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Meta-analysis and co-
expression analysis revealed
stable QTL and candidate genes
conferring resistances to
Fusarium and Gibberella ear rots
while reducing mycotoxin
contamination in maize

Félicien Akohoue and Thomas Miedaner*

State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating

diseases of maize (Zea mays L.) which reduce yield and affect grain quality

worldwide, especially by contamination with mycotoxins. Genetic

improvement of host resistance to effectively tackle FER and GER diseases

requires the identification of stable quantitative trait loci (QTL) to facilitate the

application of genomics-assisted breeding for improving selection efficiency in

breeding programs. We applied improved meta-analysis algorithms to re-

analyze 224 QTL identified in 15 studies based on dense genome-wide single

nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and

colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON)

accumulation, silk (SR) and kernel (KR) resistances of both FER and GER,

kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution

genetic consensus map with 36,243 loci was constructed and enabled the

projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was

performed within the most refined MQTL, and identified CG were cross-

validated using publicly available transcriptomic data of maize under

Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of

which 29 were associated each with 2-5 FER- and/or GER-related traits.

Twenty-eight of the 40 MQTL were common to both FER and GER

resistances and 19 MQTL were common to silk and kernel resistances.

Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a

total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to

FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4

harbored promising resistance genes, of which GRMZM2G011151 and

GRMZM2G093092 were specific to the resistant line for both diseases and

encoded “terpene synthase21 (tps21)” and “flavonoid O-methyltransferase2

(fomt2)”, respectively. Our findings revealed stable refined MQTL harboring
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promising candidate genes for use in breeding programs for improving FER and

GER resistances with reduced mycotoxin accumulation. These candidate

genes can be transferred into elite cultivars by integrating refined MQTL into

genomics-assisted backcross breeding strategies.
KEYWORDS

Candidate genes, FUM and DON contaminations, Fusarium and Gibberella ear rots,
genomic selection, QTL meta-analysis, type of resistance, Zea mays L.
Introduction

Maize (Zea mays L.) is the most important cereal crop in

terms of grain production volume worldwide, and is set to

become the first commercial crop in the coming decade

(Shiferaw et al., 2011; Erenstein et al., 2022). The increase in

production over the past quarter century was supported by more

than 46 and 50% increase in area expansion and grain yield,

respectively (Erenstein et al., 2022). Despite this remarkable

progress and intensive research and development efforts

deployed, maize production is still threatened by many biotic

stress factors which are expected to worsen with the changing

climate (Grote et al., 2021). About 38 pests and diseases were

recently reported to cause 19–41% grain losses in maize on the

global scale (Savary et al., 2019). Among these, Fusarium and

Gibberella ear rots represent major yield- and quality-impacting

maize diseases which occur across regions and countries (Eckard

et al., 2011; Beukes et al., 2018; Ma et al., 2019; Perincherry et al.,

2019; Machado et al., 2022).

Fusarium ear rot (FER) or “pink ear rot” is mainly caused by

the Fusarium fujikuroi species complex with F. verticillioides

(Sacc.) Nirenberg being the most harmful pathogen distributed

across all continents with higher aggressiveness in warmer

climatic regions (Boutigny et al., 2011; Tsehaye et al., 2017;

Ncube et al., 2020). Meanwhile, Gibberella ear rot (GER), also

known as “red ear rot” or “red fusariosis”, is one of the most

important maize ear rots in cooler climate zones, which is

associated with the F. graminearum species complex with F.

graminearum sensu strictu Schwabe (teleomorph Gibberella

zeae) as the most dominant causal agent reported in North

America, Australia, China and Europe (Gromadzka et al., 2016;

Beukes et al., 2018; Castañares et al., 2019; Crippin et al., 2020;

Pfordt et al., 2020; Dalla Lana et al., 2021; Machado et al., 2022).

With the global changing climate and local weather variability

and cultivation systems, both FER and GER are also frequently

found on maize ears in the same locations with varying degrees

of severity (Scauflaire et al., 2011; Schjøth and Sundheim, 2013;

Shala-Mayrhofer et al., 2013; Pfordt et al., 2020; Czarnecka et al.,

2022). Depending on the Fusarium species, different types of

harmful mycotoxins are produced, of which fumonisins (FUM)
02
and deoxynivalenol (DON) are the most predominant for FER

and GER, respectively. FER and GER significantly reduce maize

production and the accumulated mycotoxins can make the

grains toxic for human consumption and animal feeding

(Battilani and Logrieco, 2014; Logrieco et al., 2021).

Disease management practices such as tillage, crop rotation

and fungicide application have minor effects on FER and GER

severity and do not significantly increase the grain yield

(Andriolli et al., 2016; Scarpino et al., 2018; Pfordt et al.,

2020). In addition, available mycotoxin reduction technologies

are labor- and cost-prohibitive, leading to a low adoption by

farmers (Logrieco et al., 2021). Effective management strategies

of FER and GER diseases and associated mycotoxins should

consider integrating not only improved and environmentally

friendly practices, but also improving plant resistance to

the pathogens.

Several studies have reported germplasms with different

levels of resistance to FER and GER worldwide (Reid et al.,

2001a; Reid et al., 2001b; Reid et al., 2003; Gaikpa et al., 2021;

Galiano-Carneiro et al., 2021). In Europe, Gaikpa et al. (2021)

evaluated two European flint landrace populations (“Kemater

Landmais Gelb” and “Petkuser Ferdinand Rot”) and identified

resistant lines which can be used for developing high-yielding

hybrid cultivars with improved resistance to GER. In Canada,

inbred lines with high resistance to FER and GER have been

reported by Reid et al. (2001a; 2001b; 2003). Similarly, potential

sources of resistance to FER were identified in China (Guo et al.,

2020) and tropical regions including southern, western and

central Africa (Tembo et al., 2022). The exploitation of

existing resistance sources in breeding programs requires a

clear understanding of the genetic architecture of FER- and

GER-related traits, and underlying molecular mechanisms. FER

and GER resistances are complex traits which were reported to

be quantitatively inherited and are thus controlled by numerous

quantitative trait loci (QTL) (Martin et al., 2012a; Butrón

et al., 2015).

More than 300 QTL were reported for both FER and

GER resistances and related traits in different mapping

populations by applying both low-throughput technologies,

namely single sequence repeats (SSR), restriction fragment
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length polymorphisms (RFLP) and random amplified

polymorphic DNA (RAPD) (Ali et al., 2005; Robertson-Hoyt

et al., 2006; Li et al., 2011; Martin et al., 2011; Martin et al.,

2012b), and dense genome-wide high-throughput technologies

such as single nucleotide polymorphisms (SNP) (Giomi et al.,

2016; Han et al., 2016; Kebede et al., 2016; Han et al., 2018; Wen

et al., 2020; Yuan et al., 2020a; Gaikpa et al., 2021; Galiano-

Carneiro et al., 2021; Zhou et al., 2021). This impressive amount

of QTL reported through diverse studies offers a possibility for

the application of genomics-assisted breeding strategies to

efficiently and accurately improve ear rot resistances in maize.

However, due to the complex nature of the traits, the application

of these loci in breeding programs remains challenging and

limited. Therefore, in order to make reported QTL more useful

and facilitate their successful incorporation into breeding

programs, a comprehensive and in-depth analysis of these loci

needs to be carried out using appropriate statistical approaches

like meta-analysis. QTL meta-analysis is an efficient approach

which was developed by Goffinet and Gerber (2000) and has

constantly improved during the past decade (Salvi and Tuberosa,

2015). The analysis allows the compilation of QTL observed in

independent studies which are projected onto a consensus map

in order to verify whether they represent a common genomic

region on the genetic map or whether they correspond to

different loci (Venske et al., 2019). This approach enables the

identification of more refined and stable “real” QTL, also

referred to as meta-QTL (MQTL), which are mostly involved

in the variation of the traits. Moreover, in resistance breeding,

the application of meta-analysis would help to identify refined

(i.e. smaller in length) genomic regions which confer multi-

disease resistances in crops. Furthermore, refined MQTL

facilitate the identification and validation of candidate genes

that are effectively involved into the variation of the traits. QTL

meta-analysis has been successfully implemented to depict

genetic architecture of different traits including Fusarium head

blight (FHB) resistance and abiotic stress traits in wheat

(Triticum aestivum L.) (Venske et al., 2019; Soriano et al.,

2021), maize streak disease and low temperature tolerance in

maize (Emeraghi et al., 2021; Yu et al., 2022) and nitrogen use

efficiency in rice (Oryza sativa L.) (Sandhu et al., 2021).

To date, three QTL meta-analyses based on SSR and RFLP

markers have been conducted on ear rot diseases in maize

(Xiang et al., 2010; Xiang et al., 2012; Mideros et al., 2014).

These authors included only one GER-related study by Ali et al.

