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Plant-made poliovirus
vaccines – Safe alternatives
for global vaccination

Omayra C. Bolaños-Martı́nez and Richard Strasser*

Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology,
University of Natural Resources and Life Sciences, Vienna, Austria
Human polioviruses are highly infectious viruses that are spreadmainly through

the fecal-oral route. Infection of the central nervous system frequently results

in irreversible paralysis, a disease called poliomyelitis. Children under five years

are mainly affected if they have not acquired immunity through natural

infection or via vaccination. Current polio vaccines comprise the injectable

inactivated polio vaccine (IPV, also called the Salk vaccine) and the live-

attenuated oral polio vaccine (OPV, also called the Sabin vaccine). The main

limitations of the IPV are the reduced protection at the intestinal mucosa, the

site of virus replication, and the high costs for manufacturing due to use of live

viruses. While the OPV is more effective and stimulates mucosal immunity, it is

manufactured using live-attenuated strains that can revert into pathogenic

viruses resulting in major safety concerns and vaccine-derived outbreaks.

During the last fifteen years, plant-based poliovirus vaccines have been

explored by several groups as a safe and low-cost alternative, and promising

results in protection against challenges with viruses and induction of

neutralizing antibodies have been obtained. However, low yields and a high

frequency in dose administration highlight the need for improvements in

polioviral antigen production. In this review, we provide insights into recent

efforts to develop plant-made poliovirus candidates, with an emphasis on

strategies to optimize the production of viral antigens.
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Introduction

Poliomyelitis (polio) is a viral disease which is caused by polioviruses that are

transmitted by the fecal-oral route and predominantly affects children under five years.

The severity ranges from asymptomatic occurrence to meningitis and acute flaccid

paralysis. Polio has the peculiarity to seriously affect the central nervous system (CNS)

and damage the motor neurons located in the anterior horn of spinal nerve roots. This

harm leads to muscular dysfunction or even death when vital body functions such as
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deglutition or respiration are compromised (Sabin, 1956). Post-

polio syndrome (PPS) is a non-contagious and slowly

progressive appearance of a variety of symptoms that occur

many years or decades after virus infection and involves

symptoms like muscular weakness, limb paresis with muscle

atrophy, paresthesia, joints pain, fatigue, physical and mental

activity deterioration. The cause of PPS remains poorly

understood, it may be related to the slow degeneration of

individual nerve terminals in the motor units (Pastuszak

et al., 2017).

Polio has a huge impact on developing countries with poor

sanitation and weak public health systems. Due to worldwide

vaccination efforts that began in the late ‘80s with the creation of

the Global Polio Eradication Initiative (GPEI), polio has been

considered almost completely eradicated. To date, polio remains

endemic in two countries: Afghanistan and Pakistan (Greene

et al., 2019). However, recent cases of paralytic poliomyelitis in

the US, the UK and Israel highlight that poliovirus is still a

worldwide threat that needs attention in all countries (Hill et al.,

2022). These new cases in countries deemed polio-free were

reported in undervaccinated communities which emphasizes the

need to improve vaccination coverage for global polio eradication.
Poliovirus and capsid proteins

The causative agent of the disease is poliovirus, which is a

member of the Enterovirus genus belonging to the

Picornaviridae family. There are three wildtype poliovirus

serotypes (WPV) and all of them are highly contagious. The

WPV serotypes 2 and 3 were declared as eradicated in the year

2015 and 2019, respectively. Thus, the WPV serotype 1 has

become the only wild poliovirus that remains in circulation1 .

