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Identification of Brachypodium
distachyon B3 genes reveals
that BdB3-54 regulates
primary root growth

Jie Guo1, Hanxiao Liu1, Keli Dai1, Xiangyang Yuan1,
Pingyi Guo1, Weiping Shi1* and Meixue Zhou1,2*

1College of Agronomy, Shanxi Agricultural University, Jinzhong, China, 2Tasmanian Institute of
Agriculture, University of Tasmania, Prospect, TAS, Australia
B3 is a class of plant-specific transcription factors with important roles in plant

development and growth. Here, we identified 69 B3 transcription factors in

Brachypodium distachyon that were unevenly distributed across all five

chromosomes. The ARF, REM, LAV, and RAV subfamilies were grouped based

on sequence characteristics and phylogenetic relationships. The

phylogenetically related members in the B3 family shared conserved

domains and gene structures. Expression profiles showed that B3 genes

were widely expressed in different tissues and varied in response to different

abiotic stresses. BdB3-54 protein from the REM subfamily was located in the

nucleus by subcellular localization and processed transcriptional activation

activity. Overexpression of BdB3-54 in Arabidopsis increased primary root

length. Our study provides a basis for further research on the functions of

BdB3 genes.

KEYWORDS

B3 transcription factor, Brachypodium distachyon , genome-wide, root
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Introduction

B3 transcription factors (TFs) are plant-specific and contain at least one B3 domain.

The B3 domain is named according to its position in the third basic region of the maize

(Zea mays L.) VIVIPAROUS-1 protein (Suzuki et al., 1997). This B3 domain of

approximately 110 amino acids forms two short a-helices and seven b-barrels
(Swaminathan et al., 2008). B3 TFs are classified into RAV (related to ABI3/VP1),

LAV (LEAFY COTYLEDON2-ABI3-VAL), REM (Reproductive meristem), and ARF
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(Auxin response factor) subfamilies based on domain

characteristics and phylogenetic relationships (Swaminathan

et al., 2008; Yamasaki et al., 2013). ARF and LAV members

contain a single B3 domain whereas REM members possess up

to six B3 domains. RAV possesses one B3 domain and an AP2/

ERF domain (Swaminathan et al., 2008). The recognition

sequence motif 5’-TGTCTC-3’ is an ARF member (Ulmasov

et al., 1997) and motifs 5’-CATGCA-3’ and 5’-CACCTG-3’ are

LAV members (Ulmasov et al., 1997) and RAV members

(Kagaya et al., 1999), respectively. However, the DNA-binding

abilities of REMmembers are still not fully understood and need

further investigation (Levy et al., 2002).

B3 genes are widely involved in plant growth and

development. In the LAV group, Arabidopsis thaliana FUSCA3

regulates seed maturation (Luerssen et al., 1998); maize

ZmABI19 is essential for the initiation of grain filling (Yang

et al., 2021); and overexpression of citrus FUSCA3 promotes

somatic embryogenesis (Liu et al., 2018). In the ARF group,

overexpression of AtARF8 affects the development of fruit,

hypocotyl and roots (Tian et al., 2004); AtARF4 regulates the

regeneration of shoot meristems (Zhang et al., 2021); and

OsARF8 regulates hypocotyl elongation (Yang et al., 2006). In

the RAV group, rice (Oryza sativa L.) RAV members regulate

flowering time (Osnato et al., 2020), whereas overexpression of

strawberry (Fragaria × ananassa) FaRAV1 increases

anthocyanin production (Zhang et al., 2020). In the REM

group, overexpression of Arabidopsis REM16 accelerates

flowering (Yu et al., 2020), and silencing of both REM34 and

REM35 in Arabidopsis affects the development of reproductive

organs (Caselli et al., 2019).

The B3 genes are also involved in stress and hormone

responses. Arabidopsis RAV1 functions in abscisic acid

(ABA) signaling by regulating the expression of ABI3,

ABI4, and ABI5 in ABA signaling (Feng et al., 2014);

whereas overexpression of cotton (Gossypium hirsutum L.)

RAV1 in Arabidopsis [Arabidopsis thaliana (L.) Heynh.]

causes sensitivity to ABA, salt, and drought stresses (Li

et al., 2015). Moreover, AtARF7 is involved in hypocotyl

response to auxin (Harper et al., 2000).

B3 TFs have been identified in the genomes of many plant

species, including 118 in Arabidopsis, 91 in rice (Swaminathan

et al., 2008), 72 in Citrus sinensis L. (Liu et al., 2020), 57 in

pineapple (Ananas comosus L.) (Ruan et al., 2021), 187 in

Brassica rapa L (Peng and Weselake, 2013), 81 in soybean

[Glycine max (L.) Merr.] (Peng and Weselake, 2013), and 61

in castor bean (Ricinus communis L.) (Wang et al., 2022).

However, little is known about Brachypodium [Brachypodium

distachyon (L.) Beauv.], the model monocot. In this study, we

investigated the number, structure, and classification of B.

distachyon B3 TFs. We cloned the gene BdB3-54 to study its

function in root development through overexpression in

Arabidopsis. Our study provides a basis for further research

on plant B3 genes.
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Materials and methods

Identification of B3 TFs

The genome sequences of Brachypodium, Arabidopsis, rice,

maize, sorghum (Sorghum bicolor L.), barley (Hordeum vulgare

L.), wheat (Triticum aestivum L.), and foxtail millet [Setaria

italica (L.) Beauv.] were obtained from Ensembl Plants (Bolser

et al., 2017). Identification of B3 TFs was carried out in four

steps. First, a BLAST search was performed on the obtained

genome protein sequences using Arabidopsis and rice B3 protein

sequences as queries (threshold: E<e-5). Second, results from the

first step were used to search the B3 structural domain signature

model (PF02362) from Pfam (threshold: E<e-5) (El-Gebali et al.,

2019). Third, alternative splicing events and redundancies were

manually removed and the NCBI-CDD interface (Marchler-

Bauer et al., 2015) was used to confirm putative B3 TFs,

removing those without a B3 structural domain.

The physical and chemical properties of B3 TFs were

predicted using the ExPASy web server (Artimo et al., 2012),

and subcellular localization of B3 proteins was predicted using

CELLO (Yu et al., 2004).
Phylogenetic relationships, gene
duplications, and collinearity analyses

MEGA7 software was used to construct the Neighbor-

Joining (NJ) trees (Kumar et al., 2016) with 1,000 replications

based on the full-length sequence alignment. Segmentally and

tandemly duplicated events, and collinearity relationships

between BdB3 and other plants were analyzed using MCScanX

(Wang et al., 2012). TBtools was utilized to map positions,

duplications, and collinearity relationships of the candidate

genes (Chen et al., 2020).
Gene composition analysis

Gene structures were predicted by GSDS 2.0 (Hu et al.,

2015). Conserved protein regions were predicted using NCBI-

CDD (Marchler-Bauer et al., 2015). Gene compositions were

drawn using TBtools (Chen et al., 2020).
Plant growth, treatment conditions, and
RT-qPCR assay

Brachypodium distachyon ecotype Bd21 was grown in an

artificial climate chamber under a 16 h light (26°C; 08:00–00:00)/

8 h darkness (24°C; 00:00–08:00) cycle. Roots, stems, leaves,

young inflorescences, and seeds were sampled 10 d after

pollination to determine different tissue expressions. Ten-day-
frontiersin.org
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old seedlings were subjected to simulated drought (20%

PEG6000), salt (200 mM), heat (42°C), 10 mM 3-indoleacetic

acid (IAA), 10 mM salicylic acid (SA), 10 mM ABA, and 10 mM
jasmonic acid (JA) treatments for 2 h in hydroponic culture and

sampled for different stresses. After sampling, tissues and whole

seedlings were collected and stored at -80°C for RNA isolation.

Total RNA was extracted using an RNA extraction kit

(TIANGEN, Beijing). Next, RT-qPCR was performed in

triplicate as previously described (Guo et al., 2021). Relative

expression levels were calculated using the 2–DDCt method and

normalized to the expression of BdGAPDH (Hong et al., 2008)

or AtActin 8 (Reichel et al., 2016).
Arabidopsis transformation, subcellular
localization, and transcriptional assays

The coding sequence (CDS) of BdB3-54 was amplified by

PCR and cloned into pCambia-1302 and pCAMV35S-GFP with a

NOS terminator, respectively. pCambia-1302-BdB3-54 and

pCAMV35S-BdB3-54-GFP were transferred into the

Agrobacterium tumefaciens strain GV3101 through

electroporation. Homozygous transformants of Arabidopsis

were obtained using the floral dip method (Clough and Bent,

1998). The transgenic lines were screened using hygromycin B

solution (40 mg/L) and confirmed by PCR analysis. Third-

generation seeds of transgenic lines were used for further

analysis. Finally, pCAMV35S-BdB3-54-GFP was transformed

into tobacco (Nicotiana tabacum L.) leaves using the GV3101

strain for subcellular localization with an Olympus IX83-

FV1200 confocal microscope (Olympus, Tokyo).

The pGBKT7-BdB3-54 vector was constructed for yeast

autoactivation assays. Then, pGBKT7-BdB3-54, negative vector

pGBKT7, and positive vector pGBKT7-p53 were transformed

into yeast strain Y2H. The surviving clones were grown on SD/-

Trp medium, and the transformed yeast cells were diluted and

dotted on SD/-Trp and SD/-Trp/-Ade/-His media. Cells were

incubated at 30°C for 3 d. Primers used in this study
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(Supplementary Table S1) were designed using the Oligo 7

software (Rychlik, 2007).
Phenotypic observations and
statistical analyses

Arabidopsis seedlings were grown in a growth chamber

under a 16 h light (22°C; 08:00–00:00)/8 h darkness (20°C;

00:00–08:00) regime. Root length was measured on the tenth day

and counted using the ImageJ software (Rueden et al., 2017).

Photos of the root apical meristem cell on the 4-day-old plants

were taken after staining with propidium iodide (PI, 0.01 mg/ml)

for 1-2 min using confocal microscopy (Olympus IX83-FV1200,

Japan) with a 561-nm laser for PI. Data were analyzed and

plotted using the IBM SPSS Statistics software (USA). Values are

shown as means ± SD, and significant differences are indicated

by different letters or e-values (P <0.05, one-way ANOVA).
Results

B3 TFs in six monocot plants

A comprehensive search of the six monocot plant species

identified 69, 589, 99, 92, 130, and 91 B3 genes in B. distachyon,

wheat, maize, foxtail millet, barley, and sorghum, respectively

(Table 1). Based on the characteristics of the conserved domains

and the number of B3 domains, these genes were classified into

four subfamilies: 250 in ARF, 76 in RAV, 890 in REM, and 63 in

LAV (Supplementary Tables 2, 3).
B3 TFs in Brachypodium distachyon

The 69 putative B3 TFs were unevenly distributed on five B.

distachyon chromosomes with 21, 18, 12, 10, and 8 on

chromosomes 1, 2, 3, 4, and 5, respectively (Figure 1). They
TABLE 1 Numbers of B3 genes identified in different plant species.

Plant species ARF RAV REM LAV Total Proportion of the genome (%)

Brachypodium distachyon 24 4 36 5 69 0.20

Oryza sativa# 28 16 40 7 91 0.24

Triticum aestivum 66 26 479 18 589 0.55

Zea mays 39 5 47 8 99 0.25

Setaria italica 24 6 57 5 92 0.26

Hordeum vulgare 21 3 99 7 130 0.36

Sorghum bicolor 25 3 56 7 91 0.27

Arabidopsis thaliana# 23 13 76 6 118 0.43

Total 250 76 890 63 1279
#B3 members in Oryza sativa and Arabidopsis thaliana were reported in Swaminathan et al. (2008) research.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1050171
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2022.1050171
were named BdB3-1 to BdB3-69 and validated with expressed

sequence tags (ESTs) from the NCBI database. The predicted

length of the BdB3 proteins ranged from 166 (BdB3-16) to

1,227 (BdB3-55) amino acids with molecular weights ranging

from 18.10 (BdB3-16) to 139.50 (BdB3-55) kDa, and the

genomic sequence lengths ranged from 1,837 bp (BdB3-22)

to 14,692 bp (BdB3-55) (Supplementary Table 3). Protein

subcellular localization prediction showed that 62 BdB3

proteins were localized in the nucleus, three in the

cytoplasmic, three in the chloroplast, and one (BdB3-68) in

the extracellular matrix.
Synteny and homologous gene pairs

Gene duplication analysis detected 15 tandemly duplicated

genes. They formed nine gene pairs. Among them, BdB3-64 was

pared with three genes (BdB3-21, BdB3-46, and BdB3-51) and

BdB3-63 was pared with two genes (BdB3-45, and BdB3-50)

