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verification of leaf yellowing
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whole growth period
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Weihua Li1, Junpu Liu1,2* and Dexi Sun1*

1The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit),
Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural
Sciences, Zhengzhou, China, 2Western Research Institute, Chinese Academy of Agricultural
Sciences, Changji, China
Increasing light energy utilization efficiency is an effective way to increase yield

and improve quality of watermelon. Leaf is the main place for photosynthesis,

and the color of leaf is directly related to the change of photosynthesis. In

addition, leaf yellowing can be used as a marker trait to play an important role in

watermelon hybrid breeding and improve seed breeding. It can not only be used

to eliminate hybrids at seedling stage, but also be used to determine seed purity.

In this study, transcriptome analysis was first carried out using the whole growth

period leaf yellowing watermelon mutant w-yl and inbred line ZK, and identified

2,471 differentially expressed genes (DEGs) in the comparison groupw-yl-vs-ZK.

Among the top 20 terms of the gene ontology (GO) enrichment pathway, 17

terms were related to photosynthesis. KEGG pathway enrichment analysis

showed that the most abundant pathway was photosynthesis—antenna

proteins. The F2 population was constructed by conventional hybridization

with the inbred line ZK. Genetic analysis showed that leaf yellowing of the

mutant was controlled by a single recessive gene. The leaf yellowing gene of

watermelon located between Ind14,179,011 and InD16,396,362 on chromosome

2 by using indel-specific PCRmarkers, with a region of 2.217 Mb. In the interval, it

was found that five genes may have gene fragment deletion in w-yl, among

which Cla97C02G036010, Cla97C02G036030, Cla97C02G036040,

Cla97C02G036050 were the whole fragment loss, and Cla97C02G0360 was

the C-terminal partial base loss. Gene function verification results showed that

Cla97C02G036040, Cla97C02G036050 and Cla97C02G036060 may be the

key factors leading to yellowing of w-yl leaves.
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Introduction

Photosynthesis is essential in the process of plant growth and

development, which is of great significance for plant survival.

Leaves are the main place for photosynthesis in plants, and leaf

color determines photosynthetic efficiency to a large extent

(Chen et al., 2022). Different pigments can absorb light waves

of different lengths, so leaves of plants show different colors due

to different pigment contents and proportions. Leaf color

mutation is a frequent and easily recognized phenomenon in

nature, so leaf color mutants are ideal materials for studying

plant development (Yuan et al., 2022b). At present, mutant

materials have been found in a variety of plants, and the leaf

color mutation types include albino, etiolation, stripe, yellow-

green, green-yellow, green-white, light green and verdant green,

etc (Awan et al., 1980). There are many ways of forming leaf

color mutation. External factors mainly include light,

temperature, plant hormones, mineral elements and metal

ions. Internal factors mainly include genes related to

photosynthetic pigment metabolism pathway, such as

chloroplast biosynthesis pathway, chlorophyll degradation

pathway, heme metabolism pathway and carotenoid

metabolism pathway; as well as genes related to chloroplast

development, such as chloroplast development and protein

synthesis, nucleoplasmic interactions. All of these can lead to a

decrease in the chlorophyll content of plant leaves, resulting in

the leaves can not appear green color (Zhang et al., 2006;

Sugliani et al., 2016; Li et al., 2018).

Studies on leaf color mutations mainly focus on the cell

structure, photosynthetic physiology, molecular biology and

other aspects of leaf color mutants, among which more in-depth

studies have been conducted in model plants such as rice and

Arabidopsis. For example, more than 160 leaf color mutants have

been found in rice, distributed on 12 chromosomes, among which

a small number of leaf color mutants have been cloned (Dong

et al., 2013; Huang et al., 2017; Tan et al., 2019). Among them, 14

genes are directly involved in chlorophyll biosynthesis and

catabolism (Sakuraba et al., 2013), and 6 genes are indirectly

involved in this process (Yang et al., 2011), while 16 genes are

directly involved in chloroplast development regulation

(Gothandam et al., 2005) and 3 were indirectly involved in this

process (Hibara et al., 2009) Therefore, the mutant genes are

mainly divided into two categories, namely, genes in the

chlorophyll biosynthesis and degradation pathway and genes in

the chloroplast development pathway. In addition, previous

studies have proved that most leaf color mutations are nuclear

inheritance except for a small number of leaf color mutations for

cytoplasmic inheritance (Kong et al., 2016; Li et al., 2021a; Li et al.,

2021b). In recent years, with the application of high-throughput

sequencing, the study of leaf color mutation has been gradually

carried out in some important economic crops and ornamental

plants, such as tea, pepper, maize, melon and cucumber (Shao

et al., 2013; Li, 2016; Lai et al., 2018; Wang et al., 2019;
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Zhu et al., 2019; Gao et al., 2020; Xiong et al., 2020), which will

help improve crop quality and increase yield (Shao, 2013; Ren

et al., 2019). The results of the latest study on cucumber showed

that the post-green mutant SC311Y was controlled by a recessive

gene, which was identified as the gene controlling chloroplast

development by BSA-seq and RNA-seq techniques (Zhang

et al., 2022).