(2005), while the others were on FER- and Aspergillus flavus-

caused ear rots. Moreover, SSR, RFLP and RAPD are low-

throughput and complicated marker technologies which are

unable to precisely identify the number and locations of genes

controlling the traits, thereby leading to large QTL intervals (Yu

et al., 2011; Venske et al., 2019). In addition, the identified

MQTL lacked precision on flanking markers and genomic

positions to enable identification of promising candidate genes

to be targeted in breeding programs. With this, these studies can
Frontiers in Plant Science 03
be considered as preliminary and more informational QTL

meta-analyses on ear rot diseases.

In the subsequent years after these studies, there has been a

revolution concerning genotyping technologies which led to the

development of high throughput technologies for SNP including

maizeSNP50 and Affymetrix microarray CGMB56K (Ganal

et al., 2011), maizeSNP3072 (Tian et al., 2015) and GenoBaits

maize10K (Guo et al., 2019) SNP arrays, as well as genotype-by-

sequencing (GBS) technology (He et al., 2014) which can assess

thousands of SNP at once. This has enabled the implementation

of various QTL mapping studies, resulting in the accumulation

of relevant information on QTL for FER and GER resistances

and related traits, which should be jointly re-analyzed and

updated to inform maize breeding strategies.

This study aims to (i) re-analyze and refine quantitative trait

loci (QTL) reported by independent SNP-based QTL mapping

studies for FER and GER silk resistance, kernel resistance,

fumonisins and deoxynivalenol accumulation, kernel dry-

down rate and husk coverage by applying a meta-analysis

approach for identifying refined MQTL with precise genomic

positions, thus revealing colocalization of genomic regions

among the traits; (ii) identify candidate genes and (iii) describe

the molecular mechanisms underlying resistance/susceptibility

to FER and GER by analyzing the transcriptomic profiles of two

contrasting maize lines (resistant vs. susceptible). To effectively

identify most refined and stable MQTL, only SNP-based QTL

mapping studies were included in the meta-analysis.
Materials and methods

Search strategy

To address our research questions, a paper-wise search was

performed following the procedure described by Venske et al.

(2019) and the updated guideline for systematic reviews and

meta-analysis by Page et al. (2021). Searches were implemented

in SCOPUS web-based, Web of Science (WoS) and Google

Scholar (GoS) databases. To optimize search output, we used a

combination of search terms and Boolean operators as follows:

“ear rot” AND QTL AND (maize OR corn). Searches were done

within the title, abstract and authors’ keywords in SCOPUS and

WoS, and within the title in GoS. Afterwards, the search results

were firstly exported as Research Information System (RIS) and

Comma-Separated Values (CSV) formats and merged to remove

duplicates. Secondly, all unique publications were considered for

a first screening based on the publication language, type, subject

area, focus of the study, content, marker type and data

availability (Table 1). Thirdly, publications that satisfied the

inclusion criteria were further screened to collect relevant

information about the reported QTL. For each QTL, key

information was collected on: (i) traits; (ii) sources of

resistance; (iii) type and size of the mapping populations; (iv)
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logarithm of odds (LOD) score; (v) proportion of phenotypic

variance explained by the QTL as measured by R2; (vi) most

closely flanking or single markers for interval mapping and

single marker analysis, respectively; (vii) peak position and 95%

confidence interval (CI) of the QTL (Supplementary File 1).

LOD score was considered equal to 3 for single marker analysis

where the exact LOD value was not reported. For studies which

reported the genotypic variance explained (pG) by QTL, we

estimated the corresponding phenotypic variance (PVE) as

follows:

PVE   = pG   x H
2 (1)

where H2 is the heritability reported for the trait by the respective

study. QTL with PVE<10%, 10%≤PVE<20% and PVE≥20% was

considered as havingminor, medium andmajor-effect on the trait,

respectively. From the QTL mapping studies, six FER- and GER-

related traits were collected and included in our meta-analysis:

fumonisin accumulation (FUM), deoxynivalenol accumulation

(DON), husk coverage (HC), kernel dry-down rate (KDD),

kernel resistance (KR) and silk resistance (SR). FUM and DON

were specific to FER and GER, respectively.
Consensus map construction

To project all the QTL collected from the diverse studies, a

consensus map was constructed based on a linear programming

algorithm in the LPmerge R package (Endelman and Plomion,

2014) which efficiently minimizes the error between markers’

positions on the consensus map and the individual linkage maps.

Based on the sequencing technology used in the original studies,

a total of eight high-quality genetic maps which harbored a large

number of SNP markers were selected and included in the

analysis. For chip-based SNP markers, high-resolution

consensus maps were obtained from Ganal et al. (2011); Liu

et al. (2015) and Wen et al. (2020) for Illumina maizeSNP50,

IBM Syn10 and GenoBaits maize10K SNP arrays, respectively.

For GBS technology, we included the genetic map from Kebede

et al. (2016). In addition, four linkage maps used by Giomi et al.
Frontiers in Plant Science 04
(2016); Chen et al. (2016); Maschietto et al. (2017) and Zhou

et al. (2021) were also included in the analysis. In the procedure,

markers were assigned to bins based on their co-segregation, and

the maximum interval between bins was set to k = 1−3. Thus,

one consensus map was produced for each k value. The best k

and corresponding consensus map were selected based on the

root-mean-squared error (RMSE) between the consensus map

and the linkage maps. The lower the RMSE, the higher the

resolution of the respective consensus map. Spearman rank

correlation analysis was performed to evaluate the degree of

preservation of marker order between the consensus map and

the individual genetic maps as well as the collinearity between

the consensus map and the physical map B73 RefGen_v2. The

proportion of markers which were arranged in the same order

with those on the corresponding chromosomes on the physical

map was also estimated. All analyses were conducted using R

software v4.1.0 (R Core Team, 2021).
Meta-analysis of quantitative trait loci

QTL were projected onto the consensus map previously

developed to identify MQTL on each linkage group. All

projected QTL had their flanking markers information on at

least one of the individual maps used to generate the consensus

map. Prior to the projection, the confidence interval (CI) at 95%

was estimated for each QTL using the following empirical

formula described for each mapping population by Darvasi

and Soller (1997) and Guo et al. (2006):

F2 : CI  ¼  
530

N x R2 (2)

Double haploid  DHð Þ : CI  ¼  
287

N x R2 (3)

Recombinant inbred lines  RILð Þ : CI  ¼  
163

N x R2 (4)

where N is the number of lines and R2 is the phenotypic variance

explained by the QTL.
TABLE 1 Inclusion and exclusion criteria.

Criteria Inclusion

Publication language English and/or French

Document type Original research articles, books or book chapters

Subject Agricultural and Biological Sciences

Focus Fusarium ear rot (FER) in maize
Gibberella ear rot (GER) in maize

Search string “ear rot” AND QTL AND (maize OR corn)

Content Mapping of quantitative trait loci (QTL) conferring resistance to Fusarium ear rot (FER) and Gibberella ear rot (GER) in maize.

Marker technology Single nucleotide polymorphisms (SNP)

Data Availability of sufficient information to enable proper meta-analysis of QTL associated with FER and/or GER
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Afterwards, the calculated confidence intervals, original LOD

score, R2, QTL most likely position (middle point), as well as start

and end positions (Supplementary File 1), were projected onto the

consensus map using the Veyrieras two-step clustering procedure

based on a Gaussian mixture model which parameter estimates

were obtained by applying the expectation-maximization (EM)

algorithm in BioMercator V4.2.3 software (Arcade et al., 2004;

Veyrieras et al., 2007; Sosnowski et al., 2012). Considering the

known correlations among the traits, the QTL were analyzed

together as one trait referred to as DT (Chungu et al., 1996;

Löffler et al., 2010a; Kebebe et al., 2015; Kebede et al., 2016). In

the first step (1/2), the projected QTL were clustered on each

chromosome or linkage group assuming varying numbers of

MQTL or “real QTL” (k). The maximum number of MQTL

(kmax) was the total number of QTL on the linkage group minus

one QTL. For example, on a linkage groupwith 20 QTL, kmax was

set to 19. The number of random starting points and convergence

threshold for theEMalgorithmwere set to50and1.e-8, respectively.

MQTLmodel with the best k was the one showing the lowest value

and the highestweight for at least three of the following parameters:

Akaike InformationCriterion (AIC), correctedAkaike Information

Criterion (AICc and AIC3), Bayesian Information Criterion (BIC)

and AverageWeight of Evidence (AWE). In the second step (2/2),

the k MQTL were displayed according to the chosen model

(Veyrieras et al., 2007). Each MQTL was represented by at least

twooriginalQTLwithoverlapping confidence intervals, and shared

no QTL with other MQTL on the same chromosome (Yu et al.,

2022).With this, original QTLwhich overlapped with two ormore

MQTLwerediscarded fromtheanalysis. Thepositionof theMQTL

was determined based on themean of the originalQTLdistribution

maximizing the likelihood. The phenotypic variance explained by

eachMQTLwas calculated as themeanR2 of the original respective

QTL (Yu et al., 2022). Furthermore, the meta-analysis was

compared with marker-trait associations (MTA) studies by

identifying the number of MTA reported for each trait, which

were located within identified MQTL.
Candidate genes mining and
expression analysis

From the meta-analysis, we selected the most refined MQTL

which were considered for candidate genes (CG) mining and

transcriptomic analysis. MQTL were selected using the criteria

described by Venske et al. (2019) and Soriano et al. (2021) as

follows: (1) the selected MQTL was constituted by at least two

overlapping original QTL; (2) CI (95%) of the MQTL was lower

than the average CI of the respective QTL; (3) MQTL was

shorter than 20 Mbp in physical distance; (4) and phenotypic

variance explained by the MQTL was equal or greater than 10%.

Candidate genes within each of the selected MQTL were mined

based on the physical positions of flanking markers by surveying

the maize annotation browser of the reference genome (B73
Frontiers in Plant Science 05
RefGen_v3) which is available from the MaizeGDB database

(Lawrence, 2007) (https://www.maizegdb.org/gbrowse/maize_

v3). Physical positions of flanking markers were obtained from

Unterseer et al. (2016); Kebede et al. (2016) and Liu et al. (2015).

Low confidence genes and transposable elements were excluded.

To identify which of these CG were differentially expressed

when challenged with F. graminearum, we conducted a

transcriptional expression analysis based on RNA-Seq data for

Gibberella ear rot published by Kebede et al. (2018) available from

the NCBI Gene Expression Omnibus (GSE92448) (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92448). The authors

evaluated over two years (2004 and 2006) the transcriptomic

profiles of two maize lines; CO441 (FER and GER resistant) and

B37 (FER and GER susceptible) under control conditions (mock)

and after inoculation with F. graminearum. Inoculation was done

11 days after controlled pollination using the kernel inoculation

method (Reid et al., 2002; Kebede et al., 2018). Maize ears were

collected one and two days after inoculation (DAI) and RNA was

extracted in bulk per testing year from developing kernels (Kebede

etal., 2018).Geneexpression levelsweredeterminedbasedonmock

vs. Fusarium comparisons by calculating transcripts per million

(TPM) as follows:

TPM =  
RPKMi � 106

on
i RPKM

(5)

where RPKMi is the reads per kilobase million of the ith gene/

transcript, and n is the total number of genes/transcripts. RPKM

was estimated for each gene based on the total exon reads (ER),

mapped reads (MR, in millions) and exon length (EL, in kb) as:

RPKM =
ER

MR� EL
(6)

According to Kebede et al. (2018), genes were considered as

differentially expressed if the respective corrected False discovery

rate (FDR) p-value was equal or lower than 0.05, fold change≥2

and TPM≥5. The differentially expressed genes identified

through the transcriptomic analysis where further searched for

protein evidence against the MaizeGDB (Lawrence, 2007) and

the Nation Center for Biotechnology Information (NCBI,

https://www.ncbi.nlm.nih.gov/) to identify corresponding

annotations and ontology terms.
Results

Identification and screening of
relevant publications for FER-
and GER-related traits

Based on the search terms indicated previously, a total of 153

papers were identified from SCOPUS (64), WoS (55) and GoS

(34) as described by the preferred reporting items for systematic

review and meta-analyses (PRISMA) flow diagram available in
frontiersin.org
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Supplementary File 2. From this, 43 unique publications were

obtained with publication year ranging from 1993 to 2022 after

removing duplicates (89), review articles and meta-analyses (11)

and publications related to trait inheritance (1), gene expression

(8) and FER resistance on seedlings (1). One paper published in

Chinese was removed (Wen et al., 2021a). Five (9.3%)

publications were solely focused on Aspergillus ear rot

(Busboom and White, 2004; Willcox et al., 2013; Smith et al.,

2019) and one publication on Diplodia ear rot (Baer et al., 2021),

and were therefore excluded. This resulted into 37 papers which

focused on deciphering the genetic architecture of FER- and

GER-related traits in maize. Fifteen of these papers concentrated

on QTL identification based on low-throughput technologies

such as SSR, RFLP, and RADP markers (Pè et al., 1993; Ali et al.,

2005; Martin et al., 2011; Martin et al., 2012b), and validation of

QTL reported in previous studies (Martin et al., 2012c; Brauner

et al., 2017). In addition, one SNP-based QTL mapping

publication was excluded due to missing information on QTL

genetic position, flanking markers as well as LOD score and PVE

(Morales et al., 2019). Finally, 22 publications satisfied our

inclusion criteria and were therefore considered for full text

screening. Fifteen publications were SNP-based QTL mapping

studies which were used to collect relevant information required

for the QTL meta-analysis (Supplementary File 2) (Chen et al.,

2016; Giomi et al., 2016; Han et al., 2016; Kebede et al., 2016;

Maschietto et al., 2017; Han et al., 2018; Galić et al., 2019; Wen

et al., 2020; Yuan et al., 2020a; Galiano-Carneiro et al., 2021;

Giomi et al., 2021; Wen et al., 2021b; Zhou et al., 2021; Feng

et al., 2022; Guo et al., 2022). Seven papers were related to

genome-wide association study and used to cross-validate the

meta-analysis (Butrón et al., 2019; Samayoa et al., 2019; Wu

et al., 2020; Gaikpa et al., 2021; Gesteiro et al., 2021; Liu et al.,

2021; da Silva et al., 2022).
Characterization of QTL reported based
on high-throughput SNP technologies
for FER- and GER-related traits

From the 15 SNP-based QTL mapping studies, a total of 224

QTL were reported for FER- and GER- related traits (Table 2,

Supplementary File 1). QTL were identified using three types of

populations such as recombinant inbred lines (RIL), double-

haploid (DH) and F2 populations. Resistant parental lines used

in the different studies were sourced from a wide distribution

range including Argentina, Brazil, Canada, China, Europe,

United States of America (USA), and the International Maize

and Wheat Improvement Center (CIMMYT).

Considering the three FER-related traits, 121 QTL were reported

and distributed across all chromosomes (Figure 1A). Thirteen QTL

were reported for FUMon all chromosomes except for chromosomes

2, 8 and 10, while 97QTLwere identified for KR on all chromosomes.

Eleven QTL were identified for SR across chromosomes 2, 3, 5, and 6
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(Figure 1A). Twelve and one QTL for FUM exhibited minor

(PVE<10%) and medium (10%≤PVE<20%) effects, respectively

(Figure 1B). 32 and six QTL for KR had medium and major effects

(PVE≥20%), respectively. In addition, nine and one QTL for SR

exertedminorandmediumeffectson the trait, respectively (Figure1B).

For the five GER-related traits, 103 QTL were identified across

all chromosomes (Figure 1C). A total of 17 QTL were reported for

DON on all chromosomes except for chromosomes 6 and 8, while

21 QTL were identified for KR on all chromosomes except

chromosome 6. 53 QTL were reported for SR across all

chromosomes. Six QTL were identified for HC across

chromosomes 1, 4, 6, 7 and 9, while six QTL were reported for

KDD on chromosomes 1, 3, 6 and 8 (Figure 1C). Seven and one

QTL for DON had medium and major effects, respectively, while

most QTL for KR (20 QTL) exhibited minor effects (Figure 1D).

Similarly, 18 and four of the 53QTL for SR hadmedium andmajor

effects, respectively. Most QTL for HC (5 QTL) and all QTL for

KDD had minor and medium effects on the traits (Figure 1D).
High-resolution consensus map
generated for QTL projection

The consensus map was composed of SNP markers and

generated based on eight genetic linkage maps. The map was of

high resolution and presented a total of 36,243 loci with a total

length of 3,132.48 cM (Table 3). The Spearman rank correlation

analysis revealed strong correlations (average r = 0.86−0.99)

between marker order on the consensus and individual genetic

maps (Table 3). Each chromosomewas, onaverage, 313.25 cMlong

and composed of 3,624 SNPmarkers. The average genetic distance

between adjacent markers ranged from 0.15 to 0.28 cM depending

on the chromosome (Table 3). Attempts to increase the number of

loci and length of the map through the inclusion of additional

genetic maps resulted in several conflict orders. A comparison of

the consensus map with physical map obtained from the reference

map B73 RefGen_v2, showed high collinearity with strong

correlations (r = 0.73−0.91). On average, 72% of markers were

arranged in the same order with those on the corresponding

chromosomes of the physical map, indicating a high consistency

between the consensusmap and the physical map B73 RefGen_v2.

This shows that the current consensus map generated in this study

was the best harmonious combination, and was therefore used as

the base for the QTL projection and meta-analysis. The consensus

map is made available through Supplementary File 3.
QTL colocalization and meta-QTL for the
FER- and GER-related traits based on
QTL mapping studies

From the total of 224 QTL, 164 QTL were projected on the

consensus map (Figures 2, 3). The remaining 60 QTL could not
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be projected due to lack of information (markers’ names and

positions) on the flanking markers in the original studies (25

QTL) or the absence of the markers on the consensus map (35

QTL) generated in this study. For both FER and GER, the

projection showed that confidence intervals of QTL for different

traits overlapped on several chromosomes, indicating

colocalization of resistance QTL for the two diseases with two

or more traits. To refine MQTL, QTL with large confidence

intervals (CI 95%≥80 cM) on chromosomes 1, 6 and 10 were

excluded from the meta-analysis. Likewise, QTL which

overlapped two or more independent MQTL on chromosomes

2, 4, 5, 7 and 9 were also excluded from the analysis. A total of 40

MQTL were identified across all chromosomes and constituted

each by 2−10 overlapping original QTL (Supplementary File 4).

On average, 70−100% of CI of individual QTL contributed to the

definition of each MQTL. CI of identified MQTL were 1.4−36.4-

fold lower than the average CI of respective original QTL. 32 of

the 40 MQTL were constituted of original QTL from 2−7

different studies and populations (Supplementary File 4). The

highest number of MQTL was observed on chromosomes 1 and

3 (Figure 2), and the lowest on chromosomes 6 and 10

(Figure 3). From the 40 MQTL, seven and five MQTL were
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specific to FER and GER, respectively, while 28 MQTL were

common to both diseases.

Four and six MQTL were found for DON and FUM,

respectively, while KR and SR of FER were controlled by 30 and 6

MQTL, respectively (Supplementary File 4). Sixteen and 24MQTL

were found forKRandSRofGER, respectively, whileHCandKDD

were controlled by six MQTL each (Supplementary File 4).

Contrary to KR and SR, no specific MQTL where identified for

FUM, DON, HC and KDD. However, the analysis identified

individual QTL qFER12 on chromosome 5 and qGER12 on

chromosome 9 as independent specific QTL for FUM and DON,

respectively. Considering both diseases, severalMQTLwere shared

among the traits, with the exception of DON versus HC (Table 4).

Four MQTL were shared between KR and SR of FER, while 15

MQTL were common to KR of FER and SR of GER (Table 4).
Comparison of meta-analysis with
association mapping studies

Based on the seven association mapping studies on FER and

GER resistances, about 178 MTA were reported for FUM, KR of
TABLE 2 Characteristics of SNP-based QTL mapping studies on resistance to Fusarium (FER) and Gibberella ear rot (GER) analysed in this study.

Donor Origin Type Size Disease Traits Number of QTL References

LP4637 Argentina RIL 298 GER SR 8 Giomi et al., 2016

CO441 Canada RIL 410 GER SR, KR, KDD, HC 32 Kebede et al., 2016

European flint Europe DH 114 GER DON 6 Han et al., 2018

European dent Europe DH 130 GER DON 2 Han et al., 2018

Cheng351 China F2 118 GER SR 3 Wen et al., 2020

Dan598 China F2 200 GER SR 8 Wen et al., 2020

JiV203 China F2 175 GER SR 11 Wen et al., 2020

IBMSyn10 USA DH 298 GER SR 1 Yuan et al., 2020a

DH4866 China RIL 204 GER KR 11 Zhou et al., 2021

T3 Brazil DH 266 GER SR 3 Galiano-Carneiro et al., 2021

UH006 and UH007 Europe DH 639 GER SR, DON 22 Han et al., 2016

CML495 CIMMYT DH 201 FER KR 4 Chen et al., 2016

CML449 CIMMYT F2 272 FER KR 6 Chen et al., 2016

CML492 CIMMYT F2 277 FER KR 11 Chen et al., 2016

CO441 Canada F2 188 FER FUM, KR 24 Maschietto et al., 2017

IBMSyn4 USA RIL 191 FER KR 3 Galić et al., 2019

LP4637 Argentina RIL 120 FER SR 7 Giomi et al., 2021

Cheng351 China F2 117 FER KR 5 Wen et al., 2021b

Dan598 China F2 200 FER KR 10 Wen et al., 2021b

JiV203 China F2 174 FER KR 15 Wen et al., 2021b

DTMA165 CIMMYT F2 152 FER KR 9 Guo et al., 2022

8107 China F2 220 FER KR 8 Guo et al., 2022

B73xdiploperennis China RIL 215 FER KR 7 Feng et al., 2022

B73xparviglumis China RIL 113 FER KR 3 Feng et al., 2022

Zheng58xparviglumis China RIL 122 FER KR 5 Feng et al., 2022
CIMMYT, International Maize and Wheat Improvement Center; RIL, recombinant inbred lines; DH, double haploid; DON, deoxynivalenol accumulation; FUM, fumonisin accumulation;
HC, husk coverage; KDD, kernel dry-down rate; KR, kernel resistance; SR, silk resistance.
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FER and SR of GER using diverse germplasm collections and

breeding populations worldwide (Table 5). 170 MTA were

reported for FER-related traits such as FUM (81 MTA) and

KR (89 MTA). Depending on the traits, FER-related MTA were
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distributed across all chromosomes (Supplementary File 5). The

remaining eight MTA were exclusively reported by one GER-

related study (Gaikpa et al., 2021) for SR across chromosomes 2,

4, 5, 6, and 9 (Supplementary File 5). Unlike QTL, a single MTA
B

C D

A

FIGURE 1

Original QTL reported from SNP-based mapping studies for Fusarium ear rot (FER) and Gibberella ear rot (GER). (A), distribution of QTL for FER
across chromosomes; (B), phenotypic variance explained (PVE) by QTL for FER; (C), distribution of QTL for GER across chromosomes; (D),
phenotypic variance explained by QTL for GER. DON, deoxynivalenol accumulation; FUM , fumonisin accumulation; HC, husk coverage; KDD,
kernel dry-down rate; KR, kernel resistance; SR, silk resistance.
TABLE 3 Characteristics of consensus map generated from eight high quality genetic maps composed of SNP markers.

Chr Length
(cM)

Number of
markers

Average DM
(cM)

Average r with
IGM

Range of r with
IGM

r with physical
map

Consistent
proportion

(%)

1 450.72 5,839 0.20 0.88 0.82−0.95 0.80 0.68

2 316.00 4,001 0.28 0.97 0.91−1.00 0.86 0.71

3 463.30 4,074 0.28 0.98 0.96−0.99 0.85 0.70

4 319.29 3,876 0.24 0.99 0.99−0.99 0.87 0.73

5 318.31 3,885 0.27 0.95 0.84−1.00 0.75 0.73

6 120.26 3,093 0.15 0.86 0.77−0.99 0.73 0.69

7 371.10 3,175 0.24 0.80 0.61−0.95 0.74 0.71

8 287.80 3,059 0.20 0.95 0.88−1.00 0.80 0.72

9 254.90 2,696 0.25 0.98 0.96−1.00 0.91 0.71

10 230.80 2,545 0.26 0.98 0.97−1.00 0.83 0.72

Genome 3,132.48 36,243 0.24 0.93 0.81 0.72
Chr, chromosome; DM, distance between markers; r, Spearman rank correlation coefficient; IGM, individual genetic maps used for the consensus map construction. Physical map was
obtained from the reference map B73 RefGen_v2. Consistent proportion is the proportion of markers arranged in the same order with those on the corresponding chromosomes of the
physical map.
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does not have confidence interval, and was therefore considered

as a specific QTL location, but not as a whole QTL. A cross-

validation with the meta-analysis showed that physical positions

of 33 of the reported MTA were located within 16 MQTL

(Table 6). The proportion of MTA located within MQTL

ranged from 7.14% on chromosome 2 to 50% on chromosome

8. NoMTA reported on chromosomes 5, 6 and 10 fell within our

MQTL (Table 6).
Differentially expressed candidate genes
within the most refined MQTL

From the 40 MQTL identified in this study, 14 MQTL

satisfied the four criteria defined earlier, and were therefore

selected as the most refined MQTL (Table 7). Selected MQTL

were distributed across chromosomes 1, 2, 3, 4, 7 and 9, with 2−7

overlapping original QTL. The CI was 2.65−14.80 cM, with an

average PVE of 10−29.67%. The distance between flanking
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markers of the respective MQTL was 0.63−15.55 Mbp. Based

on the physical positions of the flanking markers, a total of 2,272

candidate genes, excluding transposable elements, were mined

within the confidence intervals of the selected MQTL (Table 7,

Supplementary File 6). For each MQTL, an average of 162 CG

were identified with the only exception of ZmMQTL1.2, where

only 10 CG were projected. The highest number of CG was

observed with ZmMQTL4.3 (342 CG, Table 7).

Gene expression analysis using RNA-Seq data from Kebede

et al. (2018), revealed that 59 of the CG were differentially

expressed based on mock vs. Fusarium comparisons at 1−2 DAI

(Supplementary File 7). Seven CG were specific to the resistant

line (CO441), 36 to the susceptible line (B37) and 16 common to

both lines. At 1 DAI, only genes GRMZM2G093092 and

GRMZM2G423331 were differentially expressed in CO441,

while 15 genes were differentially expressed in B37

(Supplementary File 7). Comparing to the respective controls

(mock), all CG were upregulated in both lines, with the

exception of GRMZM2G135617, GRMZM2G164340 and
FIGURE 2

Colocalization of QTL for Fusarium ear rot (FER) and Gibberella ear rot (GER) and identification of meta-QTL (MQTL) on chromosomes 1‒5. The
line in the middle of each QTL represents its LOD score in the original work. The longer this line, the higher the LOD score of the respective
QTL. DON, deoxynivalenol accumulation; FUM, fumonisin accumulation; HC, husk coverage; KDD, kernel dry-down rate; KR, kernel resistance;
SR, silk resistance.
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GRMZM2G126732, which were specifically downregulated (Fold

change = −3.3 to −5.7) in B37 at 2 DAI. Expression levels of line-

specific genes were 19.6−387.6 TPM in CO441 and 4.6−481.9

TPM in B37 (Supplementary File 7). For the common CG, the

expression levels were 6.2−128.5 TPM in CO441 and 6.0−168.4

TPM in B37 (Figure 4). At 2 DAI, the expression of common CG

GRMZM2G342033, GRMZM2G323943, GRMZM2G423331

were 1.5−2-fold higher in CO441 than B37.

Functional categories of 46 of the 59 differentially expressed

CG were summarized in Figure 5. The remaining 13 CG, of

which seven B37-specific CG, two CO441-specific CG

(GRMZM2G337191 and GRMZM2G703858) and four

common CG, were annotated as “uncharacterized protein”

(Supplementary File 8). Annotated CO441-specific CG were

GRMZM2G011151, GRMZM2G093092, GRMZM2G156785,

GRMZM2G340656 and GRMZM2G472643, which were mainly

involved in binding, kinase and transferase activities, signal
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transduction, secondary metabolism, cell wall metabolism and

defense response (Figure 5, Supplementary File 8). Regarding the

most important common CG (mostly expressed in CO441),

GRMZM2G342033 encoded “S-norcoclaurine synthase2” which

was involved in lyase activity and defense response

(Supplementary File 8). In addition, GRMZM2G423331

encoded “flavonoid O-methyltransferase4 (fomt4)” which

catalyzed sakuranetin (phytoalexin) biosynthesis and cell wall

metabolism. Contrary to CO441-specific CG, no B37-specific

CG was involved in defense response, signal transduction and

secondary metabolites biosynthesis (Figure 5). Ethylene

biosynthesis were catalyzed by “1-aminocyclopropane-1-

carboxylate synthase2 (acs2)” encoded by GRMZM2G164405.

Similarly, GRMZM2G146108 encoded “small auxin up RNA11

(saur11)” which was involved in auxin biosynthesis. However,

this gene was only highly expressed at 1 DAI. In addition,

GRMZM2G067402 encoded “hemoglobin1 (hb1)” which was
FIGURE 3

Colocalization of QTL for Fusarium ear rot (FER) and Gibberella ear rot (GER) and identification of meta-QTL (MQTL) on chromosomes 6‒10.
The line in the middle of each QTL represents its LOD score in the original work. The longer this line, the higher the LOD score of the
respective QTL. DON, deoxynivalenol accumulation; FUM, fumonisin accumulation; HC, husk coverage; KDD, kernel dry-down rate; KR,
kernel resistance; SR, silk resistance.
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involved in cell death under infection. Other B37-specific CG

encoded many proteins which were involved in unspecific

activities like ATP, ion and pyridoxal binding, oxidation-

reduction process, transport and kinase activity (Figure 5,

Supplementary File 8).
Discussion

Based on dense genome-wide SNP technology, 224 QTL, of

which 121 and 103 QTL for FER- and GER-related traits,

respectively, have been reported during the last two decades in

maize. These loci were jointly re-analyzed and clustered into a

total of 40 more refined MQTL controlling one or more traits

like DON, FUM, HC, KDD, KR and SR. Contrary to meta-

analyses by Xiang et al. (2010); Xiang et al. (2012) and Mideros

et al. (2014) based on low-throughput markers (RFLP, SSR and

RAPD), and which included only one GER-related study, the

MQTL identified in this study were more refined with precision

on the locations and flanking markers to facilitate their

integration into breeding programs. Since the available

algorithms did not allow a direct integration of association

studies in the meta-analysis, we further superimposed physical
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positions of 178 GWAS-detected MTA with the MQTL

intervals. Depending on the chromosome, about 7−50% of

MTA from six independent studies fell within different MQTL

(Table 6). This firstly shows the high quality of our MQTL

analysis, and secondly suggests the need for new bioinformatic

tools that can integrate association mapping studies in meta-

analysis to better elucidate genetic basis of FER- and GER-

related traits, and find interesting loci that might be included in

trait introgression strategies. Furthermore, FER and GER

resistance- and susceptibility-promoting genes, and underlying

molecular mechanisms were also discussed within 14 most

refined MQTL through a transcriptomic analysis using

recently published RNA-Seq data by Kebede et al. (2018). We

will include in the discussion also results from relevant papers

that could not be included in the meta-analysis because they did

not fulfil the basic requirements.
Co-inheritance of Fusarium and
Gibberella ear rot resistances in maize

Our results revealed that the most refined MQTL

ZmMQTL1.5 (243.46−259.01 Mbp) and ZmMQTL2.2
TABLE 4 Number of meta-QTL shared among the evaluated traits.

Trait Fusarium ear rot Gibberella ear rot

FUM KR SR DON HC KDD KR SR

Fusarium ear rot:

KR 3 ‒

SR 1 4 ‒

Gibberella ear rot:

DON 1 2 1 ‒

HC 2 6 1 0 ‒

KDD 1 5 2 1 1 ‒

KR 0 13 1 1 3 3 ‒

SR 3 15 5 2 4 4 11 ‒
frontiersin
DON, Deoxynivalenol accumulation; FUM, fumonisin accumulation; HC, husk coverage; KDD, kernel dry-down rate; KR, kernel resistance; SR, silk resistance. Each meta-QTL was
common to different pairs of traits.
TABLE 5 Characteristics of association mapping studies on resistance to Fusarium (FER) and Gibberella ear rot (GER) used in this study for validation.

Donor Type Size Disease Trait Number of MTA References

Worldwide panel IL 270 FER FUM 38 Samayoa et al., 2019

EPS21 MAGIC population RIL 352 FER KR 13 Butrón et al., 2019

BT-1 RIL 250 FER KR 18 Wu et al., 2020

Kemater Landmais Gelb landrace DH 250 GER SR 8 Gaikpa et al., 2021

CMLs, DTMA AM panel and SYN_DH IL 874 FER KR 58 Liu et al., 2021

EPS21 MAGIC population RIL 339 FER FUM 24 Gesteiro et al., 2021

Embrapa’s panel IL 205 FER FUM 19 da Silva et al., 2022
RIL, recombinant inbred lines; IL, inbred lines; DH, double haploid; FUM, fumonisin accumulation; KR, kernel resistance; SR, silk resistance.
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(13.3−20.58 Mbp) with PVE>10% were specific to FER and GER,

respectively (Figure 2, Table 7). This confirms that Fusarium and

Gibberella ear rots are two different types of maize ear rots, and

breeding for resistance to these diseases can be implemented

separately. In contrast, 28 of the 40 MQTL identified in this

study were common to both FER and GER resistances and were

distributed across all chromosomes. This impressive number of

common genomic loci offers a great opportunity to breed for

multiple resistance to ear rots, particularly in maize production

areas prone to both FER and GER. Previous meta-analysis by

Xiang et al. (2010) also revealed 15 MQTL conferring resistance

to both FER and GER. In addition, Giomi et al. (2016), also

reported four QTL for both FER and GER using a multi-trait

multiple interval mapping in an Argentinian mapping

population. Furthermore, the relationship between FER and

GER has been phenotypically investigated by Löffler et al.

(2010a) who found flint and dent genotypes which were

resistant to both diseases. Depending on the testing years,

Schaafsma et al. (2006) found moderate to strong correlations

(r = 0.40−0.75) between FER and GER resistances in different

sets of Canadian commercial hybrid cultivars. Butrón et al.

