from grassland

todesert in centralAsiaand is located in theecotoneofgrasslandanddesert.

Accounting for 34.7% of the total grassland area inNorthernChina, it is an

important part of the grassland in InnerMongolia, as well as an important

productionbase for animal husbandry inNorthernChina.The latestChina

Forestry and Grassland Development Report states that 50% to 60% of

China’s natural grasslands are degraded to varying degrees, and desert

grasslands are fragile ecosystems more prone to degradation than other

types of grasslands. Therefore, the accurate and efficient identification of

desert grassland conditions is important research content for grassland

ecological restoration and sustainable development.

The key to identifying grassland conditions is to obtain

information about the growth and distribution of the grassland

vegetation rapidly and accurately. The traditional approach mainly

involves field sampling and laboratory test analyses, which can be

complicated, tedious, and time-consuming and seldom meet the

needs of regional dynamic monitoring.

Unmanned aerial vehicle (UAV) hyperspectral remote sensing

has advantages such as high temporal and spatial resolutions, timely

data acquisition, operational convenience, high mobility, low cloud

interference, and low cost. Hence, the method has been widely used in

vegetation index monitoring in recent years (Fu et al., 2021). The

introduction of UAV hyperspectral remote sensing technology into

the rapid estimation of grassland vegetation growth has significant

research and practical value. UAV hyperspectral remote sensing

focuses on indicators such as fractional vegetation cover (FVC),

above ground biomass (AGB), and leaf area index (LAI).

First, vegetation cover, which is the ratio of the vertical projection

area of vegetation to the total land area, is an important indicator for

measuring surface vegetation condition. Yue et al. (2021) proposed a fan-

shaped method (FSM) using canopy chlorophyll content (CCC) and

spectral index (SI). They created a two-dimensional scatter plot using the

FSM, nonlinear regression, and a pixel dichotomy model (PDM) to

calculate the inversion of soybean cover, thereby achieving accurate

cover estimation. Abdelbaki et al. (2021) used UAV hyperspectral

remote sensing to estimate the LAI, FVC, and CCC in six stages of the

potato growth season and precision of the model is analyzed. Feng et al.

(2017) proposed a vegetation cover estimation method based on UAV

hyperspectral data. They used the red edge slope k as the parameter, as

well as mixed pixel decomposition, geometric correction, supervised

classification, and the PDM. However, the method considerably

influences the red edge slope when the spectrum of the red edge

interval contains a measurement error, resulting in insufficient

stability. Tang et al. (2020) examined the responses of fractional

vegetation cover (FVC) and normalized difference vegetation index

(NDVI) to hydrothermal gradient in arid desert areas using

unmanned aerial vehicle (UAV) remote sensing. FVC of each

sampling point was obtained through unmanned aerial vehicle remote

sensing (FVCU), which was used to examine the FVC that was retrieved

by the pixel binary model (FVCM). FVCM reflected the vegetation

coverage of Alxa region with an accuracy of 83.1%, which were 14.8%

lower than the real value.Geet al. (2017)proposed theMODISNDVIand

EVI data from 41 field measurements in the eastern headwaters of the

Yellow River were used. In combination with the alpine grassland

coverage data obtained by an agricultural digital camera (ADC),
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ordinary digital camera (i. e., Canon 70D) and UAV images, grassland

coverage inversion models were constructed using MODIS vegetation

indices. The optimal remote sensing model was used to analyze the

grassland coverage dynamics from 2000 to 2015. The results indicated

that, Compared with the grassland coverage calculated with the Canon,

images from theADCandUAVunder 30mand 100mflight heightwith

the two MODIS vegetation indices respectively, the MODIS NDVI was

more sensitive to grassland vegetation coverage retrieved byUAV under

30 m flight height, the optimal model was y=65. 41321n(NDVI)+109.

1763 (R2 = 0. 7575, RMSEP=8. 4780).Wei et al. (2021) usedUAV-based

hyperspectral data to compare the accuracyof three estimationmodels—

the dimidiate pixel, Carlson, and Baret models—as well as the linear

mixed model, which is currently a commonly used model, polynomial

post-nonlinearmixingmodel, andnormal compositionalmodel (NCM),

considering spectral variation. The results showed that the NCMmodel

achieved the optimal estimation. Liu et al. (2021) evaluated the sensitivity

and estimation accuracy of theNDVIof grassland cover by analyzing the

artificial grassland hyperspectral images obtained by the air-borne

Resonon Pika XC2 hyperspectral imaging camera. They found that the

narrow-bandNDVI of the four types ofmainstream satellite images had

higher inversion accuracy for grassland cover, whereas the wide-band

inversion accuracy was attenuated to a certain degree.