(Figure 1, Supplementary Table 4). Genome synteny between B.

distachyon and the other plant species showed 3, 51, 52, 41, 52,

and 47 BdB3 gene homologs in Arabidopsis, rice, wheat, barley,

sorghum, and maize, respectively (Figure 2, Supplementary
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Table 5). These results suggest that BdB3 genes share similar

structures and functions with orthologs in other monocot plants.
Phylogenetic trees and gene
components of BdB3 TFs

NJ trees for the four subfamilies were constructed according to

sequence characteristics to explore the phylogenetic relationships

of BdB3 TFs (Figure 3A). As shown in Figure 3B, each B3member

contained at least one B3 domain; REMmembers contained 1 to 6

B3 domains; and ARF members contained a single B3 domain at

the N-terminus and one or two Aux/IAA domains (carboxyl-

terminal interaction domains). LAVmembers had one B3 domain

at the C-terminus and two members (BdB3-6 and BdB3-7) had a

CW-type zinc finger. Each RAV member contained one AP2

domain at the N-terminus and one B3 domain at the C-terminus.

Exon numbers in B3 genes ranged from one to 16

(Figure 3C). Each subgroup had a different number of exons;

RAV members contained 1-2 exons, whereas the REM members

had 1-15. Additionally, 22 members contained more than 5

exons, and all LAV members had more than 7 exons. The exon

number in ARF members varied greatly with five having 2 or 3
FIGURE 1

Chromosome location and segmental duplication of the BdB3 genes. Blue lines connect duplicated genes that are shown in red.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1050171
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2022.1050171
B

C

D

E

F

A

FIGURE 2

Synteny analysis of the B3 genes between B distachyon and A thaliana (A), O. sativa (B), T. aestivum (C), Z. mays (D), H vulgare (E), and S. bicolor
(F). Gray lines in the background indicate the collinear blocks within B distachyon and other plant species, and red lines highlight syntenic B3
gene pairs.
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exons, and the other members having more than 10 exons. This

structural diversity implies diverse functions for BdB3 genes.
Expression pattern analyses

Twenty BdB3 genes, including 3 RAV, 6 ARF, 4 LAV, and 7

REM members, were analyzed for expressions levels in different
Frontiers in Plant Science 06
tissues (roots, stems, leaves, young inflorescences, and seeds

sampled 10 days after pollination) using RT-qPCR. Expression

of these BdB3 genes was detected in all tissues (Figure 4, Figure

S1A). For example, the LAV genes BdB3-7 and BdB3-67 were

highly expressed in seeds, whereas BdB3-33 and BdB3-42 were

highly expressed in roots and inflorescences, respectively.

Further, the REM genes BdB3-12, -30, -39, and -49 had high
B CA

FIGURE 3

Phylogenetic relationships, conserved protein domains, and gene structures of B distachyon REM, RAV, ARF, and LAV members. (A) Neighbor-
joining trees constructed for B3 genes from the four subfamilies. (B) The four conserved protein domains are shown in different colors. (C)
Structures of BdB3 genes. Gray boxes indicate up- or down-stream structures, black boxes indicate exons, and black lines indicate introns.
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FIGURE 4

Expression patterns of BdB3 genes in different tissues. (A–D) represent the expression patterns of RAV, ARF, LAV, and REM genes. Abscissas
represent different tissues, including roots, stems, leaves, early inflorescences, and seeds at 10 days after pollination. Ordinates represent relative
expression levels. Transcript levels of BdB3 genes were normalized to those of BdGAPDH, and expression levels of root tissues were set to 1.
Data are shown as means ± SE (n = 3) Letters above the bars indicate significant differences (P <0.05, one-way ANOVA)..
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expression levels in inflorescences, whereas BdB3-37, -49, and

-54 showed high expression levels in roots.

