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mildew based on hyperspectral
imaging and stacked machine
learning models
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Yuchao Wang1, Yongpeng Zhao1 and Man Zhou2*
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Moldy peanut seeds are damaged by mold, which seriously affects the

germination rate of peanut seeds. At the same time, the quality and variety

purity of peanut seeds profoundly affect the final yield of peanuts and the

economic benefits of farmers. In this study, hyperspectral imaging technology

was used to achieve variety classification and mold detection of peanut seeds.

In addition, this paper proposed to use median filtering (MF) to preprocess

hyperspectral data, use four variable selection methods to obtain characteristic

wavelengths, and ensemble learning models (SEL) as a stable classification

model. This paper compared the model performance of SEL and extreme

gradient boosting algorithm (XGBoost), light gradient boosting algorithm

(LightGBM), and type boosting algorithm (CatBoost). The results showed that

the MF-LightGBM-SEL model based on hyperspectral data achieves the best

performance. Its prediction accuracy on the data training and data testing

reach 98.63% and 98.03%, respectively, and the modeling time was only 0.37s,

which proved that the potential of the model to be used in practice. The

approach of SEL combined with hyperspectral imaging techniques facilitates

the development of a real-time detection system. It could perform fast and

non-destructive high-precision classification of peanut seed varieties and

moldy peanuts, which was of great significance for improving crop yields.

KEYWORDS

peanut seeds, variety classification, mildew detection, stacked ensemble learning
model, nondestructive testing
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1 Introduction
Peanuts are considered as important edible oil raw materials

and national economic food crops (Wang et al., 2021a). In recent

years, in order to meet the growing demands of agriculture and

industry, seed hybridization technology has been widely used, so

that the number of peanut seed varieties has increased

significantly. However, there are many processes that can lead

to varietal intermingling throughout growth and development,

such as planting, harvesting, transport and storage. At the same

time, different varieties of peanuts adapt to different soil types,

climatic environments and cultivation methods. Therefore, it is

particularly important to identify the purity of peanut seeds

before sowing (Liu et al., 2022). In addition, moldy peanut seeds

are severely damaged by mold, and the nutrients of the seeds are

destroyed in a large amount, resulting in seed rot and weak

seedlings, thereby reducing seed vigor and yield (Pasupuleti

et al., 2016; Sharma et al., 2021). The purity of peanut seed

varieties and the quality of peanuts have a profound impact on

the final yield of peanuts and the economic benefits of farmers.

Therefore, it is of great value to identify the variety and quality of

peanut seeds before sowing.

Peanut seeds of different varieties have very similar

appearance properties. The traditional identification method is

to identify the shape, skin and color of peanuts manually, but this

methods have the disadvantages of low analysis efficiency and

time-consuming and labor-intensive (Yuan et al., 2020). At the

same time, improper storage of peanuts is prone to produce

aflatoxin, which will seriously affect the germination rate of peanut

seeds (Sharma et al., 2021). Quantitative measurement methods

such as thin-layer chromatography, gas chromatography, and

high-performance liquid chromatography are widely used for

the determination of aflatoxin content due to their high

sensitivity (Wang et al., 2014). However, these ways are

destructive, time-consuming, complex to operate, and difficult to

implement online. In order to overcome the drawbacks brought

by traditional detection methods, rapid and non-destructive

detection techniques, such as Raman spectroscopy (Kopec and

Abramczyk, 2022), machine vision (Mohi-Alden et al., 2022), and

near-infrared spectroscopy (Jiang et al., 2022), have been applied

to the classification of agricultural products. When detected by

Raman spectroscopy, organic molecules can easily convert the

absorbed photons into fluorescent molecules and produce

fluorescence effects. Its intensity is much higher than that of the

Raman spectral peak, and it can even completely cover the entire

Raman spectrum. In this case, surface-enhanced Raman

spectroscopy is required (Pang et al., 2020; Xu et al., 2020).

Machine vision technology has been used for peanut loss

detection. While machine vision technology is commonly used

to evaluate the appearance attributes of peanuts, it cannot evaluate

internal quality attributes. Near-infrared spectroscopy is a mature

non-destructive testing technology that can be used for non-
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destructive testing of complex samples (Zhang et al., 2022).

However, the composition of some samples (eg food) is often

heterogeneous. If the spatial distribution of its components is not

considered, a large amount of important information may be lost,

affecting subsequent analysis results (Badaró et al., 2021).

