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Bayesian optimisation for
breeding schemes

Julien Diot and Hiroyoshi Iwata*

Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, Tokyo, Japan
Introduction: Advances in genotyping technologies have provided breeders

with access to the genotypic values of several thousand genetic markers in

their breeding materials. Combined with phenotypic data, this information

facilitates genomic selection. Although genomic selection can benefit

breeders, it does not guarantee efficient genetic improvement. Indeed,

multiple components of breeding schemes may affect the efficiency of

genetic improvement and controlling all components may not be possible. In

this study, we propose a new application of Bayesian optimisation for

optimizing breeding schemes under specific constraints using computer

simulation.

Methods: Breeding schemes are simulated according to nine different

parameters. Five of those parameters are considered constraints, and 4 can

be optimised. Two optimisation methods are used to optimise those

parameters, Bayesian optimisation and random optimisation.

Results: The results show that Bayesian optimisation indeed finds breeding

scheme parametrisations that provide good breeding improvement with regard

to the entire parameter space and outperforms random optimisation.

Moreover, the results also show that the optimised parameter distributions

differ according to breeder constraints.

Discussion: This study is one of the first to apply Bayesian optimisation to the

design of breeding schemes while considering constraints. The presented

approach has some limitations and should be considered as a first proof of

concept that demonstrates the potential of Bayesian optimisation when

applied to breeding schemes. Determining a general "rule of thumb" for

breeding optimisation may be difficult and considering the specific

constraints of each breeding campaign is important for finding an optimal

breeding scheme.

KEYWORDS

Bayesian optimisation, breeding scheme, genomic selection, computer simulation,
genetic simulation, breedSimulatR
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1 Introduction

Development of new genotyping technologies has provided

breeders with access to genotypic values of several thousand

genetic markers in their breeding material. This information

along with phenotype data, has allowed breeders to estimate the

effects of these markers on the phenotypic traits of interest and

to assess the genetic value of their breeding population. Thanks

to prediction models, breeders can now perform genetic

selection (GS), which involves selection of un-phenotyped

individuals based on their genotype data (Meuwissen

et al., 2001).

Although using genomic selection can help breeders, it does

not guarantee efficient genetic improvement. Therefore, other

factors need to be considered when designing breeding schemes.

For example, selecting only those individuals with the highest

predicted values (Meuwissen et al., 2001) can be interesting for

short term breeding whereas other methods like weighting the

marker effects by the allele frequency (Jannink, 2010) might yield

better results in long term breeding.

Other factors influencing the performance of breeding

schemes include the constraints faced by breeders, including

straightforward examples such as the budget allowed for the

breeding campaign, the initial population, the genotyping or

phenotyping capabilities, and so on. Breeders should not neglect

these constraints when optimizing a breeding scheme as the

optimal decisions made under particular constraints (e.g., a large

budget with highly heritable target traits) may differ under

different constraints (e.g., low budget and low heritable

target traits).

Several examples of methods for optimizing breeding

improvement have already been reported, including weighted

genomic selection (Jannink, 2010), optimal haploid value

(Daetwyler et al., 2015), expected maximum haploid breeding

values (Müller et al., 2018), look-ahead selection (LAS)

(Moeinizade et al., 2019), and complementarity-based selection

(CBS) (Moeinizade et al., 2020). These methods, except LAS and

CBS, which also consider the breeders’ budget, mainly focus on

the selection criteria for improving the breeding schemes;

however this is only one of their aspects. Multiple components

of breeding schemes may affect efficiency (Henryon et al., 2014),

including the breeding objective definition, available

infrastructures, genotyping and phenotyping strategies,

prediction models, and selection and mating strategies. All

these components, which interact with each other, should be

optimised together to obtain a well-designed breeding scheme

(Henryon et al., 2014).

In this paper, we introduce the Bayesian optimisation

method (Jones et al., 1998). Bayesian optimisation is a specific

optimisation method suitable for determining the optimum of a

black box function, the “objective function”, whose evaluation

has a high cost (e.g., time consuming, financially expensive,
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limited opportunity, etc.). The main principle behind this

method is to fit a Bayesian model, often a Gaussian process, to

obtain the posterior distribution of the objective function, and

then use this distribution to sample the objective function at the

points which are the most promising to be the global extremum.

Bayesian optimisation has already been used in several domains

like chemistry (Burger et al., 2020), and others (Shahriari et al.,

2016); however, very few examples are noted in breeding, such as

(Tanaka and Iwata, 2018) and (Hamazaki and Iwata, 2022).

In this study, we present the use of Bayesian optimisation to

optimise breeding schemes under specific constraints faced by

breeders. We consider the function associated with the breeding

scheme outcome as the objective function. However, realizing

actualbreeding campaigns to evaluate this objective function

would have required several years of experimentation.

Therefore, to evaluate the objective function in a reasonable

time, like most studies presented above (Jannink, 2010;

Daetwyler et al., 2015; Müller et al., 2018; Moeinizade et al.,

2019; Moeinizade et al., 2020; Hamazaki and Iwata, 2022), the

breeding process has been simulated computationally.
2 Materials and methods

2.1 Optimisation problem

In this section, we explain the relationship between the

breeding scheme and optimisation. For simplicity, we will only

consider one phenotypic trait of interest here. In case of multiple

traits, a function that maps the value of each trait to a

selectionindex value (e.g., the weighted sum of these traits) can

be used for generalisation, and the selection index can be

considered the target trait. After a breeding campaign, the

mean genotypic values for this trait over the individuals in the

final population can be expressed as:

u = f (x) + ϵ (1)

Where x is the value of all the parameters representing the

breeding scheme, f (x) is the expected genotypic value of the

population under the parameter values x and ϵ is the residual

due to the randomness of the breeding process.