The genetic basis of watermelon is narrow and the natural

mutation rate is low. There are few studies on watermelon leaf

color mutants. The leaf color mutation materials are mainly

divided into four categories: (1) watermelon leaf color mottled

mutants, which are characterized by white-green cotyledons and

mosaic-like spots in the first true leaf under low temperature

environment (Provvidenti, 1994; Wang et al., 2011); (2)

watermelon albino mutant, showing pale yellow or pale cream

cotyledons, gradually turning green but remaining white at leaf

margins, white tendrils, petioles, petals and hypocotyls (Zhang

et al., 1996; Wang et al., 2011; Hou et al., 2016); (3) incomplete

dominant yellow leaf mutants (Hou et al., 2016); (4) In post-

green mutants, the leaves showed light green cotyledons and

leaves at the early stage, and changed to normal green at the later

stage (Wang and Wang, 1997; Ma and Zhang, 1999; Wang et al.,

2011; Xu et al., 2022). In terms of genetic analysis and molecular

biology, the early stage mainly focused on the study of genetic

patterns, and confirmed that watermelon leaf color mutants

were controlled by recessive genes based on the discovered

mutant materials (Rhodes, 1986; Provvidenti, 1994; Zhang

et al., 1996). With the publication of watermelon genome and

the rapid development of sequencing technology (Guo et al.,

2019; Wu et al., 2019), more high density genetic maps of

watermelon emerged (Duan et al., 2022), but only a few maps

involved watermelon leaf color. For example, Haileslassie

(Haileslassie, 2020) found the presence of a SNP in the gene

ClCG03G010030 of the watermelon post-green mutant Houlv,

resulting in an arginine to lysine mutation. The gene encodes an

FtsH extracellular protease family protein which is involved in

the development of early chloroplast. Exploring the mechanism

of leaf color variation can provide a theoretical basis for genetic

improvement and meet people’s needs in production, seed

selection and breeding.

China is the largest watermelon planting and consumption

country in the world. Although the demands for watermelon is

diversified, cultivating new varieties with high yield and high

quality is still the main direction of watermelon breeding.

Improving the utilization efficiency of light energy of

watermelons is an effective way to promote yield and improve

quality. In this study, yellow leaf throughout the whole growth

period material w-yl and green leaf material ZK were used as

experimental materials. The position of the leaf yellowing gene

in the chromosome was preliminarily located by BSA-seq

technology. The high-density genetic map was constructed by

the F2 population using InDel markers for mapping the position

of the mutant gene in the chromosome, and the key candidate
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genes and key variations were screened in combination with

transcriptome data. Finally, the virus-induced gene silencing

(VIGS) assay was performed on the key candidate genes to

clarify the function of the yellowing leaf gene. The development

of this study will help to explore the mechanism of leaf yellowing

in the whole growth period of watermelon, and provide

theoretical support for the application of leaf yellowing and

molecular marker-assisted selection of new watermelon varieties

with high photosynthetic efficiency.

Materials and methods

Plant material cultivation and samples
collection

The leaf color yellowing mutant material w-yl was obtained

from the National Mid-term Genebank for Watermelon and

Melon (Zhengzhou, China), the leaves in the whole growth

period were yellow, including cotyledon and fruit. Normal

green leaf material ZK was supplied by the Diploid

Watermelon Genetics and Breeding Research Group of

Zhengzhou Fruit Research Institute (ZZFRI) of Chinese

Academy of Agricultural Sciences (CAAS). In this study, the

mutant material was crossed with the ZK, and six generations

were constructed: P1 (the yellow parent w-yl), P2 (the green leaf

parent ZK), F1 (orthogonal), BC1P1, BC1P2, and F2. The

materials were planted in a greenhouse at the Xinxiang

Comprehensive Experimental Base of CAAS, with a row

spacing of 1.5 m and a plant spacing of 0.4 m. The phenotype

of leaf color was determined by visual observation.

Plant for chlorophyll were planted in an artificial climate

chamber and treated with different environmental factors at

three true-leaf stage: temperature 35°C/28°C, light intensity

30,000 Lx, namely HTHL(high temperature and high light);

temperature 35°C/28°C, light intensity 12,000 Lx, namely as

HTNL (high temperature and normal light); temperature 35°C/

28°C, light intensity 5,000 Lx, marked as HTLL (high

temperature and low light); temperature 28°C/25°C, light

intensity 30,000 Lx, marked as NTHL (normal temperature

and high light); temperature 28°C/25°C, light intensity 12,000

Lx, marked as NTNL (normal temperature and normal light);

temperature 28°C/25°C, light intensity 5,000 Lx, marked as

NTLL (normal temperature and low light); temperature 15°C/

15°C, light intensity 30,000 Lx, marked as LTHL (low

temperature and high light); temperature 15°C/15°C, light

intensity 12,000 Lx, marked as LTNL (low temperature and

normal light); 15°C/15°C, 5,000 Lx, labeled as LTLL (low

temperature and low light). Light cycle was 16h/8h, humidity

80%. Each treatment set three replicates. Chlorophyll content

was determined after 8 days of treatment.