Hyperspectral imaging (HSI) technology can simultaneously

obtain spectral information and spatial position information of

the sample (Liu et al., 2019; Su et al., 2021). It has been proven to

be a fast, non-invasive and effective tool for food quality analysis

(Cortés et al., 2019). Recently, HSI has been used for food

classification, ingredient detection, agricultural product quality

detection, and damage detection, etc (Xiang et al., 2022). HSI is

characterized by multiple bands and high spectral resolution

(Tan et al., 2018). (Jin et al., 2022) used the spatial spectral

features of HSI to classify peanut seeds, and the classification

accuracy reached 97.64%. (Qi et al., 2019) used HSI technology

and joint sparse representation model to identify fungi

contaminated peanuts. (Sun et al., 2020) used HSI technology

combined with chemometrics to detect the fat content in peanut

kernel. These studies reveal the potential of HSI in peanut

detection, but further research is still necessary.

Classification using HSI is usually achieved by machine

learning methods, such as traditional methods such as support

vector machines and random forests. However, traditional

machine learning has low computational efficiency and

accuracy for HIS with large data volumes. SEL improves

predictive potential and adjusts the bias-variance trade-off of

machine learning submodels. The stacking strategy is an

approach based on the “wisdom of the crowd”, which

maximizes the generalization accuracy by employing the base

learning model to form an ensemble model (Zandi et al., 2022).

In theory, different base learners can give full play to the

cooperative advantages of ensemble learning and achieve the

effect of complementary integration (He et al., 2022). Stacked

ensemble machine learning algorithms have been successfully

used in various applications including wind power prediction

(Dong et al., 2021), soil classification (Eyo and Abbey, 2022),

species classification (Fu et al., 2022), etc. (Zhang et al., 2020)

classifies vegetation based on medium resolution spectral

imaging technology and SEL, and its accuracy is 5.1-5.2%

higher than other single models. (Fu et al., 2022) constructed a

model based on multispectral images and SEL, and found that

the integrated learning algorithm produced better classification

performance than the basic model, with an overall accuracy rate

of 1.6-12.7% higher. There are relatively few studies using SEL

for fine classification of peanut seed varieties and mildewed

peanuts, and there is a lack of comparative research on the

classification ability of the SEL algorithm for peanut seeds using

the HSI.

In this study, a method of HIS combined with SEL was

proposed, and the characteristic wavelength was used to realize

the classification of peanut seeds and the identification of mildew

in peanut seeds. This article aims to: 1) Develop a method based
frontiersin.org
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on HIS combined with SEL to realize variety classification and

mildew detection of peanut seeds. 2) Explore the influence of the

feature wavelengths selected by different variable selection

methods on the classification model to determine the best

features. 3) Establish a stacked ensemble model with high

classification accuracy for peanut seed variety and peanut seed

mildew. 4) Evaluate and compare the classification performance

of the base model and the stacked ensemble model on samples.
2 Materials and methods

2.1 Sample preparation

This study involved four main peanut varieties in key

cultivation areas in my country (Shandong, Henan, Jiangsu,

etc.), including Dabaisha, Huayu, Xiaobaisha, and Luhua. All

peanut seeds were sourced from a Chinese commercial seed

company and picked at random. There were 400 grains of each

peanut variety, all samples were normal, and the appearance was

clean and complete. To obtain naturally moldy peanuts, the

peanuts were placed in a constant temperature and humidity

incubator. The optimum temperature and relative humidity for

Aspergillus flavus growth and aflatoxin production are 37°C and

90%, and 28°C and 90%, respectively. (Lattab et al., 2012; Yuan

et al., 2020).Therefore, the peanuts were placed in the incubator

first at 37°C and 90% humidity for 10 days to facilitate the rapid

development and reproduction of Aspergillus flavus. From the

11th day, the temperature of the constant temperature and

humidity incubator was set to 28°C, and the relative humidity

remained unchanged. Then, on the 20th and 30th days, some

peanuts with the same degree of mildew were taken out as moldy

peanut samples. In order to verify whether peanuts contain

aflatoxin, after obtaining HSI, the AFB1 rapid detection card

produced by Shenzhen Fender Technology Co., Ltd. was used to

detect the residues of AFB1 in various varieties of peanuts.