(2015) also reported a highly significant correlation (r = 0.71)
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between FER and GER resistances. These authors concluded that

breeding for resistance to FER would more likely affect resistance

to GER and vice versa. These findings emphasize that improving

multiple resistance to FER and GER is feasible and can be

efficiently achieved through the integration of identified

common MQTL into breeding programs.
Meta-QTL and types of ear rot resistance

For both FER and GER, the existence of specific MQTL for

SR (e.g. ZmMQTL3.1 and ZmMQTL9.1) and KR (e.g.

ZmMQTL1.5, ZmMQTL2.4) (Figures 2, 3, Supplementary File

4) demonstrates that silk and kernel resistances represent two

major types of active resistance reactions to ear rot diseases in

maize as previously reported by Reid et al. (1996a); Chungu et al.

(1996); Plienegger and Lemmens (2002); Mesterházy et al.

(2012) and Kebebe et al. (2015). Reinprecht et al. (2008) also

demonstrated that silk and kernel resistances were two different

traits to be considered when breeding for GER resistance in

maize. The main difference between the two types resides in the

inoculation techniques used, mimicking different pathogen entry
TABLE 6 Number of marker-trait associations (MTA) located within identified meta-QTL (MQTL).

MQTLa Physical position
(Start−End, Mbp)

Trait and
number of
MTAb

MTA
proportion

(%)c

Source of resistant alleles References

FER GER
ZmMQTL1.1 7.09−9.68 KR (2) 22.72 Tropical maize germplasm, heterotic Tangsipingtou

and Reid
Wu et al., 2020; Liu et al.,
2021

ZmMQTL1.5 243.46−259.01 KR (1) Tropical maize germplasm Samayoa et al., 2019; Liu
et al., 2021

ZmMQTL1.6 280.22−287.9 KR (2) Tropical maize germplasm Liu et al., 2021

ZmMQTL2.2 13.30−20.58 SR
(1)

7.14 Kemater Landmais Gelb Gaikpa et al., 2021

ZmMQTL3.3 164.70−168.68 KR (1) 20.00 Tropical maize germplasm Liu et al., 2021

ZmMQTL3.6 211.85−215.42 KR (1) EPS21 MAGIC population Butrón et al., 2019

ZmMQTL3.7 219.19−229.39 KR (4) Tropical maize germplasm Liu et al., 2021

ZmMQTL4.1 2.10−5.24 FUM
(2)

17.24 Worldwide panel Samayoa et al., 2019

ZmMQTL4.4 173.55−180.3 KR (2) EPS21 MAGIC population, CMLs, DTMA AM panel
and SYN_DH

Butrón et al., 2019; Liu et al.,
2021

ZmMQTL7.1 17.98−27.83 KR (1) 20.00 EPS21 MAGIC population Butrón et al., 2019

ZmMQTL7.2 137.54−143.29 KR (1) Tropical maize germplasm Liu et al., 2021

ZmMQTL7.3 159.73−160.48 FUM
(3)

EPS21 MAGIC population Gesteiro et al., 2021

ZmMQTL8.1 4.11−12.94 KR (1) 50.00 EPS21 MAGIC population Butrón et al., 2019

ZmMQTL8.2 20.80−81.7 KR (2) Tropical maize germplasm Liu et al., 2021

ZmMQTL9.2 113.95−129.03 KR (4) 44.44 Tropical maize germplasm Liu et al., 2021

ZmMQTL9.3 137.29−141.47 KR (4) SR
(1)

Kemater Landmais Gelb, Tropical maize germplasm Gaikpa et al., 2021; Liu et al.,
2021
CI, confidence interval; FER, Fusarium ear rot; GER, Gibberella ear rot; FUM, fumonisin accumulation; KR, kernel resistance; SR, silk resistance.
aMeta-QTL name referred to Zea mays abbreviated as Zm, followed by MQTL, the corresponding chromosome, and identification number on the chromosome.
bValues in parentheses are the number of MTA for each trait, which are located within corresponding MQTL.
cProportion of reported MTA per chromosome, which were located within MQTL.
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modes (Chungu et al., 1996). Silk resistance occurs after

inoculation of the silk channel, while kernel resistance occurs

after inoculation in the middle of the ear. Under natural

conditions, the fungus can enter the ear via the silk channel

(silk resistance), and directly through wounds created by hail,

insects or agricultural tools and machines (kernel resistance)

(Nerbass et al., 2016; Blandino et al., 2017).

Our study identified four MQTL for both silk and kernel

resistances of FER, and 15 MQTL for kernel resistance of FER

and silk resistance of GER. Eleven MQTL were also found to

control both silk and kernel resistances of GER (Table 4). This

finding indicates the existence of genomic regions with multiple

resistance which could be exploited in breeding programs

aiming to improve ear rot resistance in maize. Based on SSR,

RFLP and RADP markers, Ali et al. (2005) also reported one

genomic region located on chromosome 1 (BC373_650-S116_1)

and one on chromosome 7 (BC324_1400-umc1407) which

controlled both silk and kernel GER resistances. In addition,

the relationship between the two types of resistances was

investigated by Chungu et al. (1996) who found positive

strong phenotypic correlations (r = 0.77−0.89). Moderate

correlation (r = 0.66) was reported between the two traits by

Löffler et al. (2010b). Similarly, Kebebe et al. (2015) reported

moderate to very strong genotypic correlations (rg = 0.60−0.99)

between the two traits and demonstrated that both silk channel

and kernel inoculation techniques ranked genotypes in a similar

way. From the 19 MQTL, eight were identified as the most

refined MQTL explaining considerable phenotypic variance

(average PVE = 10−17%) with 2−7 overlapping QTL which
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were identified from 2−5 populations evaluated across different

environments (Table 7). This firstly exhibits these MQTL as

important genomic loci controlling both types of resistance, and

secondly implies that the integration of these MQTL into

breeding programs is likely to improve stable multiple

resistances to FER and GER due to both silk channel and

kernel infections. Both resistance types are important for

environments where the European corn borer (Ostrinia

nubilalis) regularly occurs, because the insect-driven wounding

of the cob in the 2nd generation of the insect might result in

strong kernel infection additionally to silk infection that mainly

occurs when it rains during silking. With this, the use of insect

resistant genotypes under natural conditions (and without any

other wounding factors), would reduce fungal infection of the

kernels even if the genotypes are not resistant to the fungi. This

could lead to co-occurrence of resistance QTL for both diseases

although they have genetically nothing in common. So far, co-

localization of genomic regions for insect and fungal resistances

has not been established for maize ear rots.
Colocalization of genomic regions
controlling KR, SR and mycotoxin
accumulation

DON shared two MQTL with KR of FER and/or GER

(ZmMQTL1.1 and ZmMQTL1.7) and two MQTL with SR of

FER and/or GER (ZmMQTL1.1 and ZmMQTL2.1) (Table 4,

Supplementary File 4). Similarly, FUM shared three MQTL with
TABLE 7 Selected meta-QTL (MQTL) and corresponding candidate genes (CG).

MQTLa Number of QTL Disease and trait Number of
Populations

PVE (%) CI 95% (cM) Physical distance (Mbp) Number of CG

FER GER

ZmMQTL1.2 5 KR KR, SR 4 10.60 4.72 3.04 10

ZmMQTL1.4 5 KR HC, KR, SR 5 14.00 5.85 7.00 146

ZmMQTL1.5 2 KR 2 11.50 14.80 15.55 331

ZmMQTL1.7 2 KR DON 2 11.00 8.00 7.28 226

ZmMQTL2.1 4 SR DON, SR 3 11.75 3.02 0.63 30

ZmMQTL2.2 2 KR, SR 2 13.00 9.74 7.28 201

ZmMQTL2.3 7 KR KR, SR 5 10.00 2.65 6.18 68

ZmMQTL3.3 3 KR, SR SR 2 10.00 3.75 3.98 77

ZmMQTL4.3 2 KR SR 2 17.00 11.51 14.50 342

ZmMQTL4.4 5 KR KR 2 13.40 8.89 6.75 155

ZmMQTL7.1 5 KR SR 2 15.20 7.75 9.85 143

ZmMQTL7.3 3 FUM SR 2 29.67 3.89 0.75 37

ZmMQTL9.2 5 KR SR 3 10.40 8.00 15.08 304

ZmMQTL9.4 2 FUM DON 2 13.50 11.71 5.94 202
CI, confidence interval; FER, Fusarium ear rot; GER, Gibberella ear rot; SR, silk resistance; KR, kernel resistance; DON, deoxynivalenol accumulation; FUM, fumonisin accumulation; KDD,
kernel dry-down rate; HC, husk coverage; PVE, phenotypic variance explained.
aMeta-QTL name referred to Zea mays abbreviated as Zm, followed by MQTL, the corresponding chromosome, and identification number on the chromosome.
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KR of FER (ZmMQTL1.6, ZmMQTL3.7 and ZmMQTL6.1) and

three with SR of FER and/or GER (ZmMQTL4.1, ZmMQTL6.1

and ZmMQTL7.3). This indicates the existence of common

genomic regions between mycotoxin accumulation and the

two types of active resistance in maize. For GER, Martin et al.