Let X be the domain of all possible breeding schemes. A

breeding scheme can be parameterised by a very large number of

variables. In this paper, we consider the following parameters for

representing the breeding scheme:

X = [B, Cp, Cn, N gen,Popinit,iinit, i, Brep, phenop]

where:
• B: total budget for the breeding campaign

• Cp: cost for phenotyping one plot

• Cn: cost for generating and genotyping one new

individual in a breeding population
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Fron
• N gen: total number of selection cycles (i.e., generations)

in the breeding campaign

• Popinit: genotypes of the initial population (homozygote

individuals)

• iinit: selection intensity for the initial generation

(homozygote individuals)

• i : selection intensity for all later generations

(heterozygote individuals)

• Brep: part of the total budget allocated for phenotyping;

the rest will be used for generating new individuals

• phenop: period of phenotyping experiments. Individuals

will be phenotyped every phenop generations
This parametrization separates the selection intensity of the

first and later generations iinit and i, respectively. As explained in

section 4.3.4, the number of individuals in the second generation

is directly related to the selection intensity used on the initial

population, and the size of the first generation may have an

impact on the performance of the breeding scheme.

Here, we assume that u is the target of selection and that a

larger u is preferred. As breeders may not have control over the

first five parameters or over ϵ , the best breeding scheme that

considers the constraints can be expressed as follows:

z* = arg  max  z∈Zg(z) (2)

where Z=[iinit,i,Brep,phenop] and g:z↦f(z, B, Cp, Cn, N gen, P
opinit) with B, Cp, Cn,N gen,Popinit are the respective values taken
by the variables B , Cp , Cn , Ngen , Popini t under the

breeder’s constraints.

To optimise this objective function, we used the Bayesian

optimisation method using Gaussian process regression at the

estimation step, and the value of the objective function was

returned by the breeding simulation algorithm.
2.2 Bayesian optimisation

Bayesian optimisation consists of a three-step cycle, starting

with some observed values of the objective function:
• Bayesian analysis step: Calculation of the posterior

distribution of the objective function using all the

observed values of the objective function (i.e. the

training data).

• Sampling step: Selection of the following sampling

points that maximize the acquisition function. The

acquisition function is a computationally easy function

that can be evaluated at any point of the research space

using the posterior distribution of the objective function,

as well as return how much evaluating the objective
tiers in Plant Science 03
function at this point would help yield the global

maximum.

• Evaluation step: Evaluation of the objective function at

the previously selected sampling point.
These steps are repeated until the stopping criterion

is satisfied.

Our Bayesian analysis is based on a Gaussian process. The

Gaussian process is a collection of random variables, in which

any finite number has a joint Gaussian distribution. In our case,

the random variables represent the values of the objective

function g (z) over parameter space Z. The Gaussian process

can be fully specified by its mean function m(z)=E[g(z)],∀z∈Z
and its covariance function, also called a kernel, k(z,z′),∀z,z′∈Z2

(Rasmussen and Williams, 2006). In this study, the following

Gaussian kernel was used:

k z, z0
� �

= exp  (
−d2

2q2 )

where d is the Euclidean distance between the scaled values

of z and z′ , and q is a hyperparameter estimated using the

maximum likelihood method.

For the sampling step, to use the parallel capabilities of

modern computers, we sampled q evaluation points. This was

done using a combination of expected improvement (EI) and a

constant liar strategy (Ginsbourger et al. , 2007) as

acquisition function.

The EI, one of the most well-known acquisition functions for

Bayesian optimisation (Jones et al., 1998), is the probability of

improvement weighted by the value of the improvement. It can

be expressed by

EI zð Þ = E max  (0, g zð Þ − ĝ max½ Þ� (3)

where ĝ maxis the maximum mean predicted value of the

objective function among the training data (i.e., the existing

sample points). EI is easy to compute and can be optimized using

the Focus Search algorithm described in Bischl et al. (2017).

To select the q sampling points zj, j∈{1, q}, the EI was

iteratively maximised while updating the Gaussian process

model using g(zk) = L, ∀k < j+1 (Ginsbourger et al., 2007)

with L = gmin the minimum observed value of the objective

function was used among the training data. The objective

function for the next Bayesian optimisation iteration was then

evaluated in parallel on q cores over the selected zj, j∈{1, q}.
Moreover, to avoid stucking the optimisation at one point by

sampling the same points several times, zj, j∈{1, q} were filtered
according to their distances from the existing sample points in

the training data. If this distance was less than the threshold

filtertol, the corresponding point was replaced by a randomly

selected point in the parameter space.

Finally, the optimisation can be completed after it reaches a

specified number of iterations niter.
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Once the optimisation was completed, we used the latest

Gaussian process model to predict the value of the objective

function for all visited points. The algorithm returned the point

with the highest predicted value based on the Gaussian process

model as a result of optimisation.