Peanut samples of each variety were tested, and 150 moldy

peanut seed samples were selected for each variety from the

peanut seeds detected as moldy.
2.2 Hyperspectral imaging system

The hyperspectral image acquisition system adopts the

Image-l “spectral image” series hyperspectral machine of

Zhuolihanguang Company, and uses SpacVIEW software to

operate it. The system consists of a computer, a transmission

platform, a dot matrix camera and a halogen light source. As

shown in Figure 1, the effective band range of its spectrum is

400-1000nm, the band resolution is 2.8nm, a total of 235 bands,

and the pixel is 1344*1024. The measured display properties R,

G and B of each group of samples were set to 638.7, 551.58 and
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442.95 respectively, the time was set to 10s, the distance between

the peanut sample and the camera lens was set to 165mm, and

the moving speed of the sample was set to 4.7mm·s-1. The

exposure time of the camera was 4ms, and the scanning area of

the spectrum was 150mm. The hyperspectral camera and the

sample peanut belong to the vertical scanning relationship. The

sample is placed on the transmission platform, and the

hyperspectral camera is perpendicular to the transport

platform. The hyperspectral image is collected through the

uniform movement of the transmission platform.
2.3 Hyperspectral image acquisition
and correction

Image processing was first performed to identify regions of

interest (ROI), each defined as the inner contour region of a

peanut seed. During the acquisition process, due to the influence

of noise caused by the surrounding environmental factors and

the dark current of the instrument, it is necessary to collect the

black frame and white frame of the image separately before

collecting the sample. After the sample collection was completed,

the black and white correction was performed in SpacVIEW

according to the following formula (1.1), and the ENVI5.1

software was used to extract the area required for the

experiment in the peanut hyperspectral image after black and

white correction. Then, the average reflectance value of the

spectral data on the extracted area was calculated as the

characteristic reflectance spectral curve of different varieties of

peanuts, as shown in Figure 2. When collecting the spectral data

of the sample, the sample to be tested is affected by illumination,

dark current, light scattering and human operation when taking

pictures, resulting in noise and a large amount of interference

information in the spectral data (Li et al., 2021). The raw visible-

NIR spectra also require baseline correction and noise removal.

Therefore, all these unwanted components must be removed to

improve the signal-to-noise ratio and optimize model

performance. In order to obtain more valuable spectral data,

this paper used Median Filtering (MF) to preprocess the spectral

data. MF has a good filtering effect on impulse noise, especially

while filtering out noise, it can protect the edge of the signal so as

not to be blurred, and obtain more valuable spectral data

(Kumar et al., 2021).

R1 =
R0 − RB

Rw − RB
(1:1)

In the formula, R0 is the initial hyperspectral image (RAW),

R1 is the image after black and white correction, RB is the black

frame of the image collected after closing the lens, and Rw is the

white frame of the image collected after the acquisition and

debugging are correct.
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FIGURE 2

Hyperspectral imaging system.
FIGURE 1

Flowchart of the main steps in the detection of peanut seeds by hyperspectral imaging technology.
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2.4 PCA spectral data visualization

Principal Component Analysis (PCA) was proposed by

Pearson in 1901 and later popularized by Hotelling in 1933.

The main idea of PCA is to map m-dimensional features to k-

dimensions (k<m), and linearly combine many original feature

factors with certain correlation into several new independent

comprehensive factors. And, as much as possible to reflect the

original information of these characteristic factors (Bianchi et al.,

2015). A 3D scatter plot of the first three principal components

was used to visualize the separation of peanut seed samples.
2.5 Feature wavelength selection

The raw spectral data collected by the hyperspectral system

is affected by a large amount of redundant information, resulting

in a decrease in classification accuracy (Zou et al., 2023). The raw

spectral data collected by hyperspectral systems are composed of

a large number of bands and have multicollinearity. It is

advisable to select some important variables to develop more

powerful and concise classification models. Characteristic

wavelength modeling can effectively eliminate the redundancy

of spectral data and improve the accuracy and efficiency of

classification models. Therefore, it is necessary to extract the

characteristic wavelengths with strong correlation to judge the

type of samples from the original spectral data. The spectral data

of peanut seed samples contains 235 characteristic bands. This

paper adopted four effective wavelength extraction methods:

XGBoost, LightGBM, GBDT, and CatBoost. The contribution

rate of each wavelength was obtained through cross-validation,

and the wavelength with high contribution rate was selected,

thereby simplifying the establishment of subsequent models and

reducing the amount of calculation.
2.6 Classification model

Based on the above-mentioned spectral preprocessing and

effective feature wavelength selection methods, five machine

learning algorithms, GBDT, XGBoost, CatBoost, LightGBM

and SEL, were used to establish classification models.