Plant for chlorophyll precursors and transcriptome

sequencing were grown in a smart greenhouse in ZZFRI of
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CAAS, the light cycle was 16h/8h, the temperature was 25°C/

18°C and the light is natural light. The leaves were sampled after 8

days of treatment.
Determination of pigment content

The third true leaf from five seedlings was sampled and

mixed, weighed 0.1 g and put into a 15 mL centrifuge tube

respectively, added 10 mL of 96% ethanol, and soaked in dark

environment until the leaves turned completely white (Yuan

et al., 2017). The absorbance A665, A649 and A470 at 665 nm,

649 nm and 470 nm were determined by UV spectrophotometer

(UV-2600I, Shimadzu, Kyoto, Japan). The concentrations of

chlorophyll a (chla), chlorophyll b (chlb), total chlorophyll

(chla+b) and carotenoids were calculated using 96% ethanol as

blank control. The equations are as following:

Chla  mg · L−1
� �

  =  13:95 �  A665 − 6:88 �  A649

Chlb  mg · L−1
� �

  =  24:96 �  A649 − 7:32 �  A665

Chla + b  mg · L−1
� �

  =  chla + chlb 

=  6:63 �  A665 + 18:08 �  A649

Carotenoids  mg · L−1
� �

 

=   1000 �  A470−2:05 �  Chla  − 114:8 �  Chlbð Þ=248

Chlorophyll content (mg·g-1 = (C × V)/(W × 1000). C

represents chlorophyll content, V represents the total volume

of extract (mL), and W represents leaf mass (g).
Determination of chlorophyll precursor

The contents of main chlorophyll precursor in the process of

chlorophyll synthesis were measured, among which d-
aminolevulinic acid (ALA) was determined according to the

method of Dei (Dei, 2010) and the molar concentration of ALA

was calculated with a molar extinction coefficient of 7.2 × 104

mol-1·cm-1at 535 nm. Relative contents of protoporphyrin IX

(protoIX), Mg-protoporphyrin IX (Mg-proto IX), and pchlide

were determined according to the method of Rebeiz

(Rebeizjames et al., 1975) and Lee (Lee et al., 1992). The

relative mass molar concentration of Mg-Proto IX is presented

as F 440
ex595 : fluorescence emission intensity at 595 nm under 440

nm excitation light. Proto IX (F 440
ex633 )) = (F  440

ex633   − 0:25 �
 F  440

ex622   − 0:24 �  F  440
ex640 )=0:95;

Pchlide ð 440
ex640 ) =  (F  440

ex640   − 0:03 �  F  440
ex633 )=0:99:
frontiersin.org

https://doi.org/10.3389/fpls.2022.1049114
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2022.1049114
RNA sequencing

Leaves of five plants were selected as a sample from w-yl and

ZK, with three biological replicates respectively. Total RNA was

extracted using RNeasy Plant Mini Kit (Beijing Tiagen),

following the manufacturer’s instructions. Then RNA was

reversely transcribed to cDNA, and the cDNA fragments were

segmented by PCR. Finally, the double-stranded PCR product is

thermally denatured to form single-stranded circular DNA,

which is then formatted into a final library. The cDNA library

was sequenced by BGISEQ-500 system (BGI-Shenzhen, China)

with reads of 100bp in length.

The sequencing data were screened to obtain Clean reads,

which were then mapped into the ‘97103’ watermelon genome

(http://cucurbitgenomics.org/organism/21) using Bowtie2. Gene

expression levels were calculated using FPKM (million

fragments per kilobase). Based on KEGG (http://www.genome.

jp/kegg/) and GO (http://www.geneontology.org/) database for

gene annotation and function assignment. Differentially

expressed genes (DEGs) were set as gene fold change ≥2.00

and false discovery rate ≤0.001. Through GO enrichment and

KEGG enrichment pathways, the significantly enriched

metabolic pathways were screened and compared with the

whole genome background. Functional classification of DEGs

was performed according to GO and KEGG annotation results

and official classification, and FDR ≤ 0.01 was set as

significant enrichment.
QPCR validation and gene expression
analysis

Total RNA was extracted by plant RNA kit (Huayue Yang

Biotechnology Co., LTD.). A total of 1.0 mg of RNA was used for

cDNA synthesis using the PrimeScript RT kit and gDNA Eraser

(TaKaRa) according to the manufacturer’s protocol. Primers

were designed using NCBI online tools (https://www.ncbi.nlm.

nih.gov/tools/primer-blast/), and synthesized by Sangon Biotech

(Shanghai, China). All the primer sequences were shown in

Supplementary Table 1. Quantitative real-time PCR reaction

procedure and system were as described previously (Yuan et al.,

2022a). All primers are shown in Supplementary Table S1. The

2−DDCt method was used to calculate relative gene expression

values (Kenneth and Thomas, 2002).
BSA-seq analysis of the leaf yellowing
genes

Leaf DNA of 30 individual plants with yellowed and green

extreme phenotypes in F2 population were selected for the
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parental DNA was used to construct the parental pools for

sequencing analysis. The depth of parental sequencing was 20×,

and the depth of extremely mixed-pool sequencing was 30×.

Sequencing was performed by Biomarker Technologies Co, LTD

(Beijing, China) using Illumina HiSeq2000. The sequencing read

length was 150 bp.

Raw reads were filtered to remove reads containing adapter,

and reads containing >5% N and low-quality reads (the number

of bases with quality value Q ≤ 10 accounted for more than 50%

of the whole read) were used to obtain clean reads for

subsequent analysis. Clean reads were mapped to the ‘97103’

watermelon genome (http://cucurbitgenomics.org/organism/21)

using BWA software. Then GATK (4.0.4.0) and SNPeff (4.3)

were used to annotate the mutation sites, and single nucleotide

polymorphisms (SNPs) and insertion-deletion polymorphisms

(InDels) were identified.

