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effects on plant and soil
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an alpine meadow
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Temperature and precipitation are expected to increase in the forthcoming

decades in the northeastern Qinghai-Tibetan Plateau, with uncertain effects of

their interaction on plant and soil carbon:nitrogen:phosphorus (C:N:P)

stoichiometry in alpine ecosystems. A two-year field experiment was

conducted to examine the effects of warming, precipitation increase, and

their interaction on soil and plant C:N:P stoichiometry at functional groups

and community level in an alpine meadow. Warming increased aboveground

biomass of legumes and N:P ratios of grasses and community, but did not affect

soil C:N:P stoichiometry. The piecewise structural equation model (SEM)

indicated that the positive effect of warming on community N:P ratio was

mainly resulted from its positive influence on the aboveground biomass of

functional groups. Precipitation increase reduced C:N ratios of soil, grasses,

and community, indicating the alleviation in soil N-limitation and the reduction

in N use efficiency of plant. SEM also demonstrated the decisive role of grasses

C:N:P stoichiometry on the response of community C:N:P stoichiometry to

precipitation increase. The interaction of warming and precipitation increase

did not alter plant community and soil, N:P and C:P ratios, which was resulting

from their antagonistic effects. The stable soil and plant community C:N:P

stoichiometry raised important implications that the effect of warming was

offset by precipitation increase. Our study highlights the importance of

considering the interaction between warming and precipitation increase

when predicting the impacts of climate change on biogeochemical cycles in

alpine meadow ecosystems.
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Introduction

In recent decades, ongoing global climate changes (e.g.,

warming, altered precipitation, elevated carbon dioxide, and

nitrogen (N) deposition), induced by human activities such as

fossil fuel combustion and fertilizer application (IPCC, 2017;

Bai et al., 2020), have caused prominent effects on terrestrial

ecosystems, especially on the sensitive and fragile grassland

ecosystems at high altitudes (Chen et al., 2013). The Qinghai-

Tibetan Plateau (QTP), the Eurasian continent’s largest geo-

morphological unit (Song et al., 2021), covers an area of 2.5

million ha at an average altitude of 4000 m above sea level (Qiu,

2008). The alpine meadow is one of the most important

grassland ecosystems and accounts for 35% of the plateau

area (Cao et al., 2004). In the past 50 years, the air

temperature of the QTP increases at a rate of 0.4°C per

decade, a pace of nearly doubling warming speed of global

warming (Gai et al., 2009; Liu et al., 2018). Precipitation

changes on the QTP show spatial variation, with an

increasing trend in the northern and southern regions but a

decreasing trend in the central regions (Wu et al., 2007).

Annual precipitation is expected to increase by more than

10% by the end of the century in the northeastern QTP (Ding

et al., 2007). Thus, it might be inevitable that warming and

precipitation increase would occur simultaneously in the

northeastern QTP in future scenarios.

Climate change may profoundly impact primary

productivity of grassland ecosystems as well as change

biogeochemical cycles among key elements such as carbon

(C), N, and phosphorus (P) (Yue et al., 2017). C, N, and P are

the key elements that form plant tissue structure and maintain

plant growth and development and physiological metabolism

(Chen and Chen, 2021). Ecological stoichiometry has often

been employed to shed light on the relationship and feedback

between soil and plants in grassland ecosystems (Bai et al.,

2012), which plays an important role in driving crucial

ecological progress such as plant biomass, plant community

structure, and biogeochemical cycles (He et al., 2006; Dijkstra

et al., 2012; Li et al., 2021b). The C:N:P ratios in environments

and organisms were used as measurement criteria to track the

distribution of elements among the components of ecosystems

(Zechmeister-Boltenstern et al., 2015; Chen and Chen, 2021).

Temperature and precipitation are key driver factors of

ecosystem processes (Wu et al. , 2011). Given such

importance, a better understanding of plant and soil C:N:P

stoichiometry in an alpine meadow response to warming and

altered precipitation is critical to accurately predict changes in

the interaction between plant and soil under global

change scenarios.