To evaluate the potential of this method, another naive

optimisation algorithm was implemented, in which the q

sampled points were selected randomly in the parameter

space. In this paper, we call this method “random

optimisation.” This optimisation returns the point with the

highest value calculated using the objective function.

2.2.1 Optimisation results evaluation
To compare the optimised breeding schemes, we

independently simulated nevaluation breeding campaigns after

each optimisation, according to the optimal breeding scheme

parameters. We obtained nevaluation samples of the optimised

breeding schemes. These results can be used to compare the

breeding schemes resulting from each optimisation method.
2.3 Stochastic breeding simulations

2.3.1 Overview of the breeding process
For simulating the breeding process, it is easier to use a

different parametrisation than what we used for the

optimisation. Specifically, we introduced the parameters nPt
,

the number of phenotyping plots available for the generation t,

nSt,the number of selected parents in the generation t, and nnewt

the number of progenies to generate at the generation t. All those

parameters derived from the optimisation’s parameters and

constraints. Their calculation are described in section 4.3.4.

The breeding process was simulated as follows and is

summarised in Figure 1.

For each breeding cycle t∈{1, n{gen}}, we have the following
procedure. Note that the floor function takes a real number x, as

input, and returns the greatest integer less than or equal to x as

the output.
Fron
• Phenotyping: To phenotype the nIt individuals in the nPt

phenotyping plots, we uniformly allocate the as much

plots as possible for each individuals. If there are any

remaining plots, we randomly select some individuals

which will be phenotype one more time. Then we

simulate the phenotyping experiments 158 accordingly

(see. 2.3.2).

• Genomic prediction: If nPt
≠ 0 we fit a prediction model

using a ridge regression (Friedman et al., 2010) with

genome-wide marker genotypes as input variables. The

regression model is trained with all available phenotypic

and genotypic data collected from the first generation.
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• Selection: The nSt individuals with the highest predicted

phenotypic values according to the prediction are

selected as parents for the next generation.

• Crossing: The selected parents are mated according to

their genetic distances from each other. If nSt ≥ 4, we use

a “Traveling Salesperson Problem” (TSP) algorithm

(Croes, 1958). Because TSP algorithms minimize the

path linking several cities, we use such algorithm to

generate a sequence of individuals Inds, s∈{1, n{St}} such
as,
o
nSt−1

s=1

1
dist Inds, Inds+1ð Þ +

1

dist IndnSt , Ind1
� � (4)

is small compared to other possible sequences, with dist (A,

B), the Euclidean distance of vectors of the marker genotype

scores between individuals A and B, weighted by the estimated

effect of each marker according to the latest prediction model. A

mating table is generated associating ∀s ∈{1, n{St−1} Inds with
Inds+1 and IndnSt with Ind1. If 2 ≤ nSt ≤ 3, a mating table is

generated associating all individuals together, and if nSt = 1, the

selected individual is self-fertilized. The mating table, composed

of nCt
crosses, is used to generate a total of nnewt

offspring. To

calculate the number of progenies for each crosses, we uniformly

allocate the total number of offspring to each crosses. If there are
FIGURE 1

A simple flowchart of the breeding simulation algorithm. The
process start with the individuals of the initial population of the
breeder popinit.
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any remaining progenies, some crosses are randomly selected to

generate one more individual. The new individuals are then

generated using a crossing simulation algorithm (cf. 2.3.3).

The next breeding cycle began by considering only the

individuals generated from the crosses of parents selected in

the previous cycle for phenotyping and selection: ∀t ∈{2, n{gen,
nIt=nnewt−1

}}.

2.3.2 Phenotyping simulations
In this section, we explain how the phenotypes of individuals

were simulated. For simplicity, we ignored the main

environmental effects caused by years and locations as well as

the effects of genotype-by-environment (G × E) interactions.

The model used to simulate the phenotypes was as follows:

ysr = Gsb + esr (5)

where ysr is the phenotype of individual s repetition r, Gs is a

vector of the genotype of individual s encoded with an allele dose

(i.e., 0, 1, or 2) for the reference alleles, b is the genetic effect of

the reference alleles, and esr ∼ N (0,s 2
e ). The values of these

parameters were obtained before the optimisation. The values

used in this study are described in Section 2.4.1.
2.3.3 Crossing simulations
To generate the single nucleotide polymorphism (SNP)

genotypes of new individuals from those of the parents, we

simulated gametogenesis, one from each parent:

For each pair of chromosomes:
Fron
1. We draw the number of crossing-overs nco for each

chromosome in a Poisson distribution of rate lchr, which
is the length of the chromosome in the unit of Morgan:

nco ~ Pois(lchr)
2. When nco ≠ 0, we draw the positions of crossing-over

independently in a uniform distribution along the length of

the chromosome in Morgan. We then include the sampled

positions COposk (∀k∈{0, n{co}+1)} of the crossing-overs so
that COposk < COposk+1 (∀k ∈{0, n{co}}) with COpos0 = 0

and COposnco+1=lchr.
3. Let X be the 2 × nsnpl matrix representing the genotype of

the parent for the current pair of chromosomes l. Each

row represents one chromosome of the pair. Let Y be the

vector of length nsnpl representing the recombined

genotype of the gamete for the chromosome l. We set

[a,b] = [1,2] or [2,1] with probability 1
2. Y is then

calculated as:
Y h½ � =
X a, h½ � if ∃   k  ∈ 0, floor nco

2

� �� �
,COpos2k ≤ posh < COpos2k+1

X b, h½ � if ∃   k  ∈ 1, floor nco
2

� �� �
,COpos2k−1 < posh ≤ COpos2k

(

where posh is the position of marker h.