Furthermore, AGB is the organic matter content of the vegetation

above the soil perunit area andusually refers to thedryweight of the stems,

branches, foliage, flowers, and fruits. AGB is a key biophysical parameter

that reflects vegetationgrowth; thus, it is used formonitoring the growthof

pasture and rationalizinggrazing.Yanget al. (2021) estimated theyieldof a

new type of winter wheat in the North China Plain using UAV

hyperspectral remote sensing. They established a new type of winter

wheat yield estimation model (CW-RF) using the random forest (RF)

algorithm. Liang et al. (2021) applied machine learning to structural and

spectral information provided by UAV hyperspectral remote sensing to

estimate maize biomass. They evaluated and compared four machine

learning regression algorithms (multiple linear regression, support vector

machine, artificial neural network, and RF) and proposed an improved

method for extracting plant height and biomass information from drone

imagery, as well as a volumetric indicator, BIOVP. Kang et al. (2021)

proposed an optimization method for forage canopy spectral

reconstruction. The method considers both data simplification and

spectral fidelity, which effectively reduces the amount of data needed

and ensures accurateAGBprediction. Liu et al. (2021)Correlation analysis

method (CAM), random frog method (RFM) and Gaussian process

regression bands analysis tool (GPR-BAT) were used to screen canopy

original spectra (COS)andfirst-orderderivative spectra (FDS) for sensitive

wavelengths, respectively, combined with partial least squares regression

(PLSR) and Gaussian process regression (GPR) techniques to establish

AGB estimation models for each fertility period of potatoes and the

estimation effects of different models were compared.

Finally, LAI is the ratio of the total area of plant leaves in a unit

land area to the land area. It is an important indicator in the

characterization of vegetation photosynthesis, respiration, and

transpiration, and it is the primary basis for evaluating vegetation

growth and yield. Tao et al. (2020) proposed the hyperspectral sensor

mounted on an unmanned aerial vehicle was used to obtain

vegetation indices and red-edge parameters, and stepwise regression

(SWR) and partial least squares regression (PLSR) methods were used

to accurately estimate the AGB and LAI based on these vegetation
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indices, red-edge parameters, and their combination. The results

show that, combining vegetation indices with red-edge parameters

and using the PLSR method can improve the estimation of AGB and

LAI. Pei et al. (2017) constructed the normalized difference spectral

index (NDSI), ratio spectral index (RSI), and simple spectral index

(SSI) to determine the correlation between the spectral index and

wheat growth using a single band and any two bands in the UAV

hyperspectral range of 450–882 nm. They used PLSR to establish an

inversion model, whose results determined the overall difference in

wheat growth. Sun et al. (2022) constructed a new dual-band index by

screening the optimal bands of the UAV hyperspectral data for wheat

through a successive projection algorithm (SPA), optimal index

method (OIF), and band combination index method (BCI),

respectively. They then applied support vector regression, PLSR,

and RF regression (RFR) to estimate LAI. Owing to the sample

quantity limitation, the model universality requires further research.

Currently, many studies have investigated the inversion of high-

coverage vegetation indicators usingUAVhyperspectral remote sensing,

and accurate inversionmodels have been developed. However, relatively

few studies have investigated the quantitative characterization of

vegetation indexes in desert steppe with a low vegetation cover, low

plant height, and high soil brightness. Most of the studies have

investigated vegetation growth using single indicators, including FVC,

AGB, and LAI, instead of a comprehensive index. Studies on the

estimation of several growth indices have been limited to monitoring

each growth parameter individually/separately and have not integrated

indices that reflect vegetation growth (Hansen and Schjoerring, 2003;

Tan et al., 2011; Wang et al., 2022).

Hyperspectral remote sensing data are highly suitable for monitoring

grassland degradation because of their high spectral resolution and rich

information. However, because of the significant amount and high band

dimension of hyperspectral data, spectral information could be invalid,

redundant, and overlapping, which renders full-band inversion models

unstable andmakes it difficult to improve themodel accuracy.Therefore, it

is necessary to explore methods for selecting key wavelength variables to

improve model prediction performance by filtering out interfering,

redundant, and co-linear information. Multiple band selection methods

with good results have been developed. However, most studies currently

use raw spectral reflectance or integer order differentiation for the

screening and modeling of one-dimensional spectral bands, ignoring the

effect of inter-band correlation. The spectral index (SI) is the most

important remote sensing parameter and is obtained by a mathematical
Frontiers in Plant Science 03
combination of several waveband data. It has better sensitivity than that of

one-dimensional spectra and better eliminates the intra-band

autocorrelation. Additionally, the SI effectively reduces or eliminates

environmental noise, enhances the spectral feature response, and

improves the modeling accuracy, making it widely recognized in

applying vegetation physiochemical indices to inversion. However, the

influence of existingband selectionmethodson the constructed vegetation

index has not been comparatively analyzed, and the conventional dual-

band index has problems of regionality, limitati and poor effectiveness.

This study investigated the applicability of UAV hyperspectral data

in analyzing the comprehensive growth index (CGI) characterization of

desert-steppe grassland vegetation. with the aim of diagnosing grassland

conditions rapidly and accurately and providing a scientific basis and

technical support for scientific protection and rational utilization. First,

the five indices reflecting the growth status of grassland vegetation were

measured in the test area. The indices are fractional vegetation cover

(FVC), above-ground biomass (AGB), vegetation moisture content

(VMC), species richness (SR), and average community height (ACH).