Warming affects plant physiology and stoichiometry by

directly increasing microbial activity or directly inhibiting

nutrient uptake due to warming-induced drought (Yuan and

Chen, 2015; Yan et al., 2022). Yue et al. (2017) found that soil
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showed high stoichiometric homeostasis to global warming.

Elevated temperature can promote soil nitrification and net N

mineralization rate (Melillo et al., 2011), but decrease the soil

available P content (Dijkstra et al., 2012), leading to the

positive effect on plant nutrient uptake, higher plant N:P

ratio, and lower C:N and C:P ratios. Conversely, drought

induced by warming can depress N and P uptake by plant

(Ma et al., 2015), decreasing N and P concentration in plant

tissues, and ultimately leading to a lower C:N and C:P ratios in

plant (Viciedo et al., 2019). Previous studies have reported

inconsistent results about the response of soil and plant

stoichiometry to warming in QTP. For instance, it is

generally agreed that warming increased the plant C:N ratio

(Yang et al., 2011; Wang et al., 2021) and had no effect on soil

C, N, P or C:N:P stoichiometry (Wang et al., 2014; Chen et al.,

2021; Xu et al., 2022), but other studies reported inconsistent

results (Na et al., 2011; Qin et al., 2020).

Water availability is critical to the productivity of grassland

ecosystems, so precipitation is expected to be a key driver of

ecosystem processes (Wu et al., 2011). Precipitation increase

provides higher moisture to the soil in the plant growing area,

which promotes plant growth and alters the elemental cycle in

plant, roots, and soil (Sun et al., 2021). Yuan & Chen (2015)

found that the increased rainfall reduced plant N:P ratio and

cause a shift in the type of limiting elements for plant growth.

He et al. (2006) demonstrated that there was no significant

correlation between plant leaf C and P concentrations and

precipitation, which implied that it was difficult to detect the

response of plant C:P ratio to short-term precipitation changes.

Precipitation increase promoted plant growth, resulting in

more C input to the soil from litter and roots (Zhang and Xi,

2021), and promoted soil N leaching (Chen et al., 2016),

leading to an increase in soil C:N ratio (Sun et al., 2021). Soil

N:P ratio was greatly determined by nutrient uptake of plant

(Abbasi et al., 2020). In an alpine meadow of QTP, the

enhanced rainfall increased the shoot N and P content of

grasses and forbs, and N:P ratio of grasses (Li et al., 2019).

However, the effects of precipitation increase on soil and plant

C:N:P stoichiometry were not well documented in

alpine meadows.

The above findings all belong to the impacts of global

change single-factor impacts on terrestrial ecosystems, while

climate change scenarios were often accompanied by warming

and altered precipitation. The interactive effects of warming

and altered precipitation are expected to have major

consequences on important ecosystem properties and

processes (Wu et al., 2011; Yue et al., 2018). For instance, the

increased precipitation amplified the positive impact of

warming on forage quality and community biomass in alpine

grasslands (Ma et al., 2017; Xu et al., 2018), but it alleviated the

warming impact on plant growth in northeastern China’s

Horqin sandy land (Luo et al., 2017). Furthermore, the

increased precipitation offset warming effects on plant
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biomass and ecosystem respiration in a Tibetan alpine steppe

by maintaining the balance between precipitation and

evapotranspiration (Zhao et al., 2019). However, little

investigation is available on the interactive effects of warming

and precipitation increase on plant and soil C:N:P

stoichiometry, which hinders the establishment of a sound

framework for nutrient cycling in grassland ecosystems.