The genotypes of the offspring were obtained by merging

two gametes from their parents.
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2.3.4 Calculation of the breeding simulation
parameters

As mentioned in the section 4.3.1, we used a different

parametrisation for the breeding simulation than those used

for the optimisation problem. In this section, we explain the

derivation of the parameters of the simulation from the

constraints and optimised parameters B, CP, Cn, ngen, iinit, i,

Brep, phenop.

The breeding process detailed in 4.3.1 uses the

following parameters:
• nPt
the number of phenotyping in the t-th generation.

• nSt the number of selected individuals in the t-th

generation.

• nnewt
the number of new individuals to create in the t-th

generation.
The value of nSt, the number of selected individuals in the

generation t-th, is calculated as the number of individuals in the

t-th generation multiplied by the selection intensity, iinit for the

initial population and i for the later, and rounded to the nearest

strictly positive integer.

To calculate nPt
and nnewt

, we first needed to calculate the

total number of phenotyping plots available for all generations

nPtot
and the total number of new individuals created during the

entire breeding campaign nnewtot
according to the phenotyping

and new individual generation costs (Cp and Cn) as well as the

total budget B.

nnewtot
is calculated by the budget allocated to the generation

of new individuals B × Brep divided by the cost of creating a new

individual Cn, rounded to the nearest integer.

nPtot
is calculated by the remaining budget B − nnewtot

×Cn

divided by the cost of phenotyping one plot Cp, rounded down to

the nearest integer.

Owing to rounding operations, the effective budget used Beff =

nnewtot
× Cn + nPtot × CP may differ from the given total budget

constraint B. However, this difference is smaller than CP which

should usually be relatively small with respect to B.

WecannowcalculatenPt, thenumberofphenotypingplots in the

t-th generation. First the generationswhichwill include phenotyping

trials are identified. These are thefirst generation t=1 and then every

phenop generation (eg. [1,3,5,…] for phenop = 2; [1,4,7,…] for

phenop = 3). All the other generation will have nPt = 0.

Consequently, the total number of generations with non-zero

phenotyping trials is equal to ngen/phenop rounded up to the

nearest integer. For thosegenerations, we equally allocate the total

number of phenotyping plots available for the breeding campaign. If

this number is not an integer, as many generations as the remaining

plot are selected and those generations will be allocated one more

phenotyping plot. Moreover, if nP1< 3, its value is increased to 3 to

avoid errors during creation of the prediction model.

Finally, we calculate the number of new individuals to create

at each generation. The first generation was homozygous, and
frontiersin.org

https://doi.org/10.3389/fpls.2022.1050198
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Diot and Iwata 10.3389/fpls.2022.1050198
therefore, any individuals derived from the same pairs of parents

would have the same genotype; as a result, nnew1 was set to the

number of crosses proceeding at this generation nC1. Then the

remaining number of new individuals to be created in the later

generations were allocated equally. If this number is not an

integer, as many generations as theremaining new individuals to

be created are randomly selected and those generations will

generate one more individual.

2.3.5 Implementation, datasets, and simulation
parameters

All calculations were performed using R programming

language (version 4.0.2) (R Core Team, 2020). A repository

containing the code used in this study can be found at GitHub

(https://github.com/ut-biomet/bayesianOptimizationForBreeding).

The simulation algorithm developed for this study was integrated in

the R package “breedSimulatR” (Diot and Iwata, 2020), the Bayesian

optimisations were performed using the package “mlrMBO” (Bischl

et al., 2017). An exhaustive list of all packages and their versions

used for calculation can be found in the GitHub repository for this

study in the file renv.lock (https://github.com/ut-biomet/

bayesianOptimizationForBreeding/renv.lock).

2.4 Parametrisations of scenarios

To test our optimisation method, we ran several optimisations

following the algorithm detailed in the “Materials and methods”

section with different parameterisations.

2.4.1 Simulation setup
The genotypes of the initial population were created based on

the whole-genome sequences of the accessions of soybeanmini-core

collections provided by the National Agricultural Research

Organisation, Japan (Kaga et al., 2012) (Kajiya-Kanegae et al.,

2021)[4.4.1]. These data represent 198 accessions of soybean

(Glycine Max) with a total of 4,776,813 SNP markers on 20 pairs

of chromosomes. To make the simulations faster, the genotypes of

the initial population consisted of a smaller subset of nsnp =

3000SNPs that were randomly selected. For simplicity, we

arbitrarily set the chromosome length to 1 Morgan (i.e. 100 cM)

and calculated the linkage map positions based on physical

positions, assuming a linear relationship between the two types of

positions. This led to an average of one crossing over for each

chromosome during the gametogenesis simulation.

The true genetic effects of the SNPs b on the phenotypic

traits were determined as follows. First, we selected a subset of

nqtn=1000 SNPs in the pool of all available nsnp SNPs in the

genotypes of the initial population. These markers have non-null

effects and are known as quantitative trait nucleotides (QTNs).

Let bm be the effect of the QTN m, for all m∈{1, n{qtn}}, bm was

drawn according to the formula bm = am × I with am following

an exponential distribution, am ~ Exp(l = 1) and I was equal to
Frontiers in Plant Science 06
+1 or −1 with probability 1
2. The effects of the nsn − nqtn

remaining markers were set to 0.