The five indices were integrated into the CGI of grassland vegetation

using the equalweightmethod.The second stepwas datapre-processing,

including acquisition, concatenation, and geometry correction of UAV

images. The third step was the screening of the optimal pre-processed

hyperspectral bands using the SPA, OIF, and BCImethods, respectively,

and constructing spectral indices (NDSI,RSI, andSSI). In the fourth step,

the PLSR algorithmwas used to build themodel of CGI characterization

of grassland vegetation. The spectral index corresponding to the original

spectrum, optimal spectrum screened by correlation analysis, optimal

spectrum screened by the SPAmethod, optimal spectra screened by the

OIF method, and optimal spectra screened by the BCI method were

taken as input variables; the CGI of the ground vegetation was taken as

the dependent variable. Finally, the results were evaluated using the

coefficient of determination(R2), root mean square error (RMSE), and

relative error (RE). The flowchart of the study is presented in Figure 1.
2 Material and methods

2.1 Overview of the study area

The test area, which was a sandy desert steppe subtype, was

selected in the Ordos Banner of Inner Mongolia, located at a longitude

of 106°41’-108°54’ east and a latitude of 38°18’-40°11’ north. The
FIGURE 1

Experimental flow.
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schematic of the study area is shown in Figure 2.With an average annual

precipitation of 267 mm and an evaporation of 2480 mm (more than 9

times the average annual precipitation) from1964 to2021, the test area is

relatively dry throughout the year. The precipitation in the growing

season from April to September is 241.8 mm, accounting for 91.24% of

the annual total, and the average relative humidity in the whole banner

has been 48% formany years. According to the topographicmap and the

satellite remote sensing images of Ordos City, the monitoring data from

the grassland supervision stationof EtuokeBanner over thepast 30 years,

and the field investigation results, four groups of experimental areaswith

approximately the samegrazing intensityand soil type (browncalcic soil)

were finally selected from the 18 observation points of the monitoring

station. The areas are important local pastoral areas that show obvious

degradation gradients, as shown in Figure 3. The degradation gradient

was preliminarily determined as the undegraded area (CK), light

degradation area (LD), moderate degradation area (MD), and high

degradation area (HD). The vegetation community in the

experimental area was constructed with Stipa breviflora as the

constructive species, Caragana stenophylla Pojark and Cleistogenes

songorica as the dominant species, Salsolacollina Pall., Echinops

gmelinii Turcz., Carex duriuscula C. A. Mey., Allium mongolicum

Regel, and Artemisia frigida Willd. as the main associated species, and

Peganum harmala L. as the indicator of grassland degradation in the

experimental area plants, and Oxytropis microphylla (Pall.) DC. and

Achnatherum inebrians (Hance) Keng as poisonous weeds (Wang

et al., 2017).

The test was conducted from July 15 to July 31, 2021, with a test

area of 100 m × 100 m set up in each of the four groups. In each test

area, transect lines were placed along the diagonal directions, and

nine quadrats of 1 × 1 m were set at equal distances and marked,

where each quadrat was located using centimeter-level GPS. Fixed

whiteboards were set at the four vertices for subsequent data

preprocessing, as shown in Figure 3.
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The following standards were followed: Classification standard of

utilization units of natural grasslands (GB/T 34751-2017) (national

standard), Parameters for degradation, sandification, and salification

of rangelands (GB/19377-2003) (national standard), and Inner

Mongolian standards for natural grassland degradation (DB15/

T323-1999) (local standard).
2.2 Data collection

2.2.1 Acquisition of UAV + hyperspectral data
A DJI M600 PRO was equipped with a German airborne frame-

type Cubert UHD-185 Firefly (UHD-185, German Cubert, German)

hyperspectral imager to acquire hyperspectral data in four study

areas, Ensuring that the spectrometer lens is pointed vertically

downward during the measurement, with a spectral range of 450–

950 nm, an imaging speed of 5 cubes/s, a field of view (FOV) of 35.75°,

a spectral resolution of 4 nm, and 126 output bands. Measurements

were taken in a sunny weather with a wind force less than that of level

3, and the time of acquisition was from 10:00 to 14:00 (Beijing time).

The time period was selected because it offered sufficient altitude

angle and stable light conditions. Ground visibility was at least 15 km,

and no cirrus or dense clouds were present. Dark current and

whiteboard imaging were corrected before each take-off. For the

data acquisition from the study area, the cruise height was set to

30 m, the heading overlap rate to 80%, the side overlap rate to 70%,

the cruising speed to 2.4 m/s, the hyperspectral spatial resolution to

approximately 1.94 cm, and the width to approximately 19.35 m.

2.2.2 Ground data acquisition
The ground data were collected after the UAV hyperspectral

remote sensing data acquisition.
FIGURE 2

Study area.
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Fron
1) Acquisition of FVC

A Canon EOS 6D (EOS 6D Mark II, Canon, Japan) digital

camera was fixed on a Coman TG340CT (TG340CT, Coman,

Italy) tripod and was placed 1.7 m from the 1 m × 1 m

quadrats to take pictures according to the FOV. The captured

images were RGB color space images, among which all

quadrat canopy images were saved to a memory card for

subsequent processing.

2) Species Richness Measurement

The number of species in each quadrat was counted in the field

survey and indoor image discrimination.

3) Determination of Average Community Height

The individual heights of all vegetation in the quadrats under

natural conditions were measured with a steel ruler, and the

average height of the community in the quadrats was

obtained by dividing the sum of the individual heights by

the number of individuals.

4) Determination of AGB and Moisture Content Determination

The vegetation in the quadrats was cut along the ground surface,

put into resealable bags after classification, and labeled. After

the fresh weight was measured, the samples were brought back

to the laboratory. They were baked at 65°C for more than 48 h

until they reached a constant weight after 2 h of treatment at

105°C in an oven. Afterward, the dry biomass was recorded,

and the community water content was calculated.
2.3 Data Preprocessing

2.3.1 Coverage measurement
Dynamic Butterworth homomorphic filtering was used to fill in

the light in the grassland vegetation images, and K-means clustering

was used to segment the compensated images. Finally, the grassland
tiers in Plant Science 05
vegetation cover was measured according to the definition of

vegetation cover (Wang et al., 2018).

2.3.2 CGI determine
The quality of regional ecology is mainly determined by the

characteristic index features of vegetation. From the perspective of

ecological characteristics, the ecological dynamic changes of desert

steppe are mainly manifested through indicators such as FVC, SR,

ACH, AGB, and VMC. Compared with using a single index,

combining the above indices can reflect the ecological conditions of

grasslands more accurately. Therefore, a new index, namely the CGI,

was established in this study by integrating the indices reflecting the

growth status of grassland vegetation. The five indicators (FVC, SR,

ACH, AGB, and VMC) of the 36 quadrats were normalized using

Equation 1 to prevent the data being in different orders of magnitude

and units from influencing the results. Subsequently, the equal weight

method (Equation 2) was used, with the weight of the indicators set to

0.2, to integrate the five indicators into a new index, namely the CGI,

where 36 CGIs were obtained in the 36 quadrats.

X∗
i = Xi=max (Xi) (1)

CGI =
1
5
�o

5

i=1
X∗
i (2)

where i is the indicator type (i=1, 2, 3, 4, 5)); X∗
i is the normalized

value of the ith class index; Xi is the original value of the ith class

indicator; and max(Xi) is the maximum of the original ith

class indicator.

2.3.3 UAV hyperspectral data preprocessing
(1) Concatenation and Geometry Correction

First, the hyperspectral images were concatenated using the

Agisoft PhotoScan software according to the location information.

The panoramic hyperspectral images were exported in TIFF format

using the Cuber-Pi-lot software (Cuber, Germany). The concatenated
FIGURE 3

Test area and sample quadrat.
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hyperspectral images were radiometrically corrected using the

SpecView software to eliminate systematic and random radiometric

distortion or aberration generated during data acquisition and

transmission (Yang et al., 2019). The reflectance was then corrected

to convert the digital DN values of the radiometrically corrected

hyperspectral images into reflectance values, which is expressed using

the following equation.

Rref =
DNraw − DNdark

DNwhite − DNdark
(3)

Where Rref denotes the image reflectance value corrected by

reflectance, DNraw is the DN value of the original image, DNdark is

the internal systematic error generated during the hyperspectral

imager measurement, and DNwhite is the white board data

measured by the camera.

(2) Mean Spectral Reflectance of the Region of Interest

Further, the vectors of the test and sample areas were divided on

the geometrically corrected hyperspectral images using the ArcGIS

software, and the vector files and corresponding sample quadrat

names were numbered. Then the average spectral reflectance of the

area of interest was extracted using the interactive data language

program, and the average spectral reflectance was used as the spectral

reflectance of the canopy in different areas. After that, the spectral

reflectance of the 36 quadrats and 4 test areas was drawn by

differentiating the quadratic and test areas in the reflectance images.

Finally, in order to reduce interference such as noise and spectral line

drift, the spectral data were processed using standard normal variable

transformation (SNV) (Dai and Yin, 2018), which is expressed using

the following equation.

Yi,SNV = (Yi,k − Yi)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

k=1(Yi,k − Yi)
2=(n − 1)

q
(4)

where Yi,SNV is the spectral matrix transformed by the standard

normal variable; Yi,k is the reflectance value of the ith sample in the k

th band; Yi is the mean value of the hyperspectral emissivity of the ith

sample, and n is the total number of bands.
2.4 Spectral band selection

Despite its fine spectral information, UAV hyperspectrum is prone

to problems such as dimensionality disaster, overfitting, and reduced

characterization due to its multi-spectral bands, large amount of data,

redundant information, and high complexity. To solve this problem, it is

imperative to select the premium hyperspectral bands, choosing the

main subsets from the original hyperspectral bands to reduce data

dimensionality while retaining the useful information in a relatively

completemanner.According toan analysis of variousbandoptimization

algorithms, correlation analysis, SPA, OIF, and BCI were used to select

the optimal hyperspectral bands.
2.4.1 SPA
SPA is a forward-iterative search algorithm that minimizes the

collinearity of the vector space (Araújo et al., 2001) and whose basic

principle is as follows. Firstly, the spectral matrix XM×K is constructed,

with M as the number of samples, K as the number of bands, xk(0) as
the initial iteration vector, and N as the number of wavelengths to be
Frontiers in Plant Science 06
extracted. Then, starting from one wavelength, this wavelength is

projected to others, where in each cycle, the projection vectors are

compared, and the wavelength with the largest projection vector is

stored in the set of wavelengths to be selected from; this is repeated for

N (the number of wavelengths to be extracted) cycles. The wavelength

stored each time has the smallest amount of redundant information

and collinearity with the previous wavelength. Finally, multiple linear

regression (MLR) is established for the wavelength combinations

obtained from different xk(0) and N, and it is analyzed using RMSE

and leave-one-out cross-validation (LOOCV) of the modeling set.

The band combination with the minimum RMSE value is selected as

the optimal band (Zhang et al., 2021).

2.4.2 OIF
OIF, first proposed by Chavez et al. (Chavez et al., 1982), is the

most widely used spectral band optimization method. It has the

underlying principle that the greater the ratio of the sum of

the standard deviations of the bands to the sum of the correlation

coefficients of the combined bands, the greater the amount of

information contained in the band combination, thereby the lesser

the redundant information. Its expression is as follows.

OIF =o
n

i=1
Si=o

n

i=1
Rij

�� �� (5)

where Si Si is the standard deviation of the i th band, and Rij is the

correlation coefficient between the i th and the j th band.

2.4.3 BCI
The basic principle of BCI is to combine the spectra at any two

bands and to analyze the linear correlation between the combined

spectral indexes and the monitoring index to achieve the optimal

selection of spectral bands by comparing the correlation coefficients

(Tang et al., 2021).
2.5 Spectral index construction

In order to examine the information contained in the spectral

data and reduce the influence of soil background and of atmospheric

and radiation errors on the spectral data, the NDSI, RSI, and SSI were

constructed, as expressed by the formulas below.

NDSI(l1,l2) = (Rl1 − Rl2 )=(Rl1 + Rl2 Þ; (6)

RSI(l1,l2) = Rl1=Rl2; (7)

SSI(l1,l2) = Rl1 − Rl2; (8)

whereRl1 is the canopy reflectance at thewavelength ofl1 , andRl2 is
the canopy reflectance at wavelength l2. MATLAB 2021b was used to

calculate the spectral reflectance, and NDSI, RSI, and SSI were obtained.
2.6 PLSR

PLSR is a regression method that combines principal

component analysis (PCA) and multiple linear stepwise regression
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(MLSR) (Uk et al., 2022). Owing to its advantages such as data

dimensionality reduction, information synthesis and screening,

elimination of redundancy and collinearity, PLSR is widely used

in spectral data processing. Its basic principle is to extract the

independent Th(h=1,2,···) and Uh(h=1,2,···) dependent variable

sums from independent variables X(x1,x2,···,xn) and dependent

variables Y(y1,y2,···,yn) through PCA, and maximize the covariance

between the sums of Th and Uh to establish an MLSR model as

expressed below:

X ¼ThP
T + E (9)

Y ¼UhQ
T + F (10)

Where P and Q are the orthogonal load matrix of n×h ; E and F

are the errors that conform to the normal distribution.
2.7 Analysis and evaluation

To analyze the accuracy of the CGI characterization model, the

coefficient of determination R2 , RMSE, and RE were used to evaluate

the results. The larger the value of R2 , the smaller the RMSE and the

better the prediction performance and accuracy of the constructed

model. When RE≤10% , the model is premium; when 10%<RE≤20% ,

the model is moderate; the model is poor when RE>20% (Wang et al.,

2022), as expressed below.

R2 = 1 −o
n

i=1
(yi − ŷ i)

2=o
n

i=1
(yi − �yi)

2 (11)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(12)

RE = RMSE=�yi � 100% (13)
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where n is the sample size; yi is the predicted value; ŷ i is the actual

measurement value, and �yi is the mean actual measurement.
3 Results and analysis

3.1 Statistical result analysis of indicators in
the study area

An example of the segmentation and processing results for the

compensated images using K-means clustering algorithm is

illustrated in Figure 4. The latitudes and longitudes, vegetation

coverage, AGB, moisture content, species richness, and community

height of the four study areas are presented in Table 1, which shows

that each statistical indicator exhibits a decreasing trend with

increasing grassland degradation gradient. Thus, the selection of the

sample plot and the division of the degradation gradients are accurate

and reasonable.
3.2 Analysis of spectral data preprocessing
and band optimization results

3.2.1 Analysis of spectral data
preprocessing results

The spectral data were processed using SNV, and the preprocessing

results of the 36-quadrat canopy hyperspectral data are illustrated in

Figure 5, with Figure 5A being the original spectrogram, and Figure 5B

being the spectrogram after preprocessing. It can be observed from

Figure 5B that using SNV to preprocess the original spectrum effectively

eliminates the interference of noise and surface scattering. The

reflectance changes as the reflectance curves in the 450–530 nm cyan-

blue and 850–950 nmnear-infrared spectra becomemore dispersed, and

those in the 530–850 nm yellow-green, orange, and red spectra become

more concentrated.
FIGURE 4

Quadrat image segmentation results.
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3.2.2 Analysis of spectral band optimization results
(1) Spectra Screened by the Correlation Analysis