The expression of selected BdB3 genes under abiotic and

hormonal stresses varied considerably compared to the control

(no treatment) (Figure 5, Figures S1B, C). For the RAV family,

genes BdB3-22 and BdB3-32 were significantly down-regulated

by IAA and SA, and BdB3-22 and BdB3-32 were significantly

down-regulated by salinity and heat. JA had the greatest impact

on the expression of BdB3-32, whereas BdB3-60 was up-

regulated by IAA, SA, and ABA. Three (BdB3-45, -58, and -63)

and five (BdB3-45, -48, -58, -63, and -66) ARF genes were highly

expressed under IAA and SA treatments, respectively. Five genes

(BdB3-45, -48, -58, -63, -66), four genes (BdB3-45, -48, -58, and

-66), and three genes (BdB3-48, -58, and -63) were up-regulated

under drought, heat, and salinity stresses. BdB3-62 was down-

regulated by all stress conditions. All LAV genes were down-

regulated by IAA. BdB3-7 was up-regulated under all different

treatments apart from IAA. Among REM genes, heat stress had

the greatest impact on their expressions with BdB3-12, -30, -37,

-39, and -49 being up-regulated and genes BdB3-19 and -54

being down-regulated. Hormones including IAA, SA, ABA, and

JA significantly regulated the expressions of BdB3-12, -30, -37,

-39, and -49.
Subcellular localization and
transactivation assay of BdB3-54

BdB3-54 belongs to the REM subfamily and its functions

have rarely been investigated. Subcellular localization analysis

predicted that BdB3-54 protein was localized in the nucleus.

When transiently expressed in tobacco leaves, BdB3-54 fusion

protein signals overlapped the DAPI signal confirming that

BdB3-54 protein was located in the nucleus (Figure 6A).

A transactivation assay was performed to test the

transcriptional activation activity of BdB3-54 using Y2H

assays. Yeast cells carrying the pGBKT7-BdB3-54 plasmid grew

well on the defective SD/-Trp-His-Ade medium, which was

similar to pGABKT7-p53, a positive control plasmid. In

contrast, yeast cells carrying the negative control pGBKT-7

showed much less growth (Figure 6B). These results indicated

that BdB3-54 had transcriptional self-activation activity.
Overexpression of BdB3-54
in Arabidopsis increased primary
root length

Expression pattern analysis showed that BdB3-54 was highly

expressed in root tissues (Figure 4D). To determine its role in

root development, two transgenic Arabidopsis lines

overexpressing BdB3-54 driven by the CaMV35S promoter

were generated (Figure 7A). The primary root lengths of
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transgenic plants overexpressing BdB3-54 were significantly

longer than the wild-type (WT) Col-0 (Figures 7B, C). To

explore potential factors leading to the longer primary root

lengths of transgenic plants, we examined the root apical

meristem cell size on the 4-day-old plants. With the same

number of cells, the transgenic lines occupied a larger area

(Figure S2). We also investigated the gene expression of four

root development-related genes in the WT and the transgenic

lines AtWOX5, AtARF7, AtARF19, and AtEXPA4. As shown in

Figure 7D, the expression levels of these genes were significantly

higher in transgenic plants than in the WT (P <0.05). These

results indicated that ectopic expression of BdB3-54 regulated

primary root growth in Arabidopsis.
Discussion

Characteristics of B3 TFs in B. distachyon

We identified 69 B3 genes in the B. distachyon genome. The

proportion of B3 genes in the B. distachyon genome was

approximately 0.20%, which was less than that in rice (0.24%),

wheat (0.38%), Arabidopsis (0.43%), and other monocot species

(Table 1) (Swaminathan et al., 2008). The gene number of three

subfamilies, excluding ARF members, was lower than that in

other plant species, suggesting that gene loss had occurred

during evolution.

The B3 genes in B. distachyon were grouped into REM, ARF,

LAV, and RAV subfamilies according to protein characteristics

and the number of B3 domains. Each subfamily member shares a

similar domain composition and gene structure. Gene structures

for different subfamilies showed significant variation in intron

number and length, indicating that these B3 genes might have

undergone intron loss or gain during evolution. Phylogenetic

analysis of different subfamilies in previous studies indicated

that the same clade members also shared similar gene

components, including gene structure and conserved domains,

suggesting conserved functions and common origins

(Bhattacharjee et al., 2015; Verma and Bhatia, 2019).
Diverse functions of B3 TFs

Genes perform functions according to their expression in

different tissues, and gene expression patterns reflect the gene

function. For example, many Arabidopsis B3 genes, such as

ARF3, ARF5, ARF6, ARF8, and ARF9, have diverse functions in

the development of carpels, floral parts, and fruit, as well as

lateral roots (Li et al., 2016; Zhang et al., 2018). AtVAL-1, -2, and

-3 proteins are required for seed germination (Suzuki et al., 2007;