The residual variance of the simulated phenotypes se was
calculated according to the specific heritability for the initial

population H2
0 . As only the additive genetic effects were

simulated in this study, H2
0 represented both the narrow and

broad sense heritability in the initial population. Heritability is

the ratio between genotypic variance and phenotypic variance:

H2
t =

Var Gtbð Þ
Var ytð Þ =

Var Gtbð Þ
Var Gtbð Þ + s 2

e

where Gt is the genotype of individuals from generation t, yt is

the phenotype of individuals from generation t, and beta is the

marker effect. We can thus deduce that:

s 2
e = Var Gtbð Þ 1

H2
t
− 1

� �

The value of s2
e is then calculated using the values of Var

(Gtb) and H2
t for the initial population t = 0. Thus, s 2

e =

onI1

s=1

(G0b − �Gb)2

nI1 − 1
, where G0 b

− denotes the average genetic

value of the initial population. In this study, we set H2
0 = 0:7 and

H2
0 = 0:3.
2.4.2 Constraint parameters
We considered the constraints related to the total number of

selection cycles in the breeding program and the total budget for

the program. To test the proposed optimisation method on

various breeding schemes, we used setups with a total number of

selection cycles for breeding campaigns of ngen = 5 and ngen = 10.

For simplicity, both the costs for phenotyping one plot Cp and

for generating and phenotyping, one new individual Cn were set

as one and two total budgets were tested: B = ngen × 200Cp and

B = ngen × 600Cp.

All possible combinations of these parameterisations were

tested, and yielded eight different scenarios:

H2 = 0:3, ngen = 5, B = 5� 200 (a)

H2 = 0:3, ngen = 5, B = 5� 600 (b)

H2 = 0:3, ngen = 10, B = 10� 200 (c)

H2 = 0:3, ngen = 10, B = 10� 600 (d)

H2 = 0:7, ngen = 5, B = 5� 200 (e)

H2 = 0:7, ngen = 5, B = 5� 600 (f)
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H2 = 0:7, ngen = 10,B = 10� 200 (g)

H2 = 0:7, ngen = 10,B = 10� 600 (h)
2.4.3 Parametrisation of optimisation
The initial training data for Bayesian optimisation are a set

of five points randomly sampled in a Latin hypercube

(Beachkofski and Grandhi, 2002); we set the minimal distance

between two sampled points as filtertol = 10-3

The random optimisation algorithm does not require

training data; however, to obtain the same number of objective

function evaluations as those with Bayesian optimisation, we

began its first iteration with five points randomly selected in the

parameter space.

We ran two batches of optimisation. For the first batch, with

each scenario and each optimisation method, we repeated 16

optimisation runs with niter = 50 iterations of q = 8 parallelly

sampled points at each iteration. After each optimisation run,

nevaluation = 32 breeding schemes were repeated using the

parameters returned by the optimisation run. The results from

these optimisations were used to compare the behaviour of

Bayesian optimisation against random optimisation.

However, we conducted these optimisations independently.

Thus, there was no direct association between each run of

Bayesian optimisation and random optimisation (for each

scenario). To compare the runs of Bayesian optimisation and

random optimisation, such an association is required. To be as

representative as possible in our comparisons, for each method

and run, we calculated the cumulative maxima of the objective

function values over the optimisation iterations. Subsequently,

we calculated the average cumulative maxima for each method.

Finally, to represent one method, we chose the run that was

closest (in terms of mean square error) to the average cumulative

maxima of the method.

For the second batch, in a more pragmatic manner, we tried

to mimic what a breeder who would like to use Bayesian

optimisation can do with relatively limited computer power

and time available for optimisation. We set the number of

iterations to niter = 15 with q = 2 parallel sampling points at

each iteration. After each run, we simulated a nevaluation = 1

breeding scheme using the parameters returned by the

optimisation run.

We planned to run these optimisations 1024 times for each

scenario and method. Over the 1024 × 8 = 8129 Bayesian

optimisations planned, the library used for Bayesian

optimisation encountered an unexpected error in 16 cases.

Because the number of failed runs was low (approximately

0.2%) and identifying and fixing this bug would require a huge

effort, we decided not to consider those runs. This explains why

the total number for each optimisation is not exactly 1024 for

some scenarios (1017 in the worst case for scenario g.).
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Moreover, in practical cases, the probability that a user

encounters such a bug is quite low; however, in such cases, the

user can re-run the optimisation with a different random seed to

solve the problem.

The optimisations were conducted simultaneously on two

computers, each with 256GB of RAM and an AMD Ryzen

Threadripper 3990X @2.9GHz 64 cores CPU. One computer

performed the optimisations of all scenarios with H2 = 0.3 and

the other with H2 = 0.7. Because one optimisation required q

cores, 64/q optimisations were run in parallel.
3 Results

3.1 Optimisation behaviour

3.1.1 Example of optimisation progress
Here, we detail the behaviour of the optimisation

using examples.

The results presented in this section are obtained from the

batch in which the optimisations were repeated 16 times with niter =

50 iterations of q = 8 parallel-sampled points at each iteration for all

scenarios. The figures we present associate the representative runs

of Bayesian optimisation with random optimisation, as defined in

the Materials and Methods section (see. 2.4.3).