Temperature is one of the most important limiting factors

on the QTP due to high altitude and cold climate (Zhao et al.,

2018; Wang et al., 2022), and water availability is considered to

the key limiting factors in controlling nutrient cycle in grassland

ecosystems especially in northeastern region of QTP with low

rainfall (Li et al., 2019; Yan et al., 2022). Moreover, it was

reported that enhanced rainfall mitigated the water deficit

induced by warming (Yu et al., 2019b; Zhao et al., 2019). To

explore the effects of warming, precipitation increase, and their

interaction on plant and soil C:N:P stoichiometry, we established

a field experiment of simulated warming (+ 2°C) and

precipitation increase (+ 20% rainfall) in an alpine meadow of

the northeastern QTP and attempted to answer the following

specific questions: a) Do warming and precipitation increase

change plant and soil C:N:P stoichiometry? b) Does

precipitation increase change the effect of warming on plant

and soil C:N:P stoichiometry? We hypothesized that: a)

Warming and precipitation increase change the plant and soil

C:N:P stoichiometry. b) The effect of warming on plant and soil

C:N:P stoichiometry is counteracted by precipitation increase.
Materials and methods

Site description

A field trial was conducted between 2020 and 2021 at the

warming and precipitation increase simulation platform located

in Haibei Autonomous Prefecture, Qinghai Province, China (36°

54′59″ N, 100°56′12″ E, 3090 m above sea level, Figure S1). The

area is typical plateau continental climate with short warm

summers and long cold winters. The mean annual temperature

is 1.4°C, with the maximum temperature of 27°C in July, and

with the minimum temperature of -29°C in January. The mean

annual precipitation is 400 mm, which mainly occurs in the

plant growing season from June to August (Wei et al., 2021). The

mean monthly temperature and mean monthly precipitation for

2020-2021 were shown in Figure S2. The annual evaporation

capacity is about 1400 mm (Zhao et al., 2017). According to the

Chinese soil classification system, the soil is classified as Mat-

Gryic Cambisol with a clay loam texture (alpine meadow soil,

Cambisols in FAO/UNESCO classification) (Ma et al., 2017).

The typical vegetation type is an alpine meadow, which are

dominated by species of Elymus nutans, Leymus secalinus, Stipa

purpurea, Poa pratensis, Melissilus ruthenicus, Kobresia humilis,

Artemisia scoparia, and Potentilla chinensis.
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Experimental design

A 30 m × 30 m meadow containing a fairly uniform mixture

of plant species was fenced to eliminate the interference of

livestock in 2012. The experimental facility platform was

established to simulate the impacts of climate change (climate

warming and precipitation increase) on the alpine meadow

ecosystems in 2014. The facility platform consisted of four

treatments (control (CK), warming (W, + ~ 2°C), precipitation

increase (P, + 20%), and the combined treatment of warming

and precipitation increase (WP)) (Wei et al., 2021).

Experimental design was the randomized block design with

four replicates (Figure S1). Each experimental plot was a

circular with 2.2 m diameter and separated from the others by

a 3 m buffer zone. A total of 16 circular plots were set up. All the

treatments had similar topographies and land-use histories.

Eight treatments including warming were heated by open-

top chambers (OTCs) with 2.2 m diameter bottom, 1.5 m

diameter top, and 0.7 m height, in which the temperature was

~2°C higher than the outside. Three automatic control fans were

installed on the top of each OTC to ensure that the temperature

difference between the warmed and control plots is always

maintained at 2°C. Eight treatments including precipitation

increase were added extra water addition (20% of the

precipitation) with a hand-held sprinkler after each rainfall

event in the growing season (from June to August), and the

amount of water added each time was calculated from the

precipitation recorded by a rain gauge.
Plant and soil sampling

We investigated the plant community characteristics

(height, density, coverage) using a quadrat (1 m × 1 m) at

each plot in August, 2020 and 2021, respectively. Shannon-

Wiener index (H) was used to indicate the diversity of plant

community. The index was calculated using the following

formula (Wang et al., 2019):

H ¼  -o
s

i¼1
PilnPið Þ

where Pi is the importance values (IV) of the i-th species in

all species, and S is the total number of plant species in each plot.