Determine the optimal model based on the prediction results.

70% of the spectral data was randomly selected as the training

set, and the remaining 30% of the spectral data was used as the

test set. The samples were divided into 5 categories, including

Dabaisha, Huayu, Xiaobaisha, Luhua, and moldy peanut seeds.

XGBoost is an optimized distributed gradient boosting

library designed to be efficient, flexible and portable (Li et al.,

2022). First, it constructs an appropriate number of weak

learners, mainly classification regression trees, to train weak
Frontiers in Plant Science 05
learners. It also performs weighting calculations and

summations after training to get the final classification model.

XGBoost uses a second-order Taylor expansion for the loss

function. At the same time, XGBoost also supports column

sampling to avoid overfitting and reduce the computational

workload. After each iteration, XGBoost assigns the learning

rate to leaf nodes, reducing the weight of each tree and providing

better space for subsequent learning (Liu et al., 2021b).

LightGBM was originally developed by researchers at

Microsoft and Peking University to address the efficiency and

scalability issues of GBDT and XGBoost when applied to high-

dimensional input features and large data volumes (Wen et al.,

2021). The core concepts of LightGBM are histogram algorithm,

leaf growth strategy with depth limit, support category features,

histogram feature optimization, multi-threading optimization

and cache hit ratio optimization (Wang et al., 2021b). The

algorithm bins the original continuous feature values and uses

these bins to build a model. The histogram greatly reduces the

time consumption of split point selection and improves the

training and prediction efficiency of the model (Liu et al., 2021a).

CatBoost is a machine learning algorithm based on gradient

boosting decision trees. Different from other gradient boosting

algorithms, CatBoost uses a symmetric tree structure, which

helps to avoid overfitting and improve reliability (Ding et al.,

2021). During the construction of CatBoost trees, each tree is

built based on the residuals of the previous tree. This iterative

process makes the final prediction more accurate and the model

more robust (Zou et al., 2021).

As an ensemble learning algorithm based on classification

and regression tree, GBDT consists of Decision Tree and

Gradient Boosting. GBDT contains multiple rounds of

iterations. The basic classifier generated by each round of

iteration is trained on the basis of the residual of the previous

round of classifier (residual = true value - predicted value), and

then continues to fit the residual of the previous round (Zhang

and Jung, 2021).

The SEL framework generalizes the output values of multiple

models to improve the overall classification performance by

using the classification results of the base model as the input data

of the meta-model (Fu et al., 2022). The SEL principle was

shown in Figure 3A. This study stacks four base models

(XGBoost, LightGBM, GBDT, CatBoost) to build an ensemble

learning model. When using SEL, the original dataset is divided

into sub-datasets, which are then used as input data for different

base learners in the first layer. The predicted values from the first

layer are used as input data for the second layer to train the base

learner. The final predicted value comes from the model in the

second layer.

As shown in Figure 3B. 1)Divide the data into training and

test sets. Then divide the training set into five parts (train1,

train2, train3, train4, train5). 2)Select the base model. Choose
frontiersin.org
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LightGBM, CatBoost and GBDT as base models. For the base

model part: use 1 copy as the validation set in turn, and the

remaining 4 copies as the training set, perform 5-fold cross-

validation for model training, and then make predictions on

the test set. This will get 5 predictions trained by the base

model on the training set and 1 prediction B1 on the test set.

Combine these five vertical overlaps to get A1. 3)After the three

base models are trained, the predicted values of the three

models on the training set are taken as three features (A1,

A2, A3) respectively, and the XGBoost model is used for

training to establish the XGBoost model. 4)Using the trained

XGBoost model, make predictions on the values of the three

features (B1, B2, B3) constructed from the predicted values on

the test set before the three base models, and get the final

predicted category.
2.7 Model evaluation

The hyperspectral data of 70% of the peanut seed samples

were selected as training data by random sampling, and the
Frontiers in Plant Science 06
remaining 30% of the data were used as the test set. The machine

learning algorithm was used to build a discriminant model to

verify the logical properties of the feature response of peanut

seeds HSI. Using Modeling Average Time, Accuracy, Log Loss,

and Hamming Loss to evaluate the effect of model training

predictions (Leng et al., 2020; Huang et al., 2021; Wang et al.,

2021c). Log Loss The negative logarithm of the probability that

the true probability occurs for a given classifier, conditional on

the prediction probability. The smaller the value, it is proved that

the probability estimates more accurate, the ideal model.