The full-length poliovirus genome has approximately 7500

bp and is composed of a single-stranded, positive-sense and

non-segmented RNA. The major ORF is flanked by two

untranslated regions containing a variety of secondary

structures. The small viral protein VPg is attached covalently

to the 5´-end and a long chain of adenine residues is attached to

the 3´-end of the RNA. Both modifications are involved in

replication and translation processes in association with

membranous complexes (Yogo and Wimmer, 1972; Lee et al.,

1977). Viral RNA released into the cytoplasm serves as

messenger RNA (mRNA) from which VPg is cleaved off. The

ribosomes assemble on the internal ribosome entry site (IRES)

and the mRNA is subsequently translated to a single polyprotein

that is proteolytically processed into mature viral proteins. The

replication process and virions assembly occur in the cytoplasm

of infected cells where virally encoded and host cell proteins are

required (Mueller et al., 2005; Payne, 2017) (Figure 1A).
1 https://polioeradication.org/
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Poliovirus has an icosahedral morphology resulting from

integration of 60 copies of each of the four structural (capsid)

proteins named VP1, VP2, VP3 and VP4 (Jiang et al., 2014). The

VP4 protein resides inside of the virus particle and has a myristic

acid moiety attached at the N-terminus which has an important

role for virus assembly (Paul et al., 1987). The VP1, VP2, and

VP3 proteins are exposed outside of the viral structure and

contain the main antigenic sites, which are defined as linear or

non-linear structures where the neutralizing antibodies can bind

and prevent infection (Hogle et al., 1985; Fry and Stuart, 2010;

Shaw et al., 2018). The RNA genome is encapsidated into these

non-enveloped icosahedral virions in a process that involves

membrane rearrangements and hijacking of cellular proteins

involved in membrane transport in the secretory pathway (Belov

et al., 2007). Unlike many enveloped viruses like coronaviruses,

the biosynthesis of the polioviral proteins and assembly of the

virions typically does not involve contact with the luminal

biosynthesis machinery of the secretory pathway. Hence, the

exposed polioviral proteins are not N-glycosylated and N-

glycosylation likely does not play any role in poliovirus protein

folding, secretion or function.
Host immune response and current
vaccines to prevent poliomyelitis

After ingestion, the virus replicates in the alimentary tract

mucosa and is transported by macrophages and/or infected

dendritic cells to deep cervical lymph nodes and mesenteric

lymph nodes where the virus replicates (Wahid et al., 2005). The

viruses are released into the lymph and transported through the

afferent lymphatic vessels into the bloodstream, causing a

primary viremia and subsequent viral spread to other tissues.

In approximately, 1% of individuals who either have not been

vaccinated or have not acquired natural immunity, the

circulating viruses can invade the CNS causing an irreversible

paralysis (Blondel et al., 2005). To date, two vaccines are

administered: 1) the inactivated polio vaccine (IPV) and 2) the

live-attenuated oral polio vaccine (OPV). The production of

these vaccines is based on conventional procedures involving

handling large amounts of infectious viruses which are

subsequently inactivated or attenuated. These vaccines have

become the main tool for global eradication efforts of the

disease. Both vaccines result in systemic immunity with the

production of IgG and monomeric IgA antibodies that circulate

in the body and protect from paralytic polio. Additionally, OPV

induces intestinal mucosal immunity that prevents infections in

the gut and protects the gastrointestinal and urogenital tracts.

This immunity is associated with the production of secretory

IgA antibodies (Donlan and Petri, 2020). While IPV-vaccinated

individuals are protected from the disease, they may still shed

poliovirus which results in virus transmission and thus

contributes to the spread of viruses in communities.
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Limitations of the OPV, on the other hand, are related to the

generation of vaccine-associated paralytic polio. Due to genetic

instability, the live-attenuated virus can regain virulence leading

to the production of new pathogenic strains called circulating

vaccine-derived poliovirus (cVDPV) and increased outbreaks in

recent years (Ming et al., 2020; Alleman et al., 2021). As a

response, in 2020 the World Health Organization (WHO)

approved the use of the novel OPV monovalent type 2

(nOPV2) vaccine, a genetically more stable vaccine produced

form the Sabin type 2 strain. While this vaccine is safer, the

current nOPV2 supply is limited2. Hence, the current scenario

raises the urgent need for new strategies towards polio

eradication where advanced virus-free vaccines are designed

that provide effective protection and prevent the transmission

of poliovirus and the reemergence of the disease.
Biotechnology strategies for the
production of plant-based vaccines

During the last three decades, plant biotechnology has

experienced a huge progress in producing economically valuable

and biologically active heterologous proteins. A myriad of

biopharmaceuticals, including monoclonal antibodies, diagnostic

reagents and viral antigens used as vaccine prototypes for animals

and humans have been produced in plants. In this respect, a

diversity of plant species such as tobacco, tomato, soybean, potato,

rice, maize and carrot have been explored as vaccine biofactories

and oral delivery vehicles (Shanmugaraj et al., 2020). Viruses from

which small protein antigens or complete proteins have been

expressed include human papillomavirus (HPV), human

immunodeficiency virus (HIV), viruses from the genus

Flavivirus (Dengue virus, Zika virus, West Nile virus), hepatitis

B virus (HBV), porcine reproductive and respiratory syndrome

virus (PRRSV), food and mouth disease virus (FMDV), Newcastle

disease virus (NDV), rabies virus (RABV), influenza virus,

coronaviruses-like swine transmissible gastroenteritis virus

(TGEV) and SARS-CoV-2 (Mason et al., 1992; Berinstein et al.,

2005; Ashraf et al., 2005; Zhou et al., 2008; Rybicki, 2014; Uribe-

Campero et al., 2015; Gottschamel et al., 2016; Massa et al., 2019;

Bolaños-Martıńez and Rosales-Mendoza, 2020; Ruocco and

Strasser, 2022). In comparison to conventional expression

systems such as bacteria or mammalian cells, plants offer

unique features. For viral proteins, folding is highly essential to

maintain the antigenic conformation of the epitopes and retain

their capacity to induce a desired immune response. Bacterial

expression systems are limited in processing of proteins and lack

mammalian N- and O-glycosylation capacity. As a consequence,

appropriate protein folding often cannot be achieved (Sahdev

et al., 2008). Plants, on the other hand, combine the characteristics
2 https://polioeradication.org/

Frontiers in Plant Science 03
of higher eukaryotic cells and are capable of proper post-

translational modifications and efficient protein folding. The

production is highly scalable and safe since plant cells are not

infected by human pathogens like viruses and are free of

undesirable biological contaminants such as endotoxins or

prions. Furthermore, plant-based production offers lower

manufacturing costs compared to mammalian cells and the

possibility to generate freeze-dried formulations that are stable

without cooling (Fischer et al., 2004; Kumar et al., 2018).

Plant-based vaccines can be produced by delivering a

transgene into the plastid (stably) or nuclear genome (stably

or transiently) or by using RNA-based viral expression systems

(Figure 1B). Edible plants like carrot or lettuce lack toxic

compounds and require minimal processing for the

formulation of oral vaccines (e.g. delivery via tablets). These

formulations are especially important to elicit a mucosal

immune response at sites where polioviruses replicate. In

addition, natural encapsulation and adjuvant-intrinsic effects

attributed to components of plant cells can further enhance

the effect of expressed viral antigens, for example, by protecting

the antigen or enabling a controlled release (Rosales-Mendoza

and Tello-Olea, 2015). Transient expression is attractive for

emerging viruses and can offer high protein yields in a short

time period (Ruocco and Strasser, 2022). Advantages of

chloroplast expression include reduced variation from

positional effects, lack of gene silencing, polycistronic

expression and the possibility of open field cultivation of

engineered crops because of the maternal inheritance of the

chloroplast genome. High protein expression levels can be

achieved due to the high number of DNA copies per

chloroplast and high number of organelles per leaf cell

(Daniell, 2006; Zhang et al., 2017). A limitation of chloroplasts

is their bacterial origin leading to limited post-translational

modifications and problems with protein folding. Transgenic

and transplastomic plants as well as transient expression

approaches have been successfully used to produce poliovirus

antigens and virus-like particles (VLPs) in plants.
Plant-made poliovirus vaccine
candidates