IV of each plant species was computed as: IV = (RH + RD + RC)/

3, where RH, RD, and RC are the relative height (RH), relative

density (RD), and relative coverage (RC) of each plant species.

The RH (or RD or RC) was equal to the height (or density or

coverage) of the plant species divided by the respective sum of

the heights (or densities or coverages) of all plant species in

each quadrat.

The aboveground plants rather than biomass were clipped

annually flush with the ground in these quadrants. According

to ecological niches or functions of plant species in the
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grassland ecosystem, all clipped plant species were classified

into four functional groups (grasses, legumes, sedges, and

forbs). These plant samples were dried at 65°C for 72 h, and

then weighed.

Four soil cores to depths of 0-10 cm were randomly taken

from each plot using soil auger with a diameter of 3.5 cm, and

mixed thoroughly to form one composite soil sample. After

removing roots, litter, and stones, each composite soil sample

was sieved through a 2-mm mesh. Soil samples were air-dried

for physical and chemical characteristics analyses.
Laboratory analysis

Total carbon (TC) and total nitrogen (TN) of soil and plant

were measured by a C/N element analyzer (Elementar, Hanau,

Germany). Total phosphorous (TP) of plant was measured by a

microplate reader with ammonium molybdate and ascorbic acid

as color reagents (Li et al., 2019). TP of soil was determined

using the HClO4-H2SO4 digestion-molybdenum antimony

colorimetric method (Murphy and Riley, 1962; Han et al., 2021).

We calculated community TC, TN, and TP concentrations

using the following formula:

Community TC, or TN, or TP ¼o
n

i¼1
Pi� Ai

where Pi is the proportion of the aboveground biomass of

function group i to aboveground biomass of the community,

and A is the TC, or TN or TP concentration of grasses, legumes,

sedges, and forbs.
Statistical analysis

The effects of warming, precipitation increase, and their

interaction on plant and soil nutrients were examined using a

linear mixed-effects model from the “predictmeans” package of

R version 4.0.5 (The R Project for Statistical Computing, https://

www.r-project.org/). Warming and precipitation increase were

assigned as fixed effects, and year and plot as the random effects.

Before these analyses, all data were examined for normality and

log-transformed when necessary to conform with assumptions

of normality and variance homogeneity. Significance levels were

set at P<0.05.

We employed individual effects and 95% confidence

intervals of effect sizes for interaction computed by Hedges’ d+
to classify interactive effects as significant (antagonistic or

synergistic) and non-significant (additive) interactions. We

regarded interactive effects as additive when the 95% CI

overlaps with zero. When comparing individual effects in

negative or opposite directions, their interaction effect size less
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than zero was regarded as synergistic and interaction effect size

greater than zero as antagonistic. Finally, if the individual effects

of two factors were opposite, then their sum was positive, the

interaction was synergistic when it was positive, and antagonistic

when it was negative, and vice versa (Hedges et al., 1999; Crain

et al., 2008; Tang et al., 2019; Shi et al., 2022).

We employed piecewise structural equation models (SEM)