The SNP-index algorithm was used to establish the target

region to find the significant difference in genotype frequency

between the pool, and D(SNP-index) was used for statistics. In

this project, the DISTANCE method was used to fit the DSNP-
index, and then the region above the threshold was selected as

the region related to the trait according to the association

threshold. The stronger association between SNP and trait, the

closer D(SNP-index) to 1.
Functional analysis of key genes

Using the cDNA of green leaf ZK as template, specific

primers were designed to amplify the CDS regions of

Cla97C02G036010, Cla97C02G036030, Cla97C02G036040,

Cla97C02G036050 and Cla97C02G036060, and the primers

were shown in Supplementary Table 1. BamHI (GGATCC)

restriction sites were added to both ends of the primers and

inserted into the cucumber green mottle mosaic virus

(CGMMV) gene silencing vector PV190 by homologous

recombination to construct virus-induced gene silencing

(VIGS) vector. The dual vector was transformed into

Agrobacterium tumefaciens GV3101.

Induction and inoculation of A. tumefaciens according to Liu

(Liu, 2019) When watermelon seedlings were at cotyledon stage,

the induced A. tumefaciens was injected from the back of

watermelon cotyledon with 1 mL syringe. The blank control

(Blank, B), water control (Water, W), medium control (YT

medium, Y), blank vector control (PV190, P) and PDS gene

positive control (PDS) were set up respectively. Three biological

replicates were set up for each treatment. Two weeks after

injection, leaf phenotype was observed, and samples were

collected for ultrastructural analysis, chlorophyll content

measurement and gene expression analysis.
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Ultrastructural observation of chloroplast

The above-mentioned leaves with phenotype after A.

tumefaciens were used as materials , fixed with 4%

glutaraldehyde (configured with pH 7.2 phosphate buffer)

overnight at 4°C, rinsed with phosphate buffer three times,

fixed with 1% osmium tetroxide for 1 h, rinsed with phosphate

buffer three times, dehydrated with 30%, 50%, 70%, 80%, 95%,

100% ethanol and acetone step by step for 5 min, and finally

embedded with resin. After sectioning, they were stained with

2% uranyl acetate saturated alcohol and lead citrate for 15 min,

and the chloroplast ultrastructure was observed under

transmission electron microscope (HT7700, Hitachi, Japan).
Data statistical analysis

All data graphs were analyzed by Office 2016 software.

Differences were analyzed by SPSS 18.0 software, and one-way

ANOVA was used for statistical analysis, p< 0.05 (n = 3) was

considered significant difference.
Results

Genetic characteristics analysis of
yellowing leaf color

The leaves of w-yl showed yellow throughout the whole growth

period (Figure 1A), and the color did not changewith environmental

changes, such as temperature and light intensity (Figure 1B). Under

different temperature and light intensity, there were no significant

differences in the contents of chla, chlb, chla+b and carotenoids.

In addition, phenotypic data showed that all F1 plants appeared

green leaves, indicating that the yellow mutation was recessive. For

F2 plants, among the 237 progeny in the summer of 2018, 178

plants had green leaves and 59 plants had yellow leaves; among the

993 progeny in spring of 2019, 730 had green leaves and 263 had

yellow leaves (Table 1). The c2 test of green and yellow leaves in the

two seasons showed that the separation pattern was consistent with

the Mendelian separation ratio of 3:1 (c2 > c20.05 = 3.841).

Furthermore, for the backcross progeny BC1P1 and BC1P2, the

yellow leaf plants were 29 and 0 respectively, indicating that the

yellowing mutation of watermelon leaves conformed to the genetic

pattern controlled by a single recessive nuclear gene, and green

leaves were dominant to yellowing.
Genetic characteristics analysis of
yellowing leaf color

Previous studies had demonstrated that there are significant

differences in chlorophyll content and photosynthetic indicators
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(Ren et al., 2019). To further validate the difference, the chlorophyll

precursors, including ALA, protoIX, Mg-ProtoIX and pchlide were

analyzed (Figure 2). The results showed that the contents of four

indexesdetected in thew-ylwere significantly lower than those inZK,

which explained the low chlorophyll content to a certain extent.
RNA-seq for the leaves of w-yl and ZK

A total of 6 samples were measured by RNA-seq, including 3

samples forw-yl and 3 samples forZK, yielding an average of 6.06Gb

of data per sample. The average rate of genome alignment was

89.40%, and the average rate of gene set alignment was 65.81%

(Figure 3A). For the comparison groupw-yl-vs-ZK, a total of 19,261

genes were detected, and there were 18,323 shared genes, including

2,471 DEGs (Figure 3A), with 848 up-regulated DEGs and 1893

down-regulated DEGs (Figure 3B).

GO enrichment and KEGG pathway enrichment analyses were

carried out to better understand the function of DEGs. For GO

enrichment, 17 of the top 20 selected GO terms were related to

photosynthesis process, including 4 terms related to photosystem,

such as photosystem (GO:0009521), photosystem I (GO:0009522),

Photosystem II (GO:0009523), light harvesting in photosystem I

(GO:0009768); 4 terms involved in photosynthesis, such as

photosynthesis (GO:0015979), photosynthetic membrane

(GO:0034357), photosynthesis—light reaction (GO:0019684) and

photosynthesis—light harvesting (GO:0009765); 6 terms involved in

thylakoid, such as thylakoid (GO:0009579), thylakoid membrane

(GO:0042651), chloroplast thylakoid (GO:0009534), chloroplast

thylakoid membrane (GO:0009535), plastid thylakoid

(GO:0031976) and plastid thylakoid membrane (GO:0055035); 3

terms relate to pigments, such as tetrapyrrole binding (GO:0046906),

chlorophyll binding (GO:0016168) and protein-chromophore

linkage (GO:0018298) (Figure 3C; Supplementary Table S2). These

results showed that w-yl and ZK had significant differences

in photosynthesis.