Hamming Loss is used to investigate the misclassification of

samples on a single tag, that is, relevant tags do not appear in the

predicted tag set or irrelevant tags appear in the predicted tag set.

The smaller the index value, the better the model performance.

The smaller the value, it is proved that the probability estimates

more accurate, the ideal model. Hamming Loss is used to

investigate the misclassification of samples on a single tag, that

is, relevant tags do not appear in the predicted tag set or

irrelevant tags appear in the predicted tag set. The smaller the

index value, the better the model performance. The smaller the

value, it is proved that the probability estimates more accurate,
A

B

FIGURE 3

Schematic diagram of the SEL. (A) SEL schematic diagram. (B) SEL principle flow diagram.
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the ideal model. These evaluation parameters are calculated as

follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(1:2)

In the formula, FP represents the correct sample in the wrong

sample, TN represents the wrong sample in the real sample, TP

represents the predicted correct sample in the real sample, and FN

represents the wrong sample in the incorrect sample.

Log loss = −
1
No

N

i=1
o
M

j=1
yij log (pij) (1:3)

In the formula, N is the number of samples, M is the number

of categories, when the ith sample belongs to category j, Yij is 1,

otherwise it is 0; Pij is the probability that the ith sample is

predicted to be the jth category.

Hamming loss ¼ 1
No

N

i=1

XOR(Yij, Pij)

L
(1:4)

In the formula, N represents the number of samples, L is the

number of label samples, Yij is the actual value of the jth

component in the ith predicted value, Pij is the predicted value

of the jth component in the ith predicted value, XOR represents

XOR operation.
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3 Results and discussion

3.1 Spectral characteristics of
peanut seeds

Black and white correction was performed on the

hyperspectral data of the sample, which effectively eliminated

the influence of external factors on the spectral data of the

sample. Figures 4A, B show the raw spectra of peanut seeds and

moldy peanut seed samples, and Figures 4C, D show the spectra

of peanut seeds and moldy peanut seed samples after MF

treatment. Compared with the original spectra, the MF-

processed spectral data have similar trends to the original

spectra. After preprocessing, the noise interference of

hyperspectral data is reduced, and the spectral curve is

smoother. Figures 4E–H show the spectral changes before and

after mildewing of four kinds of peanut seeds. Studies have

shown that there are obvious spectral differences in the visible

light region of 400-450nm, which is related to the color change

of peanut seeds after mold (Fernandez-Ibanez et al., 2009; Wang

et al., 2015). The reflectance in the visible light region of 400-

600nm is generally low, because the pigments such as

anthocyanin and chlorophyll in the peanut skin strongly

absorb light (He et al., 2021). In the 700 nm-1000 nm spectral
A B

D

E F

G H

C

FIGURE 4

Spectral curves of peanut seeds. (A) The original spectral curves of four varieties of peanut seeds; (B) the original spectral curves of mildewed
peanut seeds; (C) the spectral curves after MF pretreatment; (D) spectral curves of moldy peanut seeds after MF pretreatment; (E–H) are the
average spectral curves of four healthy peanut seeds and moldy peanut seeds, respectively.
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band, there are obvious differences in spectral reflectance,

mainly caused by the organic chemical bonds of peanut seeds

(Kimuli et al., 2018). At small concentrations, its effect on the

spectrum may be suppressed by more conspicuous kernel color,

so more aflatoxin spectral information is expected in the NIR

region between 700 and 1000 nm (Fernandez-Ibanez

et al., 2009).
3.2 Visualization of hyperspectral data

Using PCA algorithm, the first three principal components

are selected as data representatives to intuitively reflect the

differences between samples. The raw and MF preprocessed

hyperspectral data are visualized through PCA algorithm, as

shown in Figures 5A, B. PC1, PC2 and PC3 are the

contribution rates of the first three principal components and

also represent the variance of the data they carry. The contribution

rate represents the sum of the eigenvalues of each principal

component divided by the eigenvalues. In space, PCA can be

understood as projecting the original data to a new coordinate

system. PC1 respectively represents the change interval of the first

new variable obtained by some transformation of multiple

variables in the data; PC2 represents the change range of the

second new variable obtained by some transformation of multiple

variables in the original data; Similarly, PC3 can be obtained. In

the raw and MF preprocessed spectral data, the cumulative

weights of the first three principal components reached 98.03%

and 98.21%, respectively, reflecting the main information of

peanut seeds. The first three principal components were selected

for principal component analysis of spectral data. Its purpose is to
Frontiers in Plant Science 08
retain the main information of spectral data to the maximum