to explore how warming, precipitation increase, and their

combination affected community C:N:P stoichiometry

through their effects on soil and plant characteristics. The

model assumed that warming, precipitation increase, and

their combination change plant community diversity,

aboveground biomass of plant functional groups (extracting

first component scores from principal component analysis

(PCA) of aboveground biomass of grasses, legumes, sedges,

and forbs), and soil C:N:P stoichiometry (extracting first

component scores from PCA of soi l TC, TN, TP

concentration, and C:N, N:P, C:P ratios), which then alter

plant functional groups C:N:P stoichiometry (extracting first

component scores from PCA of TC, TN, TP concentration and

C:N, N:P, C:P ratios of each plant functional group), and

ultimately affect community C:N:P stoichiometry (extracting

first component scores from PCA of community TC, TN, TP

concentration, and C:N, N:P, C:P ratios). These were based on

prior conceptual models with hypothetical relationships, which

included all possible cascade pathways (Figure S3). The data

were normalized by z-transformation and used in the analysis,

incorporating random effects into the year and plot (Ma et al.,

2021). We simplified the original model by sequentially

removing non-significant paths until the final optimal

models were acquired. The same model only contained the

variables with variance inflation coefficients < 5. Directed-

separation test, Fisher’s C statistic, and Akaike information

criteria (AIC) were applied to evaluate the model fitness

(Shipley, 2013). The SEM analyses were conducted by the

“pievewiseSEM” package (Lefcheck, 2016) of R version 4.0.5.
Results

Soil C:N:P stoichiometry

Neither warming nor precipitation increase affected the soil

TC, TN, TP concentrations, and N:P, C:P ratios (P>0.05,

Figures 1A–C, E, F). Precipitation increase had a significant

effect on soil C:N ratio (P<0.05, Figure 1D). The interaction of

warming and precipitation increase had non-significant effects

on soil C:N:P stoichiometry (P>0.05, Figure 1). The interactive

effects of warming and precipitation increase on soil TC and

TN concentrations were synergistic (Figures 2A, B), while

antagonistic interactions were observed on soil TP

concentration, C:N, N:P, and C:P ratios (Figures 2C–F).
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A B C

D E F

FIGURE 2

The main and interactive effects of warming and precipitation increase on soil total C, total N, total P concentration, and C:N:P stoichiometry.
TC (A), TN (B), TP (C), C:N (D), N:P (E), and C:P (F). Values represent means with 95% confidence intervals (CIs).
A B C

D E F

FIGURE 1

Soil total C (TC), total N (TN), total P (TP) concentration, and C:N:P stoichiometry under treatments in an alpine meadow. TC (A), TN (B), TP (C),
C:N (D), N:P (E), and C:P (F). CK, control; W, warming; P, precipitation increase; WP, the combined warming and precipitation increase. Data are
shown as means ± SE. Lowercase letters indicate differences between treatments (Duncan’s multiple comparison post hoc test: P<0.05).
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Community composition and plant
aboveground biomass

Warming exerted a significant impact on Shannon-Wiener

index (P<0.01, Figure 3A), the aboveground biomass of legumes

(P<0.01, Figure 3D) and sedges (P<0.001, Figure 3E), but had

non-significant influences on the aboveground biomass of the

community, grasses and forbs (P>0.05, Figures 3B, C, F).

Precipitation increase had a significant effect on total

aboveground biomass of community (P<0.01, Figure 3B), but

did not significantly affect the Shannon-Wiener index (P>0.05,

Figure 3A) and aboveground biomass of four functional groups

(P>0.05, Figures 3C–F).
Functional groups C:N:P stoichiometry

Four functional groups significantly differed in TC, TN, and

TP concentrations and C:N:P stoichiometry (Figure 4). Warming

significantly affected TN concentration in grasses and plant N:P

ratios in grasses (P<0.05, Figures 4B, E). Precipitation increase had

significantly positive effects on TN concentration (P<0.01,

Figure 4B) and plant N:P ratio (P<0.05, Figure 4E) in grasses.

The plant C:N ratio in grasses showed a negative response to

precipitation increase (P<0.001, Figure 4D), whereas other
Frontiers in Plant Science 06
functional groups showed non-significant responses. Interaction

of warming and precipitation increase had significant effects on

TN, TP concentrations, and plant C:N, C:P ratios in sedges

(P<0.05, Figures 3B–D, F). Antagonistic interactions were

observed in plant N:P ratio of four functional groups and plant

C:P ratio of grasses, legumes, and sedges (Table 1).
Community C:N:P stoichiometry

Warming and precipitation increase had no significant

effects on community TC, TN, TP concentrations, and C:P

ratio (Figures 5A–C, F). Precipitation increase significantly

decