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Biomass and morphological characteristics of plant species provide essential

insight into how well a species adapts to its environment. The study aims to

evaluate how environmental variables (viz., altitude, slope, aspect degree, and

soil properties) influence the morphological traits and biomass variability of

Calotropis procera (Aiton) W.T. Aiton in a semi-arid environment. C. procera

sample locations were divided into 39 permanent sites (5×5 = 25 m2). Slope,

aspect degree, slope aspect, altitude, and soil variables (soil moisture, organic

matter, nitrogen (N %), and phosphorus (P) gradients were used to quantify

morphological parameters (height, diameters, canopy area, volume, and leave/

branch biomass) and aboveground biomass. Environmental variables, i.e.,

altitude and aspect degree, were the most important factor influencing the

biomass variation and affecting soil moisture content; however, they did not

directly affect the total biomass of the species. The results also reveal significant

plasticity in morphological traits exists concerning elevation and aspect degree

at (p< 0.05). Plant volume was a better indicator of species’ total biomass

revealed from the regression model showing significant at p< 0.05. The study

also reveals that soil properties such as soil moisture and Phosphorus have an

important role in enhancing the productivity of the studied plant species. The

results concluded that plants functional traits and biomass shows significant

variation across the altitude and these parameters could be consider in the

conservation of this native species.
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Introduction

The link between environmental factors and vegetation has

long attracted ecologists (Dearborn and Danby, 2017; Sanaei

et al., 2018). At the regional scale, topography and climatic

differences produce substantial spatial variety in plants and soil

(Lybrand and Rasmussen, 2015). Slope, slope aspect, and slope

location, among other environmental elements, may

considerably influence plants on a local scale by altering

radiation, temperature, water, and nutrients (Dearborn and

Danby, 2017). It is widely accepted that biotic (species

interactions and species-specific characteristics), abiotic

(topography, climate, soil, etc.), and anthropogenic (over-

exploitation, deforestation) factors all affect biodiversity and

ecosystem processes, resulting in complex interactions

(Hooper et al., 2005; Schumacher and Roscher, 2009).

Topographic characteristics, such as height, slope, solar aspect,

interactions with other species, and dispersion capacities, impact

the distribution and abundance of a plant species (Rahman

et al., 2022).

Plant ecological strategies, species abundance, coexistence

mechanisms, community assembly, and the ecological

consequences and responses of plant communities to their

environment may be described and predicted using

morphological distinctions (Ullah et al., 2021). Ecosystem

processes may be influenced in two ways: directly by

modifying ecosystem flux rates of energy and matter or

indirectly by affecting plants’ physiological rates, which are

based on functional features of the plants (Hajek et al., 2016).

Plant biomass may be connected to biological and abiotic filters

(Dıáz et al., 2007). As an example, plant fitness and survival, and

biomass production may be affected by functional characteristics

(Loiola et al., 2015). Furthermore, functional characteristics may

show how a species interacts with and responds to its

environment, making them a beneficial tool for solving

ecological concerns (McGill et al., 2006). Ecosystem processes

may be influenced in two ways: directly by modifying ecosystem

flux rates of energy and matter or indirectly by affecting plants’

physiological rates, which are based on functional features of the

plants (Hajek et al., 2016). Plant biomass may be connected to

biological and abiotic filters (Dıáz et al., 2007). As an example,

plant fitness and survival, and biomass production may be

affected by functional characteristics (Loiola et al., 2015).

Therefore, allometric equations are often used in the

estimation of shrub biomass (Arias et al., 2011). Allometric

models rely on connections between biomass and morphological

features such as stem diameter and plant height (Kuyah et al.,

2016). The biomass of certain species varies depending on

terrain, ambient conditions, stand ages, species composition,

and natural and human-induced disturbances, generalized

formulae are ineffective (Melson et al., 2011). In addition,
Frontiers in Plant Science 02
species-specific and site-specific allometric models are the best

for lowering biomass estimate uncertainty (Hossain et al., 2016)

and suitable indicators of plant functional traits variation across

the environmental gradient.

In the Asclepiadaceae family, Calotropis procera (Aiton) is

an evergreen perennial shrub that appears in broad climate

ranges and reproduces mainly by seed (Hassan et al., 2015). The

plant grows only in arid and semiarid regions of Asia and Africa

(Lottermoser, 2011). Diversity and adaptation capacity of species

have a significant impact on population dynamics (Rahman

et al., 2021). Unfortunately, a lack of accurate biomass estimates

for this valuable species caused problems in ecosystem and

habitat assessments since shrubland stand management was

based on growing plants. In addition, the species is under an

extremely high extinction threat in Pakistan as a direct result of

unchecked and excessive collecting efforts by locals for medical

and commercial use.

Therefore, the objective of this study is to establish an

allometric equation specific to C. procera biomass based on

values of plant height, canopy cover, plant volume, and plant

components, like root stems and leaf fruit, with the assumption

that these factors can be used to model biomass specific to C.

procera. Moreover, the functional properties of C. procera in

abiotic environments were investigated to see whether the

species’ high population density, biomass, and morphological

and reproductive traits contribute to its capacity to thrive in a

variety of microhabitats. This research will also aid in increasing

the species’ biomass in light of current environmental conditions

and improved propagation for conservation reasons.
Materials and methods

Study area

The sample area was in Khyber Pakhtunkhwa, Pakistan, with

latitude of 34.9526 °N and a longitude of 72.3311 °E (Figure 1),

with a total geographical area of approximately 101,741 km2.For

the phytosociological data collection, thirty-nine (39) sites were

selected across three elevational gradients (high elevation = (AL

3) > 1420 m a.s.l; medium elevation = (AL 2) > 1256 m a.s.l; and

low elevation = (AL 1) > 331 m a.s.l). The field survey was

conducted from February 2018 to May 2020. The research

locations’ latitude, longitude, and aspect degree were recorded

using a GPS, and the slope was assessed using a clinometer. The

average annual precipitation was 400 mm, with the lowest and

highest temperatures of 2°C and 40°C, respectively. Within the

thirty-nine permanent quadrats (5×5 = 25 m2) used to measure

biomass, they found that members of the species were healthy,

disease-free, and devoid of physical injury. A composite soil

sample was collected from each site from the plant’s root zone,
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i.e., 50-80cm depth. The samples were sorted into three

categories for floristic data based on altitudinal zonation and

delivered to the Swat Agriculture Research Institute (ARI). Soil

extract was used to determine Organic matter, Potassium (K),

Nitrogen (N), and Phosphorus (P) (Rhoades, 1993; Nelson and

Sommers, 1996). Available water was calculated by using an

online calculator developed by Saxton and Rawls (2006).
Field data collection

Each quadrat was tagged with different colours to calculate

the density of C. procera (i.e., the number of individuals per unit

area). The leaf area was measured using the trace paper method,

and the leaves/branches were randomly counted by picking five

separate branches. Similarly, the standard procedure was used to

compute plant diameter, height (m), and volume (Pandey and

Singh, 2011). Plant height and diameter ratio fluctuate in

different microhabitats. Hence these characteristics were

considered when estimating shrub size (Shaltut and Ayyad,

1990). To calculate dry biomass, 39 complete plants were dug

up, and each portion (stem, leaf, and root) was preserved

individually in polythene bags. The destructive approach was

used to calculate the plant biomass (Wang et al., 2008). All of the

samples were oven-dried for 48 hours at 65 degrees Celsius. The

dry weight was obtained by weighing the samples after being

returned to the Department of Botany at the University of

Malakand in KP, Pakistan. Based on the data of the plant
Frontiers in Plant Science 03
crown diameter (C), we calculated the canopy area (CA m2)

and volume (V m3) using the techniques given by Zeng et al.

(2010).

CA =
C2 

p� 3:14
(1)

V = CA�H (2)

Where CA stand for canopy area, V for volume and H for

height of studied plant.
Allometric equation and
biomass calculation

A regression equation was developed in order to determine

the association between shrub total biomass, used as the

dependent variable, and other growth characteristics such as

diameter, height, height-to-diameter ratio, canopy area, and

volume (D2, H, D2H, CA, and CV), used as the explanatory

factors.

Linear model : y = a + bx (3)

To determine whether the regression equations were

accurate representations of the data, the coefficient of

determination (R2), standard error estimate (SEE), and F-

values between the pairs of x and y variables were calculated

(Zeng et al., 2010).
FIGURE 1

Study area map showing distribution of the studied plant along different elevation.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1047632
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Siraj et al. 10.3389/fpls.2022.1047632
Statistical analysis

Analysis of variance (ANOVA) and Tukey HSD post hoc tests

was employed to identify significant differences in the biomass ratio

and the other variables evaluated. To estimate growth parameters

and biomass, an allometric regression equation was applied. In

order to determine if the biomass and other growth metrics

exhibited significant responses, a permutational multivariate

analysis of variance (PERMANOVA) was performed, and

ordinations were formulated. This approach is thought to be

particularly well adapted to ecological data, especially when

working with a small sample size (Andringa et al., 2019). The

“Adonis” technique in the vegan package 1.13-2 was utilized in the

PERMANOVA with the Euclidean distance approach (Sabo et al.,

2019; Oksanen et al., 2020). Non-metric multidimensional scaling

(NMDS) was used to depict the ordinals, utilizing the default

parameters of vegan’s “meta MDS” method (Kruakal, 1964). A

total of 999 permutations were employed in this investigation. The

statistical analysis was carried out using R software using the dplyr,

tidyverse, ggplot2, and vegan packages.
Results

Environmental variables and plant traits

Table 1 summarises the spectrum of characteristics and

biomass changes of Calotropis procera throughout the three

altitudinal groups. There were no significant differences in total
Frontiers in Plant Science 04
biomass between various slope locations and slope angles. Plant

populations may be distinguished by physical traits, such as stem

height (2.63 ± 0.21m) and crown diameter (2.18 ± 0.27m) for those

found at high elevations (AL 3). C. procera grows well in disturbed

and open environments. Hence individuals reported from rural

regions with low altitude (AL 1) were shorter (H=1.66 ± 0.13 m,

D=1.99 ± 0.13 m) (Table 1). The H/D ratio was larger than one in

all habitat categories, with urban sites with high altitude (AL 3) have

the greatest ratio (1.21 ± 1.95 m) and rural sites having the lowest

(0.83 ± 0.73 m). There was a considerable fluctuation in the height

of the stem, diameter, size index, and volume of C. procera in the

current study, indicating the species’ growth adaptability in

disturbed habitats. The biomass of the investigated plant was high

at a high altitude (79.85 ± 4.90) in the sample locations but

exhibited heterogeneity in all groups.

The standing effect of ground factors (slope, elevation, slope

direction) on the biomass of C. procera shrubs and soil variables

(N %, P mg/Kg, K mg/Kg, OM %, and AW %) using boxplots

(Figure 2). The result declared that the soil variables (OM %, N

%, P mg/Kg, K mg/Kg) and biomass of plant show a decreasing

trend from low to high altitude except for available water

contents (AW %) and Potassium (K mg/Kg) contents. Figure 2

demonstrates that different stand factors significantly affect the

distribution pattern, whereas when slope direction changes from

north-facing slope (AS 1) to south-facing slope (AS 2), no other

significant differences are noticed except for available water (AW

%) and nitrogen content (N%). Furthermore, it had a significant

increasing trend of slop from 0-5° to 15°-20° for all soil

variables (Figure 2).
TABLE 1 Summary of morphological traits and stand description (Mean ± SE) of sample habitats and biomass component for C. procera.

Variables AL 1 AL 2 AL 3 F-value

Altitude 564.3 ± 142b 1055.2 ± 126c 1377.6 ± 70.6a 6.28**

Slope degree 154.8 ± 26.8a 181.6 ± 26.5b 161.1 ± 39.1b 4.28*

Average plant height (m) 1.66 ± 0.13a 2.12 ± 0.11b 2.63 ± 0.21c 10.01***

Average diameter (mm) 1.99 ± 0.13a 1.62 ± 0.12a 2.18 ± 0.27b 6.64**

H/D 0.83 ± 0.73a 1.31 ± 1.02a 1.21 ± 1.95b 12.35***

CA (m²) 3.18 ± 0.28b 2.23 ± 0.32a 3.25 ± 0.35b 6.34**

CV (m³) 9.88 ± 0.75b 4.81 ± 0.79a 5.12 ± 0.57a 12.35***

Leave/branch 13.25 ± 0.79a 23.67 ± 2.19b 36.16 ± 2.28c 28.67***

Leaf area(cm2) 120.6 ± 48.7a 135.8 ± 73.9b 148.4 ± 68.6c 24.25***

Stem biomass (g) 41.72 ± 4.0a 43.83 ± 4.1a 45.66 ± 4.03a 2.25

leaf biomass (g) 29.48 ± 2.7a 31.13 ± 2.3a 30.10 ± 1.98a 3.25

Root biomass (g) 43.03 ± 4.4a 41.97 ± 4.2a 46.89 ± 3.87a 3.59

Aboveground biomass (g) 75.86 ± 7.2a 77.06 ± 6.5a 79.85 ± 4.90a 3.25

OM % 0.85 ± 0.13a 0.90 ± 0.29a 0.97 ± 0.22b 0.98

N % 0.09 ± 0.02a 0.04 ± 0.02a 0.19 ± 0.08b 0.343

P (mg/Kg) 4.46 ± 0.45a 4.37 ± 0.43a 4.45 ± 0.52a 0.716

K (mg/Kg) 90.33 ± 8.63a 85.625 ± 10.49a 111.57 ± 17.93b 1.388

AW % 0.13 ± 0.00a 0.13 ± 0.01a 0.13 ± 0.01a 0.941
front
CA, Canopy area; CV, Canopy volume; OM, organic matter; N, nitrogen percentage; K, Potassium; P, Phosphorous content; AW, Available water; AL1, Low altitude; AL2, Middle altitude;
AL3, High altitude. * , P < 0.05; ** , P < 0.01; *** , P < 0.001.
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Environmental variables influence trait
plasticity

The influence of stand variables on various biomass and

morphological features varied greatly, as shown in Table 2. The

Euclidean distance for the distribution pattern of C. procera

biomass and morphological traits was used to determine the

PERMANOVA findings in this research. There were significant

differences in all site parameters on biomass (p< 0.005). The

biomass by site parameters had a considerable degree of

explanation (R2) (p< 0.05). A greater impact of slope direction

and elevation was observed on C. procera shrub biomass, such as

for biomass, altitude (0.45)< aspect-degree (0.62)< slope-aspect

(0.76); for height, altitude (0.73) > aspect-degree (0.39)< slope-

aspect (0.73); for canopy area, altitude (0.63) > aspect-degree

(0.25)< slope-aspect (0.82) and canopy volume, altitude (0.33)<

slope-aspect (0.50)< aspect-degree (0.87). The volume was

significantly affected by the interplay of height and aspect

degree. The biomass distribution patterns of C. procera were

significantly affected by the interaction of the three site variables.
Frontiers in Plant Science 05
FromTable 2, it can be seen that Euclidean distance can be used to

calculate the PERMANOVA results for individual stand factors.
Relationship of topographic variables
with soil properties and biomass

The biomass partitioning pattern of C. procera shrubs was

mapped with environmental factors using the non-metric

multidimensional scaling (NMDS) approach based on Euclidean

distance. As illustrated in Figure 3, the distribution of loci within the

two-dimensional NMDS classification scheme of C. procera shrub

biomass can be seen. The NMDS sorting process may provide

evidence of the link between shrub biomass and stand variables

through limiting the number of axes and allowing the sorting axes to

reflect particular environmental gradients. The findings of the

PERMANOVA were confirmed by the NMDS ordination (stress =

0.04%), which demonstrated clustering of topographic effects on

biomass allocation patterns, with the highest divergence between the

variables (Figure 3). There were some changes in the distribution
TABLE 2 Results of PERMANOVA of Biomass and Morphological traits with site conditions and their interactions for C. procera.

Site factors Biomass Height Diameter Canopy area (m2) Canopy Volume (m3)

F R2 P F R2 P F R2 P F R2 P F R2 P

Altitude 4.26 0.45 0.02 7.12 0.73 0.001 3.65 0.34 0.03 4.51 0.63 0.005 3.55 0.33 0.02

Slope-aspect 5.29 0.76 0.01 4.26 0.39 0.027 8.32 0.77 0.002 2.06 0.25 0.06 7.56 0.87 0.03

Aspect degree 3.11 0.62 0.03 8.82 0.70 0.003 5.60 0.50 0.02 9.23 0.82 0.001 5.60 0.50 0.001

Altitude × Slope-aspect 2.16 0.15 0.29 2.12 0.13 0.12 1.65 0.10 0.11 1.09 0.03 0.25 2.16 0.15 0.11

Altitude × Aspect degree 1.29 0.06 0.31 1.26 0.13 0.27 2.08 0.21 0.06 3.13 0.47 0.02 1.29 0.06 0.06

Slope-aspect × Aspect degree 1.71 0.02 0.09 1.18 0.03 0.33 4.34 0.70 0.002 9.23 0.82 0.001 8.32 0.77 0.002

Altitude × Slope-aspect × Aspect degree 1.21 0.12 0.03 5.16 0.72 0.003 5.60 0.55 0.001 1.23 0.02 0.08 5.60 0.55 0.001
fronti
F, ANOVA F-value; R2, Adjusted R2; P, ANOVA P-value. ** , P < 0.01; *** , P < 0.001.
FIGURE 2

Relationship between topographic conditions and soil variables for C. procera. Error bars represent stand deviation. Low altitude (AL1), middle
altitude (AL2), high altitude (AL3), Slope aspect (south-facing and North-facing slope), Aspect degree (0-5°, 5°-10°, 10°-15°, 15°-20°).
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patternofC.procera shrubbiomassonvarious slopeorientationsand

altitudes. The slope direction had the most significant changes.
Biomass and allometric equations

Table 3 shows the equationparameters, accuracy, andgoodness

equations established for the C. procera biomass estimate. C.

procera was estimated using allometric equations across the three

elevation groups. H, D, D2H, CA, and CV were used to see which

growth characteristics predicted biomassmost accurately. Based on
Frontiers in Plant Science 06
linear modeling, the best fit equations for biomass estimate were

derived usingH,D, andCVas best predicted. These equationswere

statistically significant (p< 0.01). The linear equations showed the

highestR2-value forflowerbiomass and total biomass except for the

foliar biomass. Linear models with V, CA and H as independent

variables showed the bestfit for biomass of stem, leaves, and flower,

respectively at rural areas (Table 3). However, D2 as independent

variable had lowest R2 for total biomass. On the other side, at urban

area stem biomass have high R2 value with respect to other organ

biomasswhile at roadsideflower biomass have highR2 valuewithV

as independent variable.
TABLE 3 Linear model for Calotropis procera organ with biomass at different habitat.

Altitude Organ Variables Lineary=a + bx R² SEE F value

AL 1 Stem X=V y=7.7578x+18.3207 0.866 8.148 52.648**

Leave X=CA y=18.4851x+3.6985 0.883 9.095 56.532**

Flower X=H y=3.1383x+−2.5788 0.777 0.697 45.310

Total ABG X=D² y=43.6740x+−3.5104 0.405 19.541 8.845

AL 2 Stem X= D² y=47.6185x−0.3788x 0.763 7.198 32.281

Leave X= CA y=2.0879x+24.1057 0.196 6.471 2.637

Flower X=V y=0.4653x+2.1889 0.271 1.684 3.718

Total ABG X= H Y=19254x +49.646 0.154 18.41 1.82

AL 3 Stem X= D²H y=1.6375x+19.5264 0.697 8.145 23.020

Leave X= CA y=1.6456x+11.9808 0.109 9.987 0.191

Flower X= V y=0.4030x+0.3652 0.941 0.598 159.3***

Total ABG X=V y=4.1346x+31.8724 0.873 9.323 69.033**
fronti
V (volume), CA (crown area CA= pd2
4 ), D2 (crown diameter), H (height), Total ABG (Above ground biomass). AL1, Low elevation; AL2, Middle elevation; AL3, High Elevation; R2,

Adjusted R2; **, P < 0.01; ***, P <0.001; SEE, standard error estimate.
FIGURE 3

Distribution of sites in two-dimensional NMDS ordinations (stress = 0.04%) based on shrub environmental variables and trait plasticity for
Calotropis procera. Ellipsis (Altitude), different symbols (biomass variation at different aspect degree), ellipsis color (slope aspect).
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In contrast, stem biomass is linked to diameter and height at

low elevations in urban and roadside environments (Table 3). The

accuracy measurements suggest that one or two factors may

adequately describe C. procera biomass (Table 3). There is,

nevertheless, room to improve the model’s explanatory power

by includingmore independent variables. D2, D2H,CA, andHare

employed to analyse shrub biomass regressions as independent

variables. The linear model was the best fit for providing a

common statistical foundation for characterizing size–biomass

connections in this investigation. H, D2H, and CV were the most

relevant independent variables for this C. procera investigation.

The linear regression model was used to show a significant

relationship between the aboveground biomass in response to

different environmental variables such as altitude, aspect degree,
Frontiers in Plant Science 07
slope aspect, N %, P mg/Kg, K mg/Kg, OM %, and AW

% (Figure 4).

Discussions

C. procera, an important shrub, mainly reported from different

parts of Pakistan, is under immense pressure due to natural and

artificial activities (Kareem et al., 2008; Ahmad et al., 2021).

Variation in the morphological characteristics was much visible

along the different habitats occupied by this plant species. In the

current study, we reported plants ofC. procera to have stem height

of 2.63 ± 0.3 m and crown cover of 2.18 ± 0.27 m which is

comparatively higher than those reported from urban sites. This

variation in sizemaybe because theC.proceragrowth likeopenand
FIGURE 4

Linear regression model for C. procera biomass with environmental variables.
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disturbed areas (Sharma et al., 2012). Similarly, climatic and

edaphic factors, interspecific competition, and standard density

canalsoplayagreat role indetermining theheight anddiameter of a

plant species (Foroughbakhch et al., 2006). Variations in stem

height, crown diameter, and volume are attributed to growth

plasticity in diverse habitats (Hou et al., 2020).

Several workers have studied the importance of habitat

characteristics on biomass allocation arrangement of plant

species (Tang et al., 2021). Different environmental conditions

coupled with edaphic factors are the key factors determining

biomass (Li et al., 2013). The current study reported that slope

angle highly influences the biomass allocation pattern, followed

by elevation and aspect degree. Li and Xu (2019) documented

the strong relation between slope degree and biomass of shrubby

plants, which agrees with the findings of current results.

Likewise, the report documented by Li et al. (2007) also

highlighted a strong connection between altitude and slope

angle toward biomass of different plant parts.

The elevation is a complex factor defining several other habitat

conditions, including slope, light, precipitation, temperature,

nutrients water availability (Ochoa-Gómez et al., 2019). Soil

fertility and soil water availability are mainly controlled by slope

angle and soil texture showing thatplant growthwill vary according

to ecological factors (Wang et al., 2017), which supports the

findings in the current study. Similarly, biotic factors like

anthropogenic activities and interspecific and intraspecific

competition can affect the biomass of plant species (Vieira et al.,

2020). We reported significant-high biomass for the individuals

positioned on the roadside more exposed to disturbances than

those located in less disturbed areas. Therefore, it is concluded that

the combined effect of environmental variables highly influences

the biomass allocation pattern in plants (Yang et al., 2017).

In general, biomass allocation of shrubs is mainly attributed to

leaf-mass, stem-mass, root-mass, and root to crown ratios. Different

approaches have been adopted to measure the contribution of plant

organs to biomass allocation. In the current study, we used

PERMANOVA with Euclidean distance to determine plant parts

shares to the total biomass following the standard protocols of

Ochoa-Gómez et al. (2019). Euclidean distance has several

advantages, including characterizing the actual distance among the

points and applying it to the same property indicators. However, it

cannot be applied to different indicators (Greenacre and Primicerio,

2014). A suitable method of calculating distance should be chosen

based on the situation, as different methods have their advantages

and disadvantages.

Different regression models have been developed to estimate

shrub biomass, of which linear and quadratic models are more

commonly used (Ali et al., 2022). A linear regression model was

used to determine biomass in the current study, which provided a

common statistical basis for analyzing size-biomass relationships.

We reported that the most appropriate independent variables

were H, D/H, and CV, which supports the findings of Zeng et al.

(2010). Due to the shrubby nature of C. procera, the current study
Frontiers in Plant Science 08
used crown diameter for calculating biomass. Ali et al. (2022)

reported that the diameter of the stem is an accurate predictor of

biomass. Based on the results obtained in past studies estimating

shrub biomass, crown area was considered a reliable predictor of

shrub biomass byMaraseni et al. (2005) andMcGinnis et al. (2010).
Conclusion

The growth of C. procera and biomass accumulation differ

significantly depending on elevation gradient. In this research, the

growth performance of C. procerawas good in terms of plant height,

diameter, and crown volume. The urban soil sample at high altitude

outperformed the rural area having low altitude and roadside soil

with medium altitude groups by a large margin. Differential growth

and biomass accumulation data suggest that varied site

characteristics impact productivity. The Euclidean distance and the

three stand factors of slope direction, elevation (318 ~ 1476 m), and

slope gradient was used in this investigation. Compared to the rural

and roadside regions, the urban area had the greatest growth

performance and biomass accumulation of C. procera, indicating

that the species is well suited to the soil types of the area. This results

suggests that the soil in the region is conducive to C.

procera development.
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