The approach of using plants to produce a recombinant

vaccine is in accordance with the objectives proposed by the

Global Polio Eradication Initiative (GPEI), covering the

optimization of oral vaccines and developing an affordable

inactivated vaccine. Several research groups have explored

plant-based production for the development of polio vaccine

candidates (Table 1). In 2006, Fujiyama et al., 2006 fused a

fragment of 15 amino acids derived from the VP3 and VP1

capsid proteins (Sabin type 1 strain) to the tobacco mosaic virus

(TMV) coat protein. The fusion protein was expressed in a
frontiersin.org
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FIGURE 1

Overview of poliovirus cell infection and strategies to produce a plant-based vaccine. (A) Illustration of the viral genome and replication cycle in the
cytoplasm. The small viral protein, VPg is attached at the 5´- and a poly-A tail at 3´-end of the ~ 7500 bp RNA. The 5´-untranslated region contains the
internal ribosome entry site (IRES) for ribosome assembly. The single open reading frame encodes structural (VP1, VP2, VP3 and VP4) and non-structural
(2ABC, 3ABCD) proteins. (B) Plant biotechnology approaches for poliovirus vaccine production. Current strategies comprise chloroplast and nuclear
genome transformation using particle bombardment, Agrobacterium-mediated or plant virus-based expression. Unaccomplished steps towards a plant-
made poliovirus vaccine are marked with dotted arrows. This figure was created with BioRender.com.
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transient form in tobacco plants obtaining a yield of up to 0.2

mg/g of fresh leaves. Mice were immunized intraperitoneally

once or twice with 200 µg of purified recombinant TMV

particles emulsified in monophosphoryl lipid A and trehalose

dimycolate as adjuvants. The intraperitoneal immunization with

the chimeric TMV particles resulted in induction of specific

antibodies (Fujiyama et al., 2006).

Chloroplast-based expression was used to produce the VP1

capsid protein fused to the cholera toxin B subunit in tobacco

plants (expression level: 2.6 mg/g dry weight) (Chan et al., 2016).

The immunogenicity was tested in mice in a scheme comprising

the subcutaneous administration of the IPV followed by oral

boosters with freeze-dried plant material adjuvanted with

squalene, saponine or both. The titers of specific IgG and IgA

antibodies significantly increased in sera from mice fed with the

plant tissue compared with lower titers when no boosters were
Frontiers in Plant Science 04
administered. Additionally, neutralizing activity and

seropositivity (70-90%) against the three Sabin serotypes was

observed with two doses of IPV followed by plant-made VP1

protein oral boosters. In a long-term study for this vaccine

booster, 1 or 25 mg of adjuvanted VP1 protein was orally given to

mice first primed with IPV (Xiao and Daniell, 2017). High levels

of IgG1 and IgA antibodies were induced and the immune

response was sustained for 400 days with protection against the

three poliovirus serotypes during the time period.

The generation of poliovirus VLPs containing the capsid

proteins was first reported by Marsian et al., 2017. The

polyprotein P1 from the Sabin type 3 mutant SktSC8 was

expressed transiently in Nicotiana benthamiana together with

a polyprotein processing proteinase. Stable VLPs were generated

(yield up to 60 µg/g) that retained the native, immunogenic D

antigenic conformation. Transgenic mice expressing the
frontiersin.org
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poliovirus receptor were intraperitoneally immunized with

purified plant-produced VLPs carrying poliovirus antigens.

Importantly, the immunized mice showed protection after

challenge with a wild poliovirus 3 strain and structural

analysis of the VLPs demonstrated a morphology resembling

native polioviruses (Marsian et al., 2017). In a later study, Daniell

et al., 2019 developed transplastomic lettuce lines suitable for

oral immunization. VP1 was assembled as VLP of approximately

22.3 nm in size. Specific IgG1 and IgA antibodies as well as

neutralization activity was observed in mice first primed with

IPV and thereafter with three oral boosters with 20 mg of

lyophilized lettuce material adjuvanted with squalene,

saponine or both plus antimicrobial peptides to enhance the

immune modulation.