Figure 2 shows the results of objective function evaluations

for each optimisation iteration in both Bayesian optimisation

and random optimisation for scenario g. As expected, random
FIGURE 2

Examples of optimisation progress for the first optimisation
parametrisation, scenario H2 = 0.3, ngen = 10,B = 10 × 600.
Lines represent the cumulative maximum over optimisation
iterations. prop.type is the method used to select the points:
infill_ei: points proposed by maximizing the EI, initdesign: initial
sampling points for the Bayesian optimisation, rand_opt: points
proposed by random optimisation.
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optimisation explored the points for which the evaluation values

of the objective function were evenly distributed across all

optimisation iterations. In contrast, Bayesian optimisation

yielded results similar to random optimisation for the first

iteration but quickly explored points with higher objective

function evaluation values. Moreover, Bayesian optimisation

continues to explore points with high objective function values.

3.1.2 Explored region of the research space
It is difficult to visualise the parts of the research space that

have been explored by optimisation algorithms, because it has

four dimensions. To ease this visualisation, we performed

principal components analysis (PCA) on the data generated

using the optimisations presented in Figure 2. In the PCA, we

treated the optimised parameters i, iinit, Brep, phenop as variables,

whereas the points sampled by the Bayesian optimisation
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algorithm were active individuals (that is,individuals used for

calculating the PC axes), and the points sampled by random

optimisation were supplementary individuals (that is,

individuals, whose scores were calculated based on the axes).

Figure 3A shows a graph projecting the four-dimensional

sampling points onto the plane spanned by the first two PCs.

The points were coloured according to the number of iterations

at which they were explored. Bayesian optimisation explored

everywhere in the research space initially and then gradually

focused its search on a specific area. As shown in Figure 3B,

which is the same plot as in Figure 3A but with points coloured

according to their observed value of the objective function, the

objective function tends to have high values in this region with

regard to all explored points.

Figures 4A, B show the projection of the points sampled by

random optimisation of the 2 first principal components in the
frontiersin.org
BA

FIGURE 3

Points in the parameter space explored by the Bayesian optimisation projected on the PCA plan. This plan was calculated using the points
explored by the Bayesian optimisation as active individuals. The arrows starting from the origin of the graph are the projections of the active
variables. For readability, the variable names associated with each arrow are not written, but this can be found in the Figure in the
Supplementary Material. Points in the sub-figure (A) are coloured according to their iteration and those in the sub-figure (B) are coloured
according to their corresponding value returned by the objective function.
BA

FIGURE 4

Points in the parameter space explored by the Random optimisation projected on the same plan as in Figure 3. The arrows starting from the
origin of the graph are the projections of active variables. For readability, the variable names associated with each arrow are not written but can
be found on the Figure in the Supplementary Material. Points in the sub-figure (A) are coloured according to their iteration and those in the
sub-figure (B) are coloured according to their corresponding value returned by the objective function.
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PCA. This shows that the area explored by the Bayesian

optimisation algorithm has not been extensively explored by

the random optimisation algorithm.
3.2 Comparison between Bayesian
optimisation and random optimisation

In this section, we compare for each scenario, the optimised

breeding schemes returned by one run of Bayesian optimisation

and one run of random optimisation (the ones defined as

representative in the Materials and Methods section (see.

4.4.3). Thus, we present the “evaluation results” (see. 4.2.1)

returned by the optimisations with niter = 50 iterations of q =

8 parallel sampled points. (i.e., we focus on the breeding schemes

repeated nevaluation = 32 times using the parameters returned by

the optimisation runs).
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We present in Table 1 the number of times Bayesian

optimised schemes gave better results (i.e., returned a higher

value) than the random optimised schemes across all

comparisons (i.e., we compared each of the 32 breeding

scheme simulated using the results of the Bayesian

optimisation run against each of the 32 breeding schemes

simulated the results of random optimisation run; therefore we

performed 32 × 32 = 1024 comparisons).

Bayesian optimisation yielded the lowest performance for

scenario e. where it was better 52.2% of the time (532

comparisons out of 322), whereas the highest performance was

for scenario f. where it was better 86.43% of the time (885

comparisons out of 322).

For half of the scenarios, Bayesian optimisation was better

more than 67% of the time.

Figure 5 shows the boxplots of the breeding simulation

results for the Bayesian optimised parameters and random
TABLE 1 Proportion of times one specific Bayesian optimised schemes outperformed a random optimised schemes for all scenarios.

Scenario BO performance

a. H2 = 0.3, ngen=5, B = 5 × 200 83.11%

b. H2 = 0.3, ngen=5, B = 5 × 600 57.32%

c. H2 = 0.3, ngen=10, B = 10 × 200 56.35%

d. H2 = 0.3, ngen=10, B = 10 × 600 75.20%

e. H2 = 0.7, ngen=5, B = 5 × 200 52.25%

f. H2 = 0.7, ngen=5, B = 5 × 600 86.43%

g. H2 = 0.7, ngen=10, B = 10 × 200 73.93%

h. H2 = 0.7, ngen=10, B = 10 × 600 61.33%

Each scheme has been simulated independently using the same parametrization 32 times. “BO performance” column represents the proportion of times Bayesian optimised schemes
outperformed the random optimised schemes over all combinations of the 32 simulations (ie. 1024 comparisons) expressed in percentage.
FIGURE 5

Boxplots of simulation outputs for 32 repeated simulations using the parametrisation suggested by the optimisation method for scenarios e. and
f. The number of times Bayesian optimised schemes outperformed the random optimised schemes (among the exhaustive 2 by 2 comparisons)
is displayed above the plots. Similar boxplots for all the scenarios can be found in the Supplementary Materials.
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optimised parameters for scenarios e. and f., the two scenarios

mentioned above. And the boxplot for all the scenarios can be

found in the Supplementary Materials.

Next, we compared for each scenario, all optimised breeding

schemes returned by all the 1017 to 1024 runs of Bayesian and

random optimisations of niter = 15 iterations with q = 2 parallel

sampled points at each iteration. Each optimisation run was

evaluated nevaluation = 1 times (i.e., after each run, we simulated

one breeding scheme using the optimised parameters).

As we compared the optimised breeding schemes from

different runs of optimisation, the variance of these data was

derived from both the stochastic nature of the optimisation

algorithms and the stochastic nature of the simulated

breeding campaigns. This reflects what a breeder would

face by performing one optimisation and then one

breeding scheme.
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Table 2 shows the proportion of outcomes where the

Bayesian optimisation results yielded better results (i.e.,

returned a higher value) than random optimisation over all

the ∼ 10172 = 1034289 to ∼ 10242 = 1048576 comparisons (all

the 1017 to 1024 breeding schemes simulated after Bayesian

optimisation runs compared against the 1017 to 1024 simulated

breeding schemes after the random optimisation runs), Bayesian

optimisation showed the lowest performance for scenario a.

where it was better in 57% of the cases and was the best for

scenario f. where it was better in 75% of the cases. For half of the

scenarios, the Bayesian optimisation results were better in more

than 65.6% of the cases.

Figure 6 shows the empirical cumulative distribution

functions (ECDFs) of the results for both optimisation

algorithm for scenarios a. and f., the two scenarios

mentioned above. In these plots, the horizontal axis shows
TABLE 2 Proportion of times Bayesian optimised schemes outperformed random optimised schemes for all scenarios.

Scenario Number of optimisations BO performance

a. H2=0.3,ngen=5,B=5×200 1023 56.99%

b. H2=0.3,ngen=5,B=5×600 1024 66.24%

c. H2=0.3,ngen=10,B=10×200 1020 58.33%

d. H2=0.3,ngen=10,B=10×600 1024 65.23%

e. H2=0.7,ngen=5,B=5×200 1020 62.63%

f. H2=0.7,ngen=5,B=5×600 1024 74.90%

g. H2=0.7,ngen=10,B=10×200 1017 65.88%

h. H2=0.7,ngen=10,B=10×600 1024 73.24%

Simulations have been run 1 time for each of the 1017 to 1024 optimisations for both Bayesian optimisation and random optimisation.”Numberof optimisations” column represents the
number of optimisations actually performed for each optimisation method. “BO performance” column represents the proportion of times Bayesian optimised schemes outperformed
the random optimised schemes over all combinations (ie. between 10172 and 10242 comparisons) expressed in percentage.
FIGURE 6

Empirical distribution functions of the breeding simulation results parametrised using the results of Bayesian optimisation and random
optimisation for scenarios a. and f. Similar plots for all the scenarios can be found in the Supplementary Materials.
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the results of the simulated breeding schemes, and the vertical

axis shows the quantiles over all repetitions. The point on the

horizontal axis, which has quantile 0.5, is the median value of

the data. As such, the further toward the right and bottom

directions acurve is, the better the method is. These ECDFs are

available for all the scenarios in the Supplementary Materials.

Overall, the Bayesian optimisation method performed better

than random optimisation for all scenarios.
3.3 Distribution of the optimised
parameters

Figure 7 presents the observed marginal distributions of the

optimised parameters returned by all the ~1024 runs of Bayesian

optimisations of niter = 15 iterations with q = 2 parallel sampled

points at each iteration for each scenario. These marginal

distributions do not have simple shapes and differ from

scenario to scenario. For example, the distributions of the

parameter iInit are bi-modal and relatively flat for some

scenarios, and the distributions of the parameter i have

different expected values.
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Visually compare the joint distributions of the optimised

parameters is not possible as it would require four dimensions.

Therefore, a PCA was performed on the optimised parameters of

the above results. Figure 8 shows a graph projecting the four

optimised parameters onto the plane spanned by the first two PCs.

For readability, this figure shows only the results for scenarios a.

and h. with contour lines for the densities. The two points

represent the projection of the centre of gravity for the point.

Like the empirical marginal distributions, the distribution

shapes were found to differ for the two scenarios, and to be quite

complex. This may suggest a complex covariance structure

between the optimised parameter which may also depend on

the constraints.
4 Discussion

In this study, an optimisation method applied to a simulated

breeding scheme was described and tested. Even if, by its design,

Bayesian optimisation cannot ensure finding the global maximum,

it can rapidly find breeding scheme parameters that yield good

results regarding the entire parameter space. Further, Bayesian

optimisation outperformed a naive optimisation method.
B

C D

A

FIGURE 7

Marginal distributions of the optimised parameters i (A); iInit (B); Brep (C) and phenop (D) returned by Bayesian optimisation. To keep the
subfigure (A) readable, we have removed the scenarios b. and f. (ngen = 5 and B = ngen × 600). Those densities stick on the left side of the graph
and raised to very high values: respectively ~150 and ~800. Also, we restricted the vertical axis from 0 to 10 therefore, the top of the curve for
scenario e. (H2=0.7,ngen=5,B=5×200 ) reaching ~50 is out of bound.
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Moreover, the empirical distribution of the optimal

parameters found using Bayesian optimisation differed

according to the constraints applied, even if the constraints

and breeding parametrisation used were relatively simple.