(2011) using SSR markers to analyze 150 DH lines derived from

UH007×UH006, also found one QTL on chromosome 2 which

was common to DON accumulation and silk resistance. This was
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supported by the existence of a strong positive genotypic

correlation (r = 0.95) between the two traits (Martin et al.,

2011). In addition, Szabo et al. (2018) detected strong positive

correlations between GER severity and DON contamination

with correlations of r = 0.95 and r = 0.82 for F. graminearum

and F. culmorum, respectively. They concluded that GER

resistance is an important indicator of lower toxin

contamination. Genotypes with higher GER resistance would
FIGURE 4

Expression levels in transcripts per million (TPM) of the common candidate genes in resistant (CO441) and susceptible (B37) lines under control
conditions (mock) vs. F. graminearum (Fg) comparisons. Bar charts show the relative importance of the expression levels of each gene. MQTL,
meta-QTL; DAI, days after inoculation.
FIGURE 5

Gene ontology terms of the differentially expressed candidate genes (CG) between resistant (CO441) and susceptible (B37) lines under Fusarium
graminearum infection.
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have lower DON accumulation as indicated by Bolduan et al.

(2009). Similar observations were made by Miedaner et al.

(2015) who found moderate to strong correlations (r =

0.60−0.90) between DON measured by immunotests and GER

severity, indicating that DON could be predicated by GER

severity. For FER, Butrón et al. (2015) observed strong

correlations (r = 0.97) between disease severity and FUM.

Similarly, Cao et al. (2022) found strong genotypic correlation

(rg = 0.85) between FUM and FER severity after kernel

inoculation. Based on this, selection for FER-resistant lines

would indirectly reduce fumonisins accumulation (Maschietto

et al., 2017; Galić et al., 2019).

However, our analysis also revealed the existence of one

specific QTL for FUM (qFER12, PVE = 8%) on chromosome 5

(Figure 2) and one for DON (qGER12, PVE = 15%) on

chromosome 9 (Figure 3), which were identified as

independent MQTL for these traits. This implies that it would

be more relevant to consider evaluating DON and FUM as

separate traits from FER and GER severity, particularly if the

breeder targets those specific genomic regions. Although

resistant genotypes had generally low toxin contamination,

Reid et al. (1996b) and Dalla Lana et al. (2022) demonstrated

that the relationship between DON and GER severity was more

complex and non-linear. Genotypes with different disease

severity might exhibit similar mycotoxin concentrations. In

wheat, Wang et al. (2021) investigating the complex

relationship between FHB and DON, found individual

genotypes with low disease severity that exhibited high DON

accumulation. In the USA, Dalla Lana et al. (2021) analyzed

DON in maize ears over four years and showed that its

accumulation was affected by multiple weather conditions.

They indicated that from a total of 483 asymptomatic ears,

196 (about 41%) exhibited detectable level of 0.05 mg/kg for

DON accumulation, and 46 (approximately 10%) showed 1−5

mg/kg of DON. Moreover, Mesterhazy et al. (2022) evaluated 18

commercial maize hybrids from Hungary for different ear rots

including FER and GER, and observed a lack of phenotypic

correlations between ear rot resistance and toxins, indicating

that toxins analysis is necessary. Therefore, indirect selection for

DON or FUM using disease severity would be feasible and more

effective through the exploitation of identified common MQTL,

however, advanced lines should be further analyzed for DON

and/or FUM accumulation in a later stage of the selection cycle.

Furthermore, MQTL ZmMQTL9.4 (145.46−151.40 Mbp) on

chromosome 9 was common to FUM and DON. This firstly

demonstrates the existence of genomic regions with resistance to

multiple mycotoxin accumulation, and secondly indicates that

selection for resistance to one mycotoxin using this MQTL

would reduce accumulation of the other mycotoxin. The same

has been reported on the basis of phenotypic data by Miedaner

et al. (2015) for the co-occurrence of resistances to DON and

zearalenone, another mycotoxin produced by F. graminearum.
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Morphological traits and their association
with FER and GER infections in maize

Several MQTL for SR and KR of both FER and GER were

also detected in association with KDD (e.g. ZmMQTL1.1 and

ZmMQTL6.1), and HC (ZmMQTL1.4, and ZmMQTL6.1)

(Table 4, Supplementary File 4). This indicates that

morphological traits such as kernel dry-down rate and husk

coverage may have a passive contribution to both silk and

kernel resistances in maize. Kernel dry-down rate and husk

coverage represent natural barriers which reduce infection by

blocking the pathogen entry into the ear or the kernel. Passive

resistance due to morphological traits was also reported for

FHB disease in wheat by several studies (Mesterházy, 1995;

Buerstmayr and Buerstmayr, 2015; Buerstmayr et al., 2020;

Ruan et al., 2020; Xu et al., 2020). Husk characteristics were

reported as important traits in protecting the ears from

pathogen infection (Warfield and Davis, 1996; Jiang et al.,

2020). Butoto et al. (2022) found a low negative correlation (r =

−0.30) between husk coverage and FER severity. In addition,

moderate genotypic correlations (r = 0.39−0.61) were detected

between husk coverage and Diplodia ear rot severity due to

Stenocarpella maydis infection across three locations (Rossouw

et al., 2002). The positivity of the correlations found by

Rossouw et al. (2002) is explained by the fact that the

authors evaluated the husk coverage based on a scale

opposite to the previous paper. Therefore, the tighter the

husk over the ear, the lower the ear rot severity.

Common genomic regions were also reported by Xiang et al.

(2012) when investigating the relationships between grain

moisture content and ear rot resistance in maize. Depending

on the maturity stage of the kernels, Kebebe et al. (2015) found

in Canada moderate to strong negative genotypic correlations

between kernel dry-down rate and silk resistance (r = −0.58

to −0.90) and kernel resistance (r = −0.67 to −0.79) for GER.

Thus, genotypes with fast drying kernels would have relatively

lower GER severity. Substantially high selection efficiencies

(0.52−0.84) were observed by Kebebe et al. (2015) when

selecting for less kernel infection using kernel dry-down rate,

whereas lower selection efficiencies (0.29−0.32) were found for

silk channel infection. Since silk inoculation is usually earlier (5-

6 days post silking) than kernel inoculation (15-21 days post

silking), the infection through silk channel would have

significantly progressed before the onset of kernel dry-down.

This indicates that despite the existence of common genomic

loci between kernel dry-down rate and FER and GER resistances,

the use of kernel dry-down rate as an indirect trait to improve

ear rot resistance might not be as effective as the direct selection

for disease severity, especially for SR. Moreover, additional

investigations are required to elucidate the interactions

between kernel dry-down rate and grain yield and related

traits in maize.
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Resistance and susceptibility genes
controlling FER and GER in maize

Based on transcriptomic data reported by Kebede et al.

(2018) for GER, 59 candidate genes harbored by 14 of the

MQTL identified in this study were differentially expressed in

one resistant line (CO441) and one susceptible line (B37) after

inoculation with F. graminearum (Supplementary File 7). This

emphasizes the importance of these MQTL as targets for

improving multiple resistance to ear rot diseases in maize.

Thirteen of these candidate genes were annotated as

“uncharacterized protein” (Supplementary File 8), and

therefore require further investigations to characterize

corresponding proteins to better elucidate their roles in the

resistance or susceptibility to ear rot in maize. GER-specific

MQTL ZmMQTL2.2 and the common MQTL ZmMQTL9.4

harbored two different defense response genes such as

GRMZM2G342033 and GRMZM2G423331, respectively.

Similarly, the common MQTL ZmMQTL9.2 (113.95−129.03

Mbp) harbored two defense response genes, namely

GRMZM2G011151 and GRMZM2G093092 which were specific

to CO441. In comparison to the susceptible line, the expression

levels of GRMZM2G342033 and GRMZM2G423331 at 2 DAI in

CO441 were constitutively stronger with TPM two-fold higher

than that in B37.

GRMZM2G342033 encoded “S-norcoclaurine synthase2”

which had about 71.3% of identity with “S-norcoclaurine

synthase” previously reported as a member of the

pathogenesis-related protein 10 (PR10) family (Lee and

Facchini, 2010; Nida et al., 2021). The PR10 family proteins

have been extensively reported for their antifungal activity (Xie

et al., 2010; Wu et al., 2016), and their crucial role in resistance

against GER pathogens (Mohammadi et al., 2011). Xie et al.