The correlation analysis was performed between the pre-

processed spectral curves and the CGI. The correlation coefficients

between the spectra and CGI were calculated; the results are

illustrated in Figure 6, and the characteristic bands are presented in

Table 2. The results show that the spectral reflectance of the pre-

processed spectra in the 450–558 nm and 742–950 nm bands is

positively correlated with CGI, with a maximum positive correlation

coefficient of approximately 0.4686, located at 530 nm. The spectral

reflectance in the 562–950 nm band is negatively correlated with CGI,

with a maximum negative correlation coefficient of approximately

-0.4829, located at 594 nm.

(2) Spectra Screened by the SPA

The processing results of the preprocessed 36 quadrature

vegetation canopy spectral data in SPA are illustrated in Figure 7,

where 24 groups are training samples, and 12 groups are validation

samples. Figure 7A shows the first-order result of the Savitzky–Golay

smoothing, and the spectral curve after the first-order smoothing is

more concentrated. The relationship between RMSE in the modeling

set LOOCV and the number of characteristic bands is illustrated in
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Figure 7B. The boxes indicate the positions of the marked

characteristic bands. RMSE decreases rapidly with the increase in

the number of characteristic bands. When the number of

characteristic bands was 3, the RMSE reached a minimum value of

0.068465. However, to facilitate the subsequent construction of the

dual-band spectral index and improve the computational speed, the

number of characteristic bands was set to 2. At this point, the RMSE

value was 0.084482, which is a difference of 0.016017 from the RMSE

value when the number of characteristic bands was 3. Therefore, two

characteristic bands were selected as the best band combination.

Figure 7C illustrates the results of the selection of characteristic bands.

The red squares indicate the positions of the characteristic bands (53

and 108) screened out by the SPA algorithm after preprocessing, and

the wavelength combination is 658 nm and 878 nm, distributed in the

red light range and the near-infrared spectral range, respectively.

(3) Spectra Screened by the OIF

The number of band combinations obtained from OIF was larger.

Only the first five OIF values are listed in Table 3, showing that the

OIF value of the wavelength combination of 450 nm and 942 nm is

the highest (0.1033). The correlation coefficient is the lowest at 0.2884,

which is significantly lower than that of the other four band
BA

FIGURE 5

Hyperspectral preprocessing results. (A) Average reflectance spectra of canopy (B). Spectrum diagram of SNV algorithm preprocessing.
TABLE 1 Community characteristics of experimental plots.

Point of sam-
pling

Latitude
/oN

Longitude
/oE

FVC
/%

AGB
/g•m-

2

Moisture
content

/%

Species rich-
ness/n

Average community height
/cm CGI

CK

39°19′
33.51″~
39°19′
49.67″

107°91′
77.66″~
107°91′
94.52″

40.07 146.55 42.59 9.67 24.73 0.5577

LD

39°18′
07.75″~
39°18′
21.09″

107°91′
16.91″~
107°91′
33.56″

34.86 122.66 39.83 6.22 17.55 0.5075

MD

39°17′
08.19″~
39°17′
20.95″

107°87′
97.07″~
107°88′
14.58″

30.58 102.96 37.54 5.33 10.24 0.4529

HD

39°17′
89.90″~
39°18′
03.04″

107°24′
34.91″~
107°24′
51.26″

29.05 87.51 32.41 3.33 12.10 0.4106
frontie
The number of quadrats in each experimental area was 9; The undegraded area (CK), light degradation area (LD), moderate degradation area (MD), and high degradation area (HD); fractional
vegetation cover (FVC), above ground biomass (AGB), comprehensive growth index (CGI).
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combinations, and the bands are distributed in the cyan and near-

infrared spectral regions.

(4) Spectra Screened by the BCI

The RSI, NDSI, and SSI spectral indices of the combination of two

arbitrary bands in the hyperspectral data from the 126 bands in 24

training samples were constructed using BCI. The correlation

coefficients are illustrated in Figure 8, where the correlation

coefficient r of RSI(478,710) is 0.3973, the correlation coefficient r of

NDSI(714,710) is 0.73958, and the correlation coefficient r of SSI(650,646)
is 0.47052, NDSI(714,710) and SSI(650,646) are composed of the spectrum

in the red light region, RSI(478,710) consists of the spectrum in the red

and cyan light regions, and correlation coefficient r highest value of

NDSI(714,710) , which is mainly caused by the sensitivity of the

spectrum in the red light region to green plants and its linear

relationship with CGI, showing a high fitting accuracy.
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3.3 Result analysis of grassland vegetation
CGI characterization model

In the random sampling of the data from the 36 quadrats, with 24

groups of data as training samples and 12 groups of data as validation

samples, Several spectral indices were taken as input variables:

Original spectra; The optimal spectra screened by the correlation

analysis; RSI (658,878), NDSI (658,878), and SSI (658,878),

corresponding to the optimal spectra screened by the SPA method;