Additionally, the shape of those distributions may suggest that

some breeding parameters may be more or less important

depending on the breeding constraints, and that several local

optima may be present which makes this optimisation difficult.

This supports the work of (Henryon et al., 2014) and highlights

the importance of considering the constraints during the design

of an optimal breeding scheme. This last point is particularly

important because breeders have different available resources, so

a “case by case” approach to optimise breeding schemes

is advisable.

The method is also quite flexible, and if a breeding

simulation algorithm can provide an objective function,

Bayesian optimisation algorithms can theoretically be applied.

Currently, there are several computing libraries and software

that can ease the creation of breeding simulations, including

AlphaSimR (Gaynor et al., 2020), BreedingSchemeLanguage

(Yabe et al., 2017), and BreedSimulatR (Diot and Iwata, 2020).

Therefore, breeders can apply Bayesian optimisation to cater to

their specific cases. This also allows the user to easily test several

simulation algorithms using different genetic architectures.

The optimisation algorithm itself can be adapted for

practical use. In this test, because of the nature of the analysis,

we used a fixed number of iterations as the stopping criterion for

optimisation. However, other criteria, such as ending the

optimisation after a specific time or when a set of parameters

returns a value above a specific target can also be used.

The proposed approach still has some limitations. First, the

breeding scheme parametrisation and constraints presented in

this paper are simple, and we used only four numeric parameters
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for parametrisation of the breeding scheme. Moreover, only one

selection criterion and one mating method were used, which

were not part of the scheme parameters. Further, most

generations had the same selection intensity, and there were

no constraints on the number of phenotyping or genotyping at

each generation. Further investigations should thus be

conduc t ed wi th more comp lex breed ing s cheme

parametrisation to obtain insights into the robustness of this

method. Such studies will require the use of categorical

parameters, which could be more difficult to include in a

Bayesian optimisation framework, because they usually assume

a continuous change in the value of an objective function (Zhang

et al., 2020b) (Zhang et al., 2020a). Moreover, Bayesian

optimisation is known to not perform well in a research space

with more than 20 dimensions (Frazier, 2018) (Moriconi et al.,

2020). Because the Gaussian process relies on the distances

between points to calculate the kernel, it is sensitive to the

“curse of dimensionality” (Chen, 2009). Additionally in high

dimensions, the acquisition function becomes flat with few peaks

which make the usage of global optimization algorithm

unfeasible (Rana et al., 2017).

Second, optimisation uses breeding simulations rather than

actual breeding campaigns. Therefore, it is not possible to

guarantee that the results are valid for actual breeding. These

results depends on how well the implemented simulation reflects

reality.The main sources of divergence can be derived from the

simulation algorithm itself and the information used.

For example, during our breeding simulation, even if the

ßimulated breeder” does not know the true marker effects, all the

QTNs related to the phenotypic trait of interest are available in

the genetic data used to build the genomic prediction models,

which is usually not the case in actual breeding campaign.

Additionally, the genetic architecture and probability

distributions implemented in the simulation are not the same

as those in reality. All the parameters of the simulation like the

“real marker effects” and “real linkage map position”may not be

known by the user. One could still use values based on estimates

and assumptions derived from empirical information, but those

estimations can be noisy and/or biased and their effects on the

accuracy of thesimulation are not yet known.
5 Conclusions

This study is one of the first to apply Bayesian optimisation

to the design of breeding schemes while considering constraints.

The presented approach has some limitations and should be

considered as a first proof of concept that demonstrates the

potentialof Bayesian optimisation when applied to breeding

schemes. It also presents the integration of breeding

constraints into the breeding scheme design in aims of

optimisation which can provide a basis for further research.

Bayesian optimisation applied to simulated breeding campaigns
FIGURE 8

2 dimensional density plot of principal component analysis
projection of the optimised parameters returned by the Bayesian
optimisation for scenarios a. and h. The points represent the
projection of the centre of gravity for the points cloud of each
method.
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may provide a new tool to breeders that, rather than providing

strict guidelines, may give insight to design new breeding

schemes. For example, a practical application could be to

estimate some marker effects for a particular phenotypic trait,

phase the genotypes of a population, write the simulation

function of a potential breeding scheme under some

constraints, and finally optimize this function. The results

returned by the optimizer could be an interesting line of

thought when compared with the intuition of the breeder or

their expectations. This may provide information which can

assist the breeder in making decisions on designing

breeding programs.

Since the code we wrote for this article is freely available

online (Diot and Iwata, 2022), and we did our best to make the

BreedSimulatR (Diot and Iwata, 2020) R-package intuitive and

easy to use, anyone with some knowledge with R programming

language (R Core Team, 2020) can reproduce, extend or adapt

our 471 method on their particular cases.

Further studies, focusing on the sensibility of the presented

approach regarding the errors brought by the assumptions of the

simulations, would be necessary to improve the confidence on its

usage in a more practical manner.
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