For KEGG pathway enrichment, the two most significant

enrichment pathways of the top 20 pathways were photosynthesis

—antenna proteins and plant—pathogen interaction (Figure 3D;

Supplementary Table S3). Due to the importance of antenna protein

forphotosynthesis (Figure 4A),we focusedon the analysis of antenna

protein-related DEGs, and completely screened 16 DEGs that

encoded antenna protein (Figure 4B). LHCI and LHCII, as

important components of photosystem I complex and

photosystem II complex, are composed of four and six small

components, respectively. For LHCI, the number of DEGs that

encoded LHCI Chl a/b binding protein 1 (Lhca1), Lhca2, Lhca3

and Lhca4 was 1, 2, 1 and 2, respectively. For LHCII, the number of

DEGs that encodedLHCIIChl a/bbindingprotein 1 (Lhcb1), Lhcb2,

Lhcb3, Lhcb4, Lhcb5 and Lhcb6 was 4, 1, 1, 2, 1 and 1, respectively.

The expression levels of all the 16 DEGs in ZK were significantly

higher than those of w-yl, and the fold change was between 2.6 and

14.0 (Figure 4B).
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FIGURE 1

Plant phenotypes of w-yl and ZK. (A) Plant phenotypes of w-yl (left) and ZK (right) at different developmental stages. (B) Plant phenotypes of
w-yl under different temperature and light intensity. The content of (C) chla, (D) chl b, (E) chla+b and (F) carotenoid under different temperature
and light intensity. Small letters represent significant difference at P<0.05.
TABLE 1 Phenotype of yellow mutant to green leaf trait and Chi-square goodness-fit test ratios in different populations.

Population Number Green leaves Yellow leaves Expected ratio P value

P1 15 15

P2 15 15

F1 30 30

F2 (Summer of 2018) 237 178 59 3:1 0.0014 0.9701

F2 (Spring of 2019) 993 730 263 3:1 1.1685 0.2797

BC1P1 54 29 25 1:1 0.2963 0.5862

BC1P2 30 30 0
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Verification of DEGs of qPCR and RNA-
seq data

To verify the accuracy of RNA-seq data, 12 DEGs

(Cla97C02G035950, Cla97C02G035960, Cla97C02G035980,

Cla97C02G036070, Cla97C02G036090, Cla97C02G036110,

Cla97C02G036130, Cla97C02G036140, Cla97C02G036150,

Cla97C02G036160, Cla97C02G036190 and Cla97C02G036200)

of the 29 genes in the interval were selected to conduct qPCR
Frontiers in Plant Science 07
(Figure 5). The results showed that expression patterns of 12

DEGs were highly consistent with those of genes in RNA-seq

data, which demonstrated that the RNA-seq data are reliable.
Mapping of yellowing gene in w-yl leaf

In order to quickly identify the key candidate genes related

to leaf color in the F2 population, 30 green and 30 yellow leaf
FIGURE 2

Chlorophyll precursors content of the w-yl and CK in pepper leaf. Small letters represent significant difference at P<0.05.
B

C D

A

FIGURE 3

RNA-seq analysis for the leaves of w-yl and ZK. (A) Venn diagram of the relationship of w-yl-vs-ZK. (B) Number of up-regulated and down-
regulated DEGs. (C) GO enrichment analysis of DEGs. (D) KEGG pathenrichment analysis of DEGs.
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progeny were selected and sequenced on the Illumina platform.

A total of 51.0 Gb clean bases were generated with an average

depth of about 26.5×. Finally, we identified 266,255 SNPs

between w-yl and ZK, and 83,373 SNPs between the F2 pools.

According to the SNP-index values of w-yl and ZK, the D(SNP-
index) value of approximately 7.42 Mb genome region

(11,540,000-18,960,000) on chromosome 2 was greater than
Frontiers in Plant Science 08
the threshold (Figure 6A). These results indicated that this

region might contain the key gene of watermelon leaf

yellow traits.

In order to further locate the candidate genes for yellowing leaf,

the chromosome region of the variation between w-yl and ZK were

analyzed. A total of 12 pairs of InDel molecular markers

(Supplementary Table S4) were developed for the candidate region
B

A

FIGURE 4

Analysis of the photosynthesis—antenna proteins. (A) Role of photosynthesis—antenna proteins in photosynthetic system. (B) Expression of
photosynthesis—antenna proteins related DEGs.
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based on 233 F2 populations. The results verified that these genes

were in the range of 11.54 Mb—18.96 Mb on chromosome 2.

Subsequently, based on the determination of leaf color phenotype

data and individual exchange genotype, 12 recombinant individuals

were further screened using 1883 F2 populations. Finally, it is found

that the candidate interval corresponds to the 2.217 Mb region of

InD14,179,011—InD16,396,362 (Figure 6B). There were 29 genes in

this region and annotated them according to the watermelon

reference genome (Figure 3C; Table 2). Notably, compared with

ZK, Cla97C02G036010, Cla97C02G036020, Cla97C02G036030,

Cla97C02G036040, and Cla97C02G036050 were completely absent

in w-yl, and Cla97C02G036060 had partial base deletion, suggesting

that they were the key genes determining w-yl leaf color mutation

(Supplementary Figure S1).

In addition, the results of agarose gel electrophoresis and

qPCR showed that Cla97C02G036010, Cla97C02G036020,

Cla97C02G036030, Cla97C02G036040, Cla97C02G036050 and

Cla97C02G036060 could not be amplified in w-yl, as well as

Cla97C02G036020 also had no target product in ZK (Figure 7).

The RNA-seq results also showed the same results (Figure 6C).

These r e su l t s fu r the r proved the impor tance o f

Cla97C02G036010, Cla97C02G036030, Cla97C02G036040,

Cla97C02G036050 and Cla97C02G036060 in leaf yellowing.
Function analysis of yellowing gene
in ZK leaf

In order to verify the gene function of the candidate genes,

cucumber mosaic virus-mediated VIGS vector was used to perform

gene silencing assay on ZK leaves. The results showed that at 16 days
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after inoculation (DAI), the plants inoculatedwithwater (Figure 8B),

medium (Figure 8C) and blank vector (Figure 8D) showed no

significant difference in phenotype compared with the blank

control (Figure 8A), while the positive control plants inoculated

with PDS gene showed virus symptoms at DAI16, with severe true

leaf pucking and chlorosis (Figure 8E). Watermelon plants silencing

Cla97C02G036010 (Figure 8F) and Cla97C02G036030 (Figure 8G)

showed symptoms of disease at DAI17, and their true leaves were

slightly wrinkled and mottled greenish yellow. Watermelon plants

silencing Cla97C02G036040 (Figure 8H), Cla97C02G036050

(Figure 8I) and Cla97C02G036060 (Figure 8J) showed obvious

virus symptoms at DAI13, with obvious true leaf wrinkling and

large area mottled yellow.

Then the expression levels of the silenced genes were detected,

when compared with the control group (B, W, Y, P and PDS), their

expression levels were significantly reduced. Among them, the

expression of Cla97C02G030640 decreased most sharply, which

were 2.9%, 2.9%, 2.8%, 3.2% and 27% of the control group,

respectively (Figure 9). Besides, the results of chlorophyll content

of leaves with phenotype showed that there was no significant

difference in chla, chlb and chla+b content among groups B, W, Y

and P, while the chlorophyll contents of silenced PDS group was

significantly lower than that of the former four groups. For the five

silenced genes, the contents of chla, chlb and chla+b were

significantly lower than those of B, W, Y and P control groups.

Among them, the contents of chla, chlb and chla+b in silenced genes

Cla97C02G030640 and Cla97C02G030660 were the lowest and had

not significantly different from those in silenced PDS

group (Figure 10).

Furthermore, the ultrastructure of chloroplast was analyzed to

analyze the reasons for these phenomenon. As a result, the
FIGURE 5

Verification of DEGs by RT-qPCR.
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chloroplast ultrastructure of the silenced gene Cla97C02G030610

(Figure 11B) , Cla97C02G030630 (Figure 11C) and

Cla97C02G030650 (Figure 11D) did not change compared with the

blank control (Figure 11A), and all contained normal grana lamella

(GL)andplastid globule (PL).However, theultrastructureof silenced

gene Cla97C02G030640 and Cla97C02G03060 was significantly

changed, and the chloroplast structure may be damaged (red

dotted circle area). For silenced gene Cla97C02G030660

(Figure 11F), there was no PL, and PG stratification was not

obvious, appearing in a fuzzy state. Especially for the silenced gene

Cla97C02G030640 (Figure11D), therewasnoPLandnoobviousPG,

speculating that PG was degraded.

Takentogether, theseresults indicated thatcandidategenesplayan

important role in causing leaf yellowing, especiallyCla97C02G030640.
Discussion

There are various types of leaf color mutations, and leaf

yellowing was the most common phenomenon (Jin et al., 2021).
Frontiers in Plant Science 10
Plant leaf yellowing mutants, also known as chlorophyll

deficiency mutants, are usually caused by the destruction of

chlorophyll synthesis or degradation pathways (Yang et al.,

2014). At present, yellowing mutants have been found in rice

(Zhang et al., 2017), tomato (Yao et al., 2010) and rape (Xiao

et al., 2013). In this study, we reported a whole growth period

leaf yellowing watermelon material w-yl (Figure 1A), which is

completely different from the published watermelon leaf color

mutant material (Wang et al., 2011; Haileslassie, 2020), and the

leaf yellowing characteristics of w-yl can be stably inherited.

Light can affect plant chloroplast development and chlorophyll

metabolism. For example, light intensity is very important for

chloroplast formation (Franck et al., 2000), which can change

the proportion and content of anthocyanins or chlorophyll or

carotenoids by affecting the activity of enzymes related to

pigment synthesis or the expression of genes related to

photosynthesis, thus causing the color change of leaves, and

eventually leading to the formation of leaf color mutants (Xu

et al., 2021). In cucumber, the pigment content of the post-green

mutant SC311Y increased significantly under lower light
B

C

A

FIGURE 6

Location of yellowing gene on watermelon chromosome 2. (A) D(SNP-index) of watermelon chromosomes. (B) The candidate genes was
mapped to a 4.586 Mb region between InD14,179,011 and InD16,396,362 on chromosome 2. (C) Putative genes in the candidate region based
on the watermelon reference genome annotation.
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conditions and was vulnerable to light (Zhang et al., 2022). In

addition, the synthesis process of chlorophyll is regulated by

many enzymes, and its activity is regulated by temperature

(Yang et al., 2018). In rice, mutant tcd9 showed abnormal

chloroplasts and fewer thylakoid lamellae in albino mutant

seedlings at low temperature, but the mutant showed normal

green color at high temperature (Jiang et al., 2014). In

Arabidopsis, a heat-sensitive mutant in tsl1 is impaired in

chloroplast RNA editing at high temperatures, hampering

chloroplast development (Sun et al., 2020). However, under

high temperature and low temperature, high light intensity

and low light intensity, chlorophyll content and carotenoid

content of w-yl had no significant difference compared with

normal temperature and light intensity (Figures 1B–F), which
Frontiers in Plant Science 11
suggesting that the mutant w-yl was non-photosensitive and

non-temperature sensitive.