RSI (450,942), NDSI (450,942), and SSI (450,942), corresponding to

the optimal spectra screened by the OIF method; RSI (710,478), NDSI

(714,710), and SSI (650,646), corresponding to the optimal spectra

screened by the BCI method, respectively. The CGI of grassland

vegetation was taken as the dependent variable, respectively. The

accuracy of the CGI of grassland vegetation characterization model

constructed with the PLSR algorithm is presented in Table 4. The

following can be observed from Table 4: (1) R2 was greater than 0.6

for models built using the spectral indices corresponding to the

optimal spectra screened by the SPA method and the spectral

indices corresponding to the optimal spectra screened by the BCI

method; this result indicates significant modeling accuracy

improvement compared with other indices. (2) The R2 of models

built using the training samples of the original full-band spectra was
TABLE 2 Characteristic band and maximum correlation coefficient.

Main
sensitive
band/nm

Maximum posi-
tive correlation
coefficient

Maximum neg-
ative correla-
tion coefficient

Hyperspectral
pretreatment by
SNV method

458、
466~534;
582~674

0.4686 -0.4829
FIGURE 6

Correlation analysis of spectra and CGI.
B

C

A

FIGURE 7

Spectra Screened by the SPA. (A) Spectrum diagram of Savitzky-Golay smoothing (B) The curve of root mean square error (n = 24) (C). Characteristics
variable selection results.
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0.4621, RMSE was 0.1034, and RE was 12.01%, indicating significant

modeling accuracy improvement after the screening of optimal

spectra. Moreover, the model computation was significantly

reduced, and the validation samples were highly correlated. (3) The

R2 of models built using the training samples of the spectral indices

corresponding to the optimal spectra screened by the SPA method

was 0.7835, RMSE was 0.0712, and RE was 6.89%, less than 10%. The

R2 of the Validation samples was 0.7698, RMSE was 0.0471, and RE

was 6.36%, less than 10%, highest precision.

In the application of grassland vegetation characterization model

constructed with the PLSR algorithm to characterize the 12 sets of

validation samples, the confidence interval was set at 95%, and the

results are shown in Figure 9. It can be seen that the models built

using the spectral indices corresponding to the optimal spectra

screened by the SPA method has the highest accuracy.
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3.4 Grassland vegetation CGI monitoring
and result analysis

The models built using the optimal spectra screened by the SPA

method was used to calculate the CGI of grassland vegetation on a

pixel-by-pixel basis in the four study areas. The results were mapped

and are illustrated in Figure 10. It can be seen from the figure that the

color of the CGI distribution map gradually turns blue as the degree of

grassland degradation intensifies, i.e., the CGI value gradually

decreases, which is consistent with the actual situation. The

grassland vegetation growth in the study area can be clearly

identified in the CGI distribution map.

Table 5 presents the comparative results between the inversion

CGI mean value of the SPA_PLSR model and that of the quadrats. It

can be seen from the table that the mean CGI values of the quadrats in
TABLE 3 Band combinations obtained from OIF (n=24).

Sequence Band Combination Optimal OIF value Standard deviation Correlation coefficient

1 R450—R942 0.1033 0.0298 0.2884

2 R666—R950 0.0749 0.0443 0.5915

3 R502—R950 0.0737 0.0350 0.4752

4 R630—R950 0.0718 0.0436 0.6075

5 R926—R950 0.0632 0.0464 0.7337
R is spectral reflectance.
B CA

FIGURE 8

Correlation coefficients between spectral indices and CGI (n = 24) (A). r for RSI and CGI (B). r for NDSI and CG (C). r for SSI and CGI.
TABLE 4 Precision evaluation of CGI estimation based on PLSR algorithm.

Modeling index Principal factor
number

Training samples Validation samples

R2 RMSE RE
(%) R2 RMSE RE

(%)

Original spectra 5 0.4621 0.1034 12.01 0.4199 0.1216 15.21

Optimal spectra screened by the correlation analysis 2 0.5510 0.0882 9.67 0.5244 0.1202 11.11

RSI (658,878), NDSI (658,878), and SSI (658,878), corresponding to the optimal
spectra screened by the SPA method

2 0.7835 0.0712 6.89 0.7698 0.0471 6.36

RSI (450,942), NDSI (450,942), and SSI (450,942), corresponding to the optimal
spectra screened by the OIF method

2 0.4936 0.0905 17.76 0.4988 0.0663 17.58

RSI (710,478), NDSI (714,710), and SSI (650,646), corresponding to the optimal
spectra screened by the BCI method

2 0.637 0.0812 7.98 0.699 0.0637 7.46
frontier
sin.org

https://doi.org/10.3389/fpls.2022.1050999
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1050999
areas CK, LD, MD, and HD were 0.5577, 0.5075, 0.4529, and 0.4106,

respectively, and the mean CGI values of the SPA_PLSR model

inversion were 0.0.5606, 0.4735, 0.4659, and 0.4319, respectively,

i.e., an average RE of 3.82%. Therefore, the model can adequately

monitor the vegetation growth of desert steppe grasslands.
4 Discussion

Under consistent regional background conditions, The quality of

regional ecology is mainly determined by the characteristic index

features of vegetation. From the perspective of ecological
Frontiers in Plant Science 11
characteristics, the ecological dynamic changes of desert steppe are

mainly manifested through indicators such as FVC, SR, ACH, AGB,

and VMC. The FVC, the proportion of dominant species and SR are

the main factors that reflect community difference and structure.