(2010) identified another PR10 gene (ZmPR10.1) on

chromosome 10 which conferred resistance to Aspergillus ear

rot caused by Aspergillus flavus in maize. Similarly, in a previous

transcriptional analysis, Lanubile et al. (2014) also identified

GRMZM2G342033 as “S-norcoclaurine synthase-like” which was

involved in resistance to FER in maize.

GRMZM2G011151 was annotated as “terpene synthase21

(tps21)” which has been previously reported by Ding et al.

(2017) as a a/b-costic acid pathway candidate gene in maize.

tps21 enables the biosynthesis of a/b-selinene volatiles which are
in turn converted into a/b-costic acids, promoting resistance to

fungal pathogen infections (Block et al., 2019). a/b-costic acids
are non-volatile diterpenoids which were demonstrated to

inhibit growth of several fungal species including F.

graminearum, F. verticillioides, Rhizopus microsporus,

Aspergillus parasiticus, and Cochliobolus heterostrophus (Ding

et al., 2017). Moreover, near-isogenic lines (NILs) lacking

functional copies of tps21 exhibited a high susceptibility to

Fusarium species compared to functional NILs (Ding et al.,

2017). Lanubile et al. (2014) also identified GRMZM2G011151 as
Frontiers in Plant Science 16
a defense response gene to FER which was specifically

differentially expressed in CO441 compared to another

susceptible line (CO354).

Similar to GRMZM2G011151, GRMZM2G093092 and

GRMZM2G423331 were reported as candidate defense

response genes to GER (Kebede et al., 2018), which encoded

the “flavonoid O-methyltransferase2 (fomt2)” and “flavonoid O-

methyltransferase4 (fomt4)” proteins, respectively. FOMT2 and

FOMT4 proteins catalyze the biosynthesis of sakuranetin, a well-

characterized flavonoid which negatively affected the

germination of fungal spores in rice (Kodama et al., 1992;

Hasegawa et al., 2014). GRMZM2G423331 was also identified

in a recent transcriptomic analysis by Förster et al. (2022) as a

FOMT4 gene which is involved in the flavonoid pathway related

to a general response to F. graminearum and F. verticillioides in

maize. Recently, Maschietto et al. (2017) found that

GRMZM2G093092 was uniquely expressed in CO441

compared to CO354 after infection with F. verticillioides. In

addition, FOMT2 and FOMT4 enable cell-wall reinforcement

and higher lignification which both inhibit fungus growth and

the development of the disease. These results suggest the

biosynthesis of different secondary metabolites or phytoalexins

(e.g. terpenoid and flavonoid) which occurs after initial infection

with FER- and GER-causing species. Moreover, Balcerzak et al.

(2012) indicated that during the infection, fungus-specific genes

like feruloyl esterase (FAE) are activated to enable the

biosynthesis of pathogen-associated molecule patterns

(PAMPs), like oligogalacturonides. These molecules firstly

degrade the cell wall to facilitate the infection, and secondly

are perceived as elicitors by pathogen recognition receptor

kinases. This results in successive oxidation-reduction

reactions leading to reaction oxygen species (ROS) production

(Kebede et al., 2018; Yuan et al., 2020b) and the activation of

defense response and phytoalexin-coding genes (Förster et al.,

2022). Given the specificity of genes GRMZM2G011151 and

GRMZM2G093092 to the resistant genotype, and the fact that

they were harbored by a common MQTL (ZmMQTL9.2) to FER

and GER, their incorporation into breeding programs would

efficiently improve a broad-based resistance to both Fusarium

and Gibberella ear rots in maize.

Furthermore, we also identified 36 candidate genes whichwere

uniquely differentially expressed in the susceptible line, suggesting

the existence of ear rot susceptibility genes in maize. The gene

GRMZM2G164405 harbored by ZmMQTL2.2 encoded the “1-

aminocyclopropane-1-carboxylate synthase2 (acs2)” protein which

was involved in the biosynthesis of ethylene and pyridoxal

phosphate binding activity. Since ZmMQTL2.2 is a GER-specific

MQTL, this finding demonstrates that ethylene-signaling pathway

is associated with susceptibility to GER in maize as previously

indicated by Kebede et al. (2018). Similar results were reported by

Chen et al. (2009) who found that ethylene-signaling increased

susceptibility and premature cell death after inoculation with F.

graminearum andDON inwheat and barley (Hordeumvulgare L.).
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However, under infection with F. verticillioides, Maschietto et al.

(2017) found that the expression level of gene GRMZM2G053503

located on chromosome 8 at position 35.56 Mbp, was 1.23-fold

higher in CO441 than in CO354. This gene encodes “ethylene-

responsive factor-like protein 1” which is involved in resistance to

FER in maize. Interestingly, GRMZM2G053503 is located within

the FER-specificMQTL ZmMQTL8.2 (20.8−81.7Mbp) which was

not considered in our transcriptomic analysis. This demonstrates

that the ethylene-signaling pathway plays differential roles inmaize

ear rot depending on the Fusarium species. In addition to

GRMZM2G164405, another interesting susceptibility gene was

GRMZM2G146108 located within the MQTL ZmMQTL9.4. This

gene was annotated as “hemoglobin1 (hb1)” which enabled

programmed cell death in the susceptible line. So far, to the best

of our knowledge, GRMZM2G146108 has not been attributed to

FER and/or GER susceptibility in maize, and thus merits further

examination. The attenuation of the ethylene-signaling pathway

could improve GER resistance in moderately to highly susceptible

genotypes. This could be done through the application of RNA

interference (RNAi) technology (Das and Sherif, 2020) on

GRMZM2G164405 as described for “Ethylene Insensitive 2

(EIN2)” gene with FHB and DON accumulation caused by F.

graminearum inwheat and barley (Chen et al., 2009).Alternatively,

the susceptibility genes could be knocked out by the clustered

regularly interspaced short palindromic repeats (CRISPR)

technology (Campenhout et al., 2019; Wada et al., 2020). Both

attempts would also biologically validate the contribution of these

genes in the maize/ear rot pathosystems.
Strategies for the successful
introgression of resistance genes to FER
and GER into elite materials

Genetic resources from diverse geographical origins

contributed to the 40 MQTL identified in this study (Table 2,

Tables 5, 6). In Europe, flint and dent germplasms including

the “Kemater Landmais Gelb” (KE) landrace population

harbored several resistance al leles which could be

introgressed into elite cultivars for enhanced ear rot

resistance (Han et al., 2016; Han et al., 2018; Gaikpa et al.,

2021). However, FER and GER resistances are complex

polygenic traits, and our results demonstrated that more than

65% of the MQTL had minor (PVE<10%) effects on the

respective traits. This indicates that the exploitation of these

MQTL using marker-assisted selection (MAS) would require

intensive breeding and marker efforts and might not yield a

significant selection gain. Although MAS has been successfully

implemented to improve traits controlled by one or a few large-

effect genes in several crops (Kuchel et al., 2007; Hasan et al.,

2021), its potential in improving complex traits remains

limited as previously discussed in wheat and barley by
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Miedaner and Korzun (2012). As implication, the successful

introgression of the resistance genes for stronger and durable

multi-disease resistances, calls for more advanced and

sophisticated genomic approaches, like genomic selection

(Bhat et al., 2016; Gaikpa and Miedaner, 2019; Budhlakoti

et al., 2022). For FER and GER resistances, this could be

achieved through the application of the integrated genomics-

assisted breeding scheme suggested by Miedaner et al. (2020).

This approach is implemented in two steps, including: (i)

introgression of the resistant donor (e.g. KE lines) by

backcrossing to the susceptible line used as recurrent parent

without marker selection, and (ii) application of genomic

selection following a recurrent selection scheme for an

accelerated selection for FER and/or GER resistances as well

as adaptation traits (Miedaner et al., 2020). Identified MQTL

can be efficiently incorporated in the genomic selection model

built in the second step.
Conclusions

Understanding the genetic basis and molecular mechanisms

controlling Fusarium and Gibberella ear rots is a key requirement

for the development of maize varieties with improved multi-

disease resistances and related traits. Based on 164 projected QTL

from 15 studies, we demonstrated the existence of 40 MQTL

which revealed colocalization of genomic regions governing FER

and GER silk and kernel resistances, FUM and DON

accumulation, kernel dry-down rate and husk coverage. Three

of the most refined MQTL (ZmMQTL2.2, ZmMQTL9.2 and

ZmMQTL9.4) for FER- and/or GER-related traits harbored

promising resistance genes which were constitutively and

strongly expressed in the resistant line (CO441) analyzed in the

published transcriptomic study by Kebede et al. (2018). The

effectiveness of the introgression of these candidate genes from

identified sources of resistance into susceptible varieties through

genomics-assisted backcross breeding strategies need to be

explored to systematically improve ear rot resistances while

reducing mycotoxins contamination in maize.
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