Previous study had confirmed that the chloroplast volume,

the number of thylakoids and the number of grana lamellae in

the leaves of mutant w-yl are smaller, which leads to a

significant reduction in chlorophyll content (Ren et al.,

2019). In fact, leaf yellowing mutations are usually caused by

incomplete chloroplast development. For example, the yellow

green leaf mutant ygl8 in rice was caused by chloroplast

dysplasia (Kong et al., 2016) The mutation of ChlI/Chl9pyl3

gene in rice leaded to the formation of pyl3 mutant with light

yellow leaves. which inhibited chlorophyll synthesis, resulting

in chloroplast dysplasia and leaf color variation (Hu et al.,

2021). In Brassica napus, the chloroplast morphology of the

leaf yellowing mutant S28-y was abnormal, with no complete

grana and grana lamellae, resulting in total chlorophyll

deficiency (Ge et al., 2022). A large number of studies have

shown that chlorophyll is the main factor affecting leaf color

phenotype, and leaf color phenotype is closely related to

chlorophyll content, and the proportion of photosynthetic

pigments in leaves can be directly expressed by the depth of

leaf color (Chen et al., 2017; Chen et al., 2018; Su et al., 2020).

Chlorophyll precursor material is the intermediate product of

chlorophyll synthesis process, any step of which will influence

the chlorophyll content (Wang et al., 2009) (Beale, 2005). For

example, in rice leaf yellowing mutant W1, the process from

porphobilinogen to uroporphyrinogen III was blocked, which

hindered the synthesis of chlorophyll (Cui et al., 2001). In

addition, Kong et al. found that the YGL8 gene isolated and

identified in ygl8 rice yellow-green leaf mutant can encode Mg-

protoIX, which plays an important role in chlorophyll

synthesis by affecting the transcription level of this enzyme

to change chlorophyll content (Kong et al., 2016). In Ilex ×

attenuata ‘Sunny Foster’, the contents of ALA, protoIX, Mg-

protoIX and pchlide in green-turned leaves were significantly

increased, and the chlorophyll content was also significantly

higher than that in normal leaves (Huang et al., 2021).

Similarly, in Camellia sinensis cv. Baiye1, the contents of

ALA, protoIX, Mg-protoIX and pchlide were higher in green

leaves, and the chlorophyll content was also significantly

higher than that in albino leaves (Wang et al., 2008). Similar

results were obtained in this study, such as the contents of

ALA, protoIX, Mg-ProtoIX and pchlide in w-yl were

significantly lower than those in normal leaves ZK, indicating

that the low chlorophyll content in w-yl may be due to the low

content of chlorophyll precursors.

There are many kinds of leaf color mutations, and the

genetic rules of different mutations vary greatly, which may be

nuclear inheritance or cytoplasmic inheritance. For example,

rice (Sun et al., 2017), maize (Wang et al., 2018) wheat (Jiang,

2018), cucumber (Gao et al., 2016), rape (Wang, 2014), tomato
frontiersin.org
TABLE 2 Gene function annotation information in candidate interval.

Gene name Gene function

Cla97C02G035950 Translator-related TMA7

Cla97C02G035960 BZIP transcription factor, putative (DUF1664)

Cla97C02G035970 lipid-binding serum glycoprotein

Cla97C02G035980 Protein nucleo-fusion transmitter 6, chloroplast/
mitochondria-like isoform X1

Cla97C02G035990 Unknown protein

Cla97C02G036000 L-ascorbate oxidase homolog, Oxidoreductase activity, Cu2+

binding

Cla97C02G036010 Unknown protein

Cla97C02G036020 Two component response regulator like protein

Cla97C02G036030 Transmembrane protein, putative

Cla97C02G036040 Protein containing DUF679 domain

Cla97C02G036050 DnaJ homologous subfamily B member 13 like

Cla97C02G036060 Protein Ycf2

Cla97C02G036070 U11/U12 small ribonucleoprotein 65 kDa protein isoform X2

Cla97C02G036080 Unknown protein

Cla97C02G036090 RING-type E3 ubiquitin transferase

Cla97C02G036100 family proteins containing pentapeptide repeats

Cla97C02G036110 Niemann-Pick C1 protein-like isoform X2

Cla97C02G036120 Zinc finger family protein

Cla97C02G036130 Integral hemolysin III-like protein

Cla97C02G036140 Ser/Thr-rich T10 in the DGCR region

Cla97C02G036150 Phosphoglycerate mutagenase family proteins

Cla97C02G036160 SEC1 family transporter SLY1, Oxidoreductase activity, Mg2+

binding

Cla97C02G036170 Unknown protein

Cla97C02G036180 Retrotransposon protein, unclassified

Cla97C02G036190 Glycine-rich RNA-binding protein, putative

Cla97C02G036200 Plant UBX domain protein 4

Cla97C02G036210 Calcium-permeable stress-gated cation channel 1

Cla97C02G036220 Acid phosphatase/vanadium-dependent haloperoxidase-
related protein

Cla97C02G036230 Core-2/I branch b-1,6-N-acetylglucosamine aminotransferase
family proteins
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(Guo, 2017) and cabbage (Zhang, 2017) are controlled by single

or two pairs of recessive nuclear genes. In watermelon, Zhang

et al. (1996) proved that albino leaf color mutation was

controlled by a pair of recessive alleles (jaja). Provvidenti

(1994) found that the watermelon leaf color mottle mutation

was controlled by a pair of recessive genes (slv), and the F2
population showed a normal:mottled separation ratio of 3:1.