Under accurately selecting monitoring indices is critical for the

monitoring of grassland conditions and ecological quality

assessment studies, as single-index monitoring often produces bias

or errors. Therefore, a new index, namely the CGI, was established in

this study by integrating the indices reflecting the growth status of

grassland vegetation. Inverse models of the CGI of grassland

vegetation with several spectral indices were constructed using

UAV hyperspectral data of grasslands with varying degrees of

degradation. Satisfactory results were obtained by applying the

models. It can accurately characterize of vegetation indexs in desert

steppe with a low vegetation cover, low plant height, and high

soil brightness.

Comparative analyses showed that the inversion accuracy of

models built using the optimal screened spectra was higher than

that of using the original spectra. This was mainly because the original

spectra contained high and significant band redundancy, and invalid

spectra affected the modeling results. Therefore, it was necessary to

screen the optimal hyperspectral band, which is consistent with

previous studies (Zhang et al., 2017; Yu et al., 2022). The optimal

spectra were screened using correlation analysis, and the modeling

accuracy of sensitive screened bands was improved. However, the

effect did not meet demands, which was mainly because the FVC of

desert-steppe grasslands is low, vegetation is low, and the soil

brightness is high. These factors easily mask the spectral

contribution of vegetation in the image pixel. The modeling

accuracy of spectral indices was better than that of original spectra

and that of models built using the optimal spectra screened by

correlation analysis. The accuracy of models built using optimal

spectra screened by the SPA method was the highest. This was

mainly because the spectral index was derived by mathematical

combination operations of several band data, which not only

yielded better sensitivity than the one-dimensional spectrum, but

also better eliminated the intra-band autocorrelation. Consequently,

the environmental noise was reduced or eliminated, the spectral

feature response was enhanced, and the modeling accuracy

was improved.

In this study, the hyperspectral bands are optimized with SPA,

OIF, and BCI respectively, and the sensitive bands corresponding to

the optimal NDSI spectral index are basically in the near-infrared

band and the red band. This is a comprehensive reflection of the

vegetation type, coverage, and growth status, etc. in good correlation

with CGI, which is consistent with the research results of many

scholars (Sebastian et al., 2015; Liu et al., 2018). This study

constructed a multi-spectral index CGI inversion model using UAV

hyperspectral data having different degrees of degradation and

achieved satisfactory results. However, there are still shortcomings

in this study. 1) The research area for this study was mainly in the

desert steppe in Otuoke Banner, Ordos, hence the relevance and

universality of the findings need to be verified, and subsequent

experiments need to be carried out on desert steppes in other

regions or even other types of grasslands to test the universality of

the model. 2) In this study, the influence of soil background and litter

on the spectral reflectance is not considered in depth. In addition, the
B

C

D

E

A

FIGURE 9

Accuracy validation of each modeling method. (A) Inverse CGI
accuracy verification of models built using the original spectra (B).
Inverse CGI accuracy verification of models built using the optimal
spectra screened by the correlation analysis (C). Inverse CGI accuracy
verification of models built using the optimal spectra screened by the
SPA method (D) Inverse CGI accuracy verification of models built
using the optimal spectra screened by the OIF method (E). Inverse CGI
accuracy verification of models built using the optimal spectra
screened by the BCI method.
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influence of sensor observation angle and solar elevation angle on the

inversion model demands further investigation efforts.
5 Conclusion

This study examined the CGI monitoring of grassland vegetation

and investigated the applicability of UAV hyperspectral data for

analyzing the CGI characterization of desert-steppe grassland

vegetation. We conducted a correlation analysis between pre-

processed spectral curves with the CGI and extracted sensitive

bands at 458 nm, 466–534 nm, and 582–674 nm. The optimal

spectral indices screened by SPA were RSI (658,878), NDSI

(658,878), and SSI (658,878); those selected by OIF were RSI

(450,942), NDSI (450,942), and SSI (450,942); those by BCI were

RSI (710,478), NDSI (714,710), and SSI (650,646). Models were built
Frontiers in Plant Science 12
using the spectral indices corresponding to the optimal spectra

screened by the SPA method, and the CGI mean values were

inverted. A comparison of the mean measured CGI values of the

sample quadrat of the test area showed that the mean relative error

was 3.82%, this model has the highest accuracy. These results show

that UAV hyperspectral remote sensing can accurately monitor the

CGI of grassland vegetation, providing an effective method to quickly

obtain information on grassland conditions.
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FIGURE 10

Inversion results of CGI grassland vegetation in four study areas.
TABLE 5 Comparison of model prediction and quadratic mean CGI results.

CK CGI LD CGI MD CGI HD CGI Relative mean/%

Quadratic mean 0.5577 0.5075 0.4529 0.4106
3.82

Model prediction mean 0.5606 0.4735 0.4659 0.4319
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