Bolaños-Martıńez et al., 2020 expressed the VP1, VP2, VP3

and VP4 proteins to enable the poliovirus Sabin type 1 capsid
Frontiers in Plant Science 05
formation. The four capsid proteins were expressed in leaves of

transgenic tobacco and for each protein the antigenicity was

shown. Expression levels ranging from 0.3 µg/g to 16.85 µg/g of

fresh leaves were obtained. The immunological potential of the

plant-made capsid proteins was further determined by

immunizing mice in a scheme comprising subcutaneous and

oral boosters with lyophilized plant material containing the four

capsid proteins (Bolaños-Martıńez et al., 2020). Humoral

systemic and mucosal antibody responses were generated with

VP1, VP3 and VP4 proteins, while the VP2 protein was less

efficient in stimulating specific IgG antibody production.

In order to investigate the capacity of a different edible plant

to yield poliovirus VPs and advance to the development of an

oral vaccine candidate, the VP1 and VP2 Sabin 1 proteins were

expressed in carrot cells (Bolaños-Martıńez et al., 2022). The

obtained yields ranged from 1.17 to 3.57 µg/g fresh weight for
TABLE 1 Compilation of plant-made vaccine prototypes against polioviruses.

Plant Antigen used Expression
strategy

Immunization scheme Immunogenic and
protective potential

References

Nicotiana
tabacum

First 11 amino acids
from the C-terminus
of VP3 and 4 amino
acids from the N-
terminus of VP1
(Sabin 1)

Transient Groups of 3 C57BL mice immunized i.p. with 200 µg of
recombinant virus particles emulsified in monophosphoryl lipid
A and trehalose dimycolate

Specific-peptide antibodies
induced in sera

Fujiyama
et al., 2006

Nicotiana
tabacum

VP1 and CTB-VP1
(Sabin 1)

Stable
(Chloroplast)

Groups of 10 CD-1 mice were primed with IPV, then an oral
booster was given once a week for 8 consecutive weeks with 20
mg of plant tissue adjuvanted with saponine, squalene or both

Titers of specific IgG and IgA
antibodies increased,
neutralizing antibody titers
and seropositivity between
70-90% against the three
Sabin strains obtained

Chan et al.,
2016

Nicotiana
tabacum

VP1 and CTB-VP1
(Sabin 1)

Stable
(Chloroplast)

Groups of 10 CD-1 mice were primed with IPV followed by 12
oral boosters with 1 or 25 mg of VP1 once a week for 8
consecutive weeks, then once a month for 3 months and one
after 6 months. The doses were adjuvanted with saponine,
squalene or both

Elevated titers of IgG1 and
IgA antibodies induced and
maintained from 29 to 400
days

Xiao and
Daniell, 2017

Nicotiana
benthamiana

Polyprotein P1
(PV3 SktSC8
mutant)

Transient Groups of 8 TgPVR mice received 1 or 2 i.p. injections of
purified VLPs corresponding to the equivalent of half a human
dose, then a second dose was administered on day 14

VLPs with the native D
antigenic conformation
generated. Neutralizing
antibodies elicited and
protection against wild PV3
challenge developed

Marsian
et al., 2017

Lettuce VP1 and CTB-VP1
(Sabin 1)

Stable
(Chloroplast)

Groups of 10 CD-1 mice were primed with IPV followed by 6
oral boosters with 20 mg of plant tissue performed every 2 weeks
for 2 months and 2 every 3 months. The doses were adjuvanted
with saponine, squalene, plus the antimicrobial compounds PG-1
or LL37

VLPs with 22.3 nm in size
generated. Specific IgG and
IgA antibodies were enhanced
with VP1 oral boosters

Daniell et al.,
2019

Nicotiana
tabacum

VP1, VP2, VP3 and
VP4 (Sabin 1)

Stable
(Nuclear)

Groups of 5 BALB/c mice received 4 s.c. immunizations once a
week followed by 4 oral boosters every 2 weeks. The s.c. and oral
doses contained 0.8 mg of VP1, 1.40 mg of VP2, 0.43 mg of VP3
or 0.60 mg of VP4 without adjuvants.

Specific IgG and secretory
IgA antibodies elicited against
all VP proteins

Bolaños-
Martıńez
et al., 2020

Carrot VP1 and VP2 (Sabin
1)

Stable
(Nuclear)

Groups of 4 BALB/c mice were immunized following two
different schedules: 1) 4 s.c. immunizations once a week, or 2) 4
s.c. immunizations once a week followed by 5 oral boosters once
a week for 4 consecutive weeks plus one final 150 days after. The
s.c. and oral doses contained 0.11 mg of VP1 or 1.38 mg of VP2
without adjuvants.

Specific IgG and secretory
IgA long-lasting antibodies
were detected in the groups
immunized with VP1 or VP2
proteins following the s.c.
plus oral route

Bolaños-
Martıńez
et al., 2022
fr
i.p., intraperitoneally; s.c., subcutaneous.
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the VP1 protein and 4.24 to 13.86 µg/g for the VP2 protein.

Upon immunization, mucosal and systemic responses were

obtained when a schedule combining parenteral priming and

oral boosting without external adjuvants was applied to BALB/c

mice. Interestingly, the presence of specific IgG and secretory

IgA antibodies was detected even 212 days after the start of the

immunization schedule indicating a long-lasting protection.
Future directions

To achieve global poliomyelitis eradication, innovative

vaccines are needed since the actual vaccines are produced

with infectious or attenuated poliovirus strains that raise safety

concerns. Endemic and vaccine-derived polio cases are mainly

observed in developing or low-income countries which urges the

need to develop affordable and accessible vaccines. Transient

expression in plants provides a fast and flexible approach to

produce vaccines in case of newly emerging viral pathogens as

shown by the current COVID-19 pandemic or in cases where a

vaccine has to be adapted quickly to a mutating virus. For

genetically more stable viruses, transgenic expression could be

cheaper and provide a constant supply for vaccination.

Developing an edible vaccine that can be used for priming or

booster oral immunization and non-infectious VLPs appear as

the most promising strategies for a plant-produced polio

vaccine. Although huge progress has been made with evidence

of humoral response induction that led to neutralization of

polioviruses when evaluated in challenge assays (Marsian

et al., 2017), none of the studies has progressed towards

clinical phase. One reason is that the expression levels and

yields of plant-produced poliovirus proteins are still quite low.

Transient co-expression of human chaperones like calreticulin

has been successfully applied to increase the yields of

glycosylated viral proteins (Margolin et al., 2020; Rosenberg

et al., 2022). The cytosolic chaperone HSP90 plays an important

role in folding and maturation of poliovirus capsid proteins

(Geller et al., 2007). Additional expression of human chaperones

like HSP90 could therefore be tested to increase the overall

expression levels. For chloroplast-based production, co-

expression of a bacterial chaperone like CesT could be

considered (MacDonald et al., 2017). Moreover, seed-based

expression systems could be investigated to increase protein

stability and yields. In addition to their excellent storage

properties, seeds are natural reservoirs of nutrients and ideal
Frontiers in Plant Science 06
sources for oral vaccine formulation (Rosales-Mendoza et al.,

2017; Schwestka et al., 2020).

The promising data from pre-clinical studies using plant-

based production together with the demand for high vaccination

coverage and the limitations with currently approved polio

vaccines show the huge potential for plant-based polio

vaccines. In February 2022, a plant-based COVID-19 vaccine

consisting of coronavirus VLPs manufactured by Medicago and

an adjuvant was approved by Health Canada (Hager et al., 2022).

This is a milestone as it shows for the first time the safety and

efficacy of a plant-produced vaccine against a human infectious

virus. We are convinced that the COVID-19 vaccine approval

will pave the way for the next generation of plant-made vaccines

including hopefully one that is functional and cost effective

against polio.
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