Rhodes (1986) found that the post-green mutation was

controlled by a recessive gene (dgdg). The data in this study

indicated that w-yl is controlled by a pair of recessive nuclear
Frontiers in Plant Science 12
genes. However, the results of mapping indicated that w-yl may

have DNA fragment deletion compared to ZK, resulting in

Cla97C02G036010, Cla97C02G036030, Cla97C02G036040,

Cla97C02G036050 and part of Cla97C02G036060 in the

interval between InD14,179,011 and InD16,396,362 loss the

gene function. Chloroplast genome gene loss is relatively

common in nature (Dong, 2012). Studies have shown that the

most frequent microstructural changes in the chloroplast

genome are insertions and deletions, and have a bias for

deletions (Gao et al., 2010). In angiosperms, rpl22, rpl23, rpl32,
B

A

FIGURE 7

Amplification of candidate genes Cla97C02G036010, Cla97C02G036020, Cla97C02G036030, Cla97C02G036040, Cla97C02G036050 and
Cla97C02G036060. (A) Agarose gel electrophoresis analysis of candidate genes. (B) RNA-seq and qPCR analysis of candidate genes.
FIGURE 8

Leaf phenotypic analysis of candidate gene silencing. Phenotype of (A) blank control, (B) water control, (C) medium control, (D) blank vector
control, (E) positive control, (F) silencing Cla97C02G036010, (G) silencing Cla97C02G036030, (H) silencing Cla97C02G036040, (I) silencing
Cla97C02G036050, (J) silencing Cla97C02G036060.
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rpl33, rps16, accD, psaI, ycf4, ycf1, ycf2 and infA were lost in some

taxa. Among them, ycf1, ycf2 and accD genes were lost in the

whole Gramineae (Guisinger et al., 2010) and some species in

Solanaceae (Bruni et al., 2010).

In this study, the gene Cla97C02G036060 encoded the

protein Ycf2. NAD-malate dehydrogenase contained in the

Ycf2/FtsHi complex is a key enzyme for ATP production in

chloroplasts or non-photosynthetic plastids in the dark

(Kikuchi et al., 2018), and is necessary for photosynthetic

growth (Parker et al., 2016). The Ycf2 gene is the largest

plastid gene in angiosperms (Huang et al., 2010). It plays an

important unknown function in higher plants and is

indispensable (Drescher et al., 2000), which can response to

biotic and abiotic stresses in plants (Durante et al., 2009) and

improve plant cold tolerance (Bernardi et al., 2015). Gene

Cla97C02G036050 encoded a DnaJ-like B subfamily protein,
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which is a type of heat shock protein (Sun et al., 2018). Its

homologous proteins can increase the activity of phytoene

synthase in plastids (Zhou et al., 2015), participate in the

process of white body differentiation into chloroplasts under

light (Shimada et al., 2007), and protect plant photosystem II

under heat stress (Wang and Luthe, 2003). For the gene

Cla97C02G036040, it encoded a protein that containing the

DUF679 domain. DUF (domain of unknown function) refers

to a protein family with unknown functional domains, which is

involved in regulating plant growth and development, plant

defense mechanism and plant stress response in plants (Finn

et al., 2016; Wang et al., 2022). In Arabidopsis, all members of

DUF579 family can affect the development of xylan in plant cell

wall hemicellulose (Temple et al., 2019), DUF761 is involved in

regulating the growth and development of plant vegetative

organs (Zhang et al., 2019), DUF642 protein is a specific
frontiersin.org
FIGURE 9

Expression levels of silenced genes. B, W, Y, P, PDS and S represents blank control, water control, YEP medium control, blank vector control,
positive control and silenced genes, respectively. Small letters represent significant difference at P<0.05.
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protein of seed plants, which is associatedwith cell wall synthesis

(Vázquez-Lobo et al., 2012). In cucurbit crops, there are few

studies on DUF domain, mainly focusing on the disease

resistance of cucumber (Liu et al., 2010; Qin et al., 2018; Wang

et al., 2018).
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FIGURE 10

Chlorophyll content of different treatment group. B, W, Y, P, PDS, S1, S2, S3, S4,and S5 represents blank control, water control, YEP medium
control, blank vector control, positive control, Cla97C02G036010, Cla97C02G036030, Cla97C02G036040, Cla97C02G036050 and
Cla97C02G036060, respectively. Small letters represent significant difference at P<0.05.
FIGURE 11

Ultrastructure of the chloroplast. (A) Chloroplast ultrastructure of blank control, Chloroplast ultrastructure of silencing gene (B)Cla97C02G036010,
(C) Cla97C02G036030, (D) Cla97C02G036040, (E) Cla97C02G036050 and (F) Cla97C02G036060, respectively. GL represents grana lamella, PL
represents plastoglobuli (red circle). The scale is 5 mm.
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