extent, prevent data missing, reduce the redundancy of spectral

data, and meet the requirement that the cumulative contribution

rate of principal component analysis is greater than 80% (Lee and

Jemain, 2021). Spectral data was visualized using PCA, presenting

five peanut seed samples as “clusters”. When reduced to three

dimensions, it can be seen from Figures 5A, B that MF-PCA can

better display the five peanut seed samples as “clusters”. RAW-

PCA has more intersections and shows poorer results. Each

sample in MF-PCA has its own spatial distribution

characteristics, which show the best results, which is consistent

with the results obtained later with MF as model input. Therefore,

by visualizing the preprocessed spectral data through the PCA

algorithm, the spatial distribution of the preprocessed spectral

data can be clearly seen from the visualized image. After PCA

visualization, it can be seen intuitively that five peanut seed

samples can be classified. This analysis provides the basis for

the following classification model.
3.3 Classification model using
full spectral

The MF spectral preprocessing method combined with five

classification models (XGBoost, LightGBM, CatBoost, GBDT,

SEL) is used to construct classification models. MF effectively

eliminates the noise impact of spectral data, and the classification

accuracy has been significantly improved. MF has excellent

performance on hyperspectral data. After MF pretreatment, the

classification model can accurately identify peanut seed varieties

and mildew. Figure 6 visually shows the accuracy of the test set
A B

FIGURE 5

PCA visualization of hyperspectral data of peanut seeds. (A) RAW-PCA; (B) MF-PCA.
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and training set of each classification model. When using full

spectral data as the model input, the accuracy of spectral data is

significantly improved after MF preprocessing, among which, the

accuracy growth rates of model training set and test set are 6.63-

9.42% and 6.52-8.94%. The classification accuracy of MF-SEL is

98.57% and 97.27% on the training and test sets. Moreover, the

Log Loss and Hamming Loss have the lowest values of 4906.57

and 0.027273, and the modeling time of MF-SEL is 1.2678s.

Comparing the five classification models, the training set and

test set accuracy of SEL are higher than the other four

classification models. SEL makes the best of the synergistic

advantages of different base learners to achieve the effect of

complementary integration, thereby improving the accuracy of

classification models (Zandi et al., 2022).
3.4 Calibrate model using
selected spectra

3.4.1 Feature wavelength selection
The original spectral data collected by the hyperspectral

system consists of a large number of wavebands with multiple

collinearity (Khan et al., 2022). XGBoost, LightGBM, CatBoost

and GBDT rank the importance of 235 wavelength respectively,

and the number of effective wavelengths they select is 61, 32, 46

and 66. Figure 7 intuitively shows the distribution of characteristic

wavelengths selected by different feature selection methods, as well

as the importance score of each wavelength. The characteristic

wavelengths selected by the four feature selection methods are

similar, mainly distributed in 400-450nm, 500-600nm, 790-

830nm and 968-1000nm. This also means that there is more

differential information near these bands. Selecting some
Frontiers in Plant Science 09
important variables helps to develop a more powerful and

concise classification model. Among them, there are obvious

spectral differences in the visible light region of 400-450nm,

which is related to the color change of peanut seeds after mold

(Fernandez-Ibanez et al., 2009; Wang et al., 2015). The reflectance

in the visible light region of 400-600nm is generally low, because

the pigments such as anthocyanin and chlorophyll in the peanut

skin strongly absorb light (He et al., 2021). 800nm is associated

with third overtone N-H stretch and third overtone C-H, 968-

1000nm is associated with second overtone O-H stretch and

second overtone N-H stretch (Kimuli et al., 2018). The

experimental results show that the four variable selection

methods have similar general trends on the selected

characteristic wavelengths. These characteristic wavelengths will

be an important basis for finally distinguishing different peanut

seed samples. Therefore, the wavelengths selected in the above

process were used as input to the subsequent classification model.

3.4.2 Classification model using
selected spectra

The hyperspectral data preprocessed by MF is used to

construct classification models through four variable selection

methods (XGBoost, LightGBM, CatBoost, GBDT) combined

with five classification models (XGBoost, LightGBM, CatBoost,

GBDT, SEL). The evaluation indicators of the classification

results of each model are summarized in Table 1. From the

classification results of all classification models in Table 1, all

classification models can accurately identify the variety of peanut

seeds and the mildewed peanut seeds. Figure 8 visually shows the

accuracy of the test set and training set of each classification

model. SEL also shows its excellence when using the

characteristic wavelengths screened out by different variable
FIGURE 6

The training set and test set accuracy of the original hyperspectral data and the MF preprocessed hyperspectral data as input for the
five models.
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A

B

D

C

FIGURE 7

Characteristic wavelength distribution and contribution rate of characteristic wavelengths for four variable selection methods. (A) XGBoost; (B)
LightGBM; (C) CatBoost; (D) GBDT.
TABLE 1 Evaluation indicators for the classification results of peanut seed samples using four variable selection methods combined with five
classification models.

Models Number Train-accuracy Test-accuracy Log loss Hamming loss Time(s)

XGBoost -XGBoost 50 96.42% 96.21% 5148.34 0.037879 0.1695

XGBoost -LightGBM 48 96.94% 96.36% 5113.81 0.036364 0.0438

XGBoost -CatBoost 53 97.46% 97.27% 4906.57 0.027273 0.3239

XGBoost -GBDT 47 96.42% 95.60% 5286.51 0.043939 0.1017

XGBoost -SEL 39 98.70% 98.03% 4733.88 0.019697 0.4814

LightGBM -XGBoost 21 96.43% 96.21% 5148.35 0.037879 0.1017

LightGBM -LightGBM 26 96.82% 96.52% 5079.27 0.034848 0.0319

LightGBM -CatBoost 23 97.86% 96.82% 5010.19 0.031818 0.2184

LightGBM -GBDT 32 96.49% 95.45% 5321.04 0.045455 0.0618

LightGBM -SEL 17 98.64% 98.03% 4733.88 0.019697 0.3701

CatBoost -XGBoost 21 97.21% 96.36% 5113.81 0.036364 0.0908

CatBoost -LightGBM 15 97.08% 96.67% 5044.73 0.033333 0.0289

CatBoost -CatBoost 20 97.14% 96.82% 5010.19 0.031818 0.1775

CatBoost -GBDT 20 97.40% 96.21% 5148.35 0.037879 0.0848

CatBoost -SEL 15 98.31% 97.42% 4872.04 0.025758 0.4023

GBDT -XGBoost 29 96.75% 96.52% 5079.27 0.034848 0.1157

GBDT -LightGBM 25 97.27% 96.52% 5079.27 0.034848 0.0389

GBDT -CatBoost 23 97.40% 96.97% 4975.65 0.030303 0.2429

GBDT -GBDT 25 96.04% 95.45% 5321.04 0.045455 0.0539

GBDT -SEL 16 98.12% 97.58% 4837.50 0.024242 0.4249
Frontiers in Plant Science
 10
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(Number represents the number of characteristic wavelengths for the optimal result of the model).
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selection methods as model inputs. Better classification results

were obtained by using fewer wavelengths. Compared with the

classification results in Table 2, when the characteristic

wavelength selected by the variable selection method is used as

the model input, the classification accuracy and modeling time

are improved. Especially for Stack, the modeling time is

improved by about 0.8s. This is due to the fact that the

variable selection method selects the more recognizable

characteristic wavelengths as the model input, which reduces

the redundancy of the data (Chen et al., 2020). Experimental

results show that MF-LightGBM-SEL achieves the best

classification results. LightGBM selects 17 characteristic

wavelengths as model input, and the accuracy rates of training

set and test set reach 98.63% and 98.03%, respectively. Log Loss

and Hamming Loss are 4733.88 and 0.019697 respectively, and

the modeling time is 0.3701s.
3.5 Classification performance analysis of
stacked ensemble models

Figures 9A–F show confusionmatrices derived fromRAW,MF,

and hyperspectral data selected by different variable selection
Frontiers in Plant Science 11
methods as SEL input. Except for RAW-SEL, the other SELs

achieved 97.79% recognition rate for moldy peanut seed samples.

Compared with the RAW-SEL model test set, the accuracy rate is

increasedby3.31%,which is due to thegooddataprocessingabilityof

MF that eliminates the noise effect of hyperspectral data. Compared

with full-wavelength modeling, the characteristic wavelengths

obtained by using the four variable selection methods are also

greatly improved. Especially for the peanut seeds of Luhua, the

classification accuracy rate reaches 100%. This is due to the use of

characteristic wavelength modeling to reduce the problems of

collinearity and redundancy in hyperspectral data. Preprocessing

the original spectrum and using four variable selection methods to

extract characteristic wavelength variables cannot help improve the

accuracy and stability of the SEL, but improve themodeling time. To

sum up, by comparing the classification results of SEL and the four

basic models, SEL shows excellent classification performance.

Compared with the basic classification model, it uses less

hyperspectral data and obtains better classification results. These

are consistent with the findings of several previous studies, e.g.

(Zhang et al., 2020) classifies vegetation based on medium

resolution spectral imaging technology and SEL, and its accuracy is

5.1-5.2% higher than other single models. (Fu et al., 2022)

constructed a model based on multispectral images and SEL, and
FIGURE 8

The training and test set accuracies of the feature wavelengths selected by the four variable selection methods as the model input.
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found that the integrated learning algorithm produced better

classification performance than the basic model, with an overall

accuracy rateof1.6-12.7%higher.Theresults showed that the stacked

ensemble model exhibits superior classification performance.
4 Conclusion

In this paper, a fast and accurate nondestructive detection

method using HSI technology combined with a stacked machine
Frontiers in Plant Science 12
learning model was proposed to classify peanut seed varieties

and moldy peanut seeds. The SEL was formed by stacking and

integrating XGBoost, LightGBM, CatBoost, and GBDT

algorithms. The MF spectral preprocessing method was used

to calibrate the model, and it was found that MF preprocessing

can reduce the influence of hyperspectral data noise and greatly

improve the accuracy of the model. The accuracy rate of the

training set increases by 6.53-8.95%. Among the four variable

selection methods, LightGBM exhibits the best performance,

which effectively eliminates the collinearity and redundancy
TABLE 2 Evaluation indicators of MF combined with five classification models for the classification results of peanut seed samples.

Models Train-accuracy Test-accuracy Log loss Hamming loss Time(s)

RAW-XGBoost 88.70% 87.42% 7151.59 0.125758 0.6133

RAW-LightGBM 89.81% 88.48% 6909.82 0.115152 0.1326

RAW-CatBoost 88.24% 87.57% 7117.05 0.124242 0.7431

RAW-GBDT 88.44% 87.27% 7186.13 0.127273 0.3471

RAW-SEL 91.94% 90.75% 6391.74 0.092424 1.3045

MF-XGBoost 96.29% 95.91% 5217.42 0.040909 0.5593

MF-LightGBM 96.94% 96.36% 5113.80 0.036364 0.1316

MF-CatBoost 97.66% 96.51% 5079.27 0.034848 0.9736

MF-GBDT 95.58% 95.30% 5355.58 0.04697 0.3071

MF-SEL 98.57% 97.27% 4906.57 0.027273 1.2678
front
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C

FIGURE 9

Confusion matrix for the training set of SEL. (A) RAW-Stack; (B) MF-Stack (C) MF-XGBoost-SEL; (D) MF-LightGBM-SEL; (E) MF-CatBoost-SEL; (F)
MF-GBDT-SEL.
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problems of hyperspectral data. The characteristic wavelengths

screened by the four variable selection methods are used as

model input, and the growth rate of the training set accuracy is

0.15-0.91%. Compared with the basic model, the training set

accuracy rate increases by 0.6%-3.48%. For the hyperspectral

data of 17 characteristic wavelengths selected by MF-LightGBM-

SEL, the training set and test set accuracy rate reached 98.63%

and 98.03%, respectively, and the modeling time was 0.3701s.

Log loss and Hamming Loss are namely 5321.04 and 0.045455.

The stacking ensemble algorithm exhibits strong classification

ability. Compared with the research of Jin et al. (Qi et al., 2019;

Sun et al., 2020; Jin et al., 2022), first of all, this paper classifies

peanut seed varieties and mildew, identifies two factors that

affect peanut yield, and provides a broader reference for

improving the quality of peanut seeds. Secondly, the

experimental method studied in this paper adds time

parameters, Hamming Loss Log Loss and other evaluation

indicators, which makes the efficiency and performance of the

model more intuitive. Finally, through the strategy of stacking

machine learning models, this paper realizes the accurate

identification of peanut seed varieties and mildew. The results

show that HSI technology has satisfactory potential in

identifying peanut seed varieties and discriminating mildewed

peanut seeds. In addition, the method of stacking ensemble

algorithm combined with HSI technology provides ideas for

rapid identification of peanut seed varieties and mildew

identification of peanut seeds.
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