Jia et al., 2013; Schneider et al., 2016). Tissue-specific expression

patterns in the present study indicated that BdB3 genes were

expressed in all tissues examined, and members in different
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FIGURE 5

Expression patterns of BdB3 genes under different hormonal and abiotic stress conditions. (A–D) represent the expression patterns of RAV, ARF,
LAV, and REM members. Abscissas represents different stress of hormone treatments. CK, non-treated. Ordinates represent the relative
expression levels. Data are means ± SE (n = 3). Letters above the bars indicate significant differences (P <0.05, one-way ANOVA).
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subfamilies showed different expression patterns, further

indicating their functional diversity in plant growth and

development. Genome-wide expression pattern analyses

showed that wheat, citrus, and cotton B3 genes also had

different expression patterns in different tissues (Liu and

Zhang, 2017; Liu et al., 2020; Luo et al., 2022).

BdB3 genes displayed significant differential expression

under different abiotic stress and hormone conditions,

suggesting crucial roles in response to stress. Hormones such

as IAA, ABA, SA, and JA are known to regulate stress-related

pathways as plants grow and develop (Verma et al., 2016). Most

BdB3 genes responded differentially under different hormones,

suggesting that hormones specifically regulated the expression of

BdB3 genes under certain conditions. Similarly, hormones also

regulate the expression of plant B3 genes in other species, such as

Arabidopsis, chickpea, and citrus, indicating that the functions

of B3 genes are diverse but conserved across plant species

(Verma and Bhatia, 2019; Liu et al., 2020).
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BdB3-54 functions as a TF and has a key
role in root development

Various studies have reported that B3 genes are involved in

plant root growth and development. For examples, the LAV

member FUSCA3 interacts with LEC2 to control the formation

of lateral roots in Arabidopsis (Tang et al., 2017); RAV member

GmRAV1 is an important positive regulator involved in

promoting root regeneration in Arabidopsis and soybean

(Zhang et al., 2019); Ectopic expression of TaARF4-A in

Arabidopsis leads to shortened primary root length (Wang

et al., 2019); AtARF7 and AtARF19 regulate the formation of

lateral roots through the activation of LBD/ASL genes

(Okushima et al., 2007). Our study showed that BdB3-54

contained two B3 domains and acted as a TF in B. distachyon,

which is supported by the fact that a BdB3-54-GFP fusion

protein was localized in the nucleus and had transcriptional

activity in yeast cells.
B

A

FIGURE 6

Subcellular localization and transactivation assay of BdB3-54. (A). BdB3-54 protein was transiently expressed in tobacco (Nicotiana benthamiana
L.) leaves to determine its subcellular localization; bar, 50 mm. (B). BdB3-54 transactivation assay. BdB3-54 was ligated to the pGBKT7 vector,
and transformed yeast cells were screened on SD/-Trp and SD/-Trp-His-Ade media.
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BdB3-54 was highly expressed in root tissue, and

overexpression of the gene increased root length when compared

to the WT. These observations suggest that the B3 genes are

involved in root development and growth, and the longer root

length in transgenic plants is mainly due to enlarged cells. Root

development-related genes, such as expansins (EXP), WUS-related

homeobox genes (WOXs), and ARFs, were also detected during our

investigation of BdB3-54 function. Among these root development-

related genes, AtWOX5 is expressed in the quiescent center and

affects root development (Kong et al., 2015); AtARF7 and AtARF19

regulate the formation of lateral root formation via direct activation

of the downstream genes (Okushima et al., 2007); and AtEXPA4 is

involved in root elongation (Liu et al., 2021). Expression of

AtWOX5, AtARF7, AtARF19, and AtEXPA4 was up-regulated in

a transgenic Arabidopsis line carrying BdB3-54 suggesting that

BdB3-54 regulates the expression of other root development-

related genes. B. distachyon, wheat, and rice all belong to

pooideae. The function of BdB3-54 in root development indicated

that it can be used for molecular breeding in cereal crops

In conclusion, 69 B3 genes were identified in the B.

distachyon genome. These genes were expressed in different

plant tissues and showed different responses to various

stresses. Further study on one of the highly expressed genes,

BdB3-54, indicated that this gene functions as a TF and has an

important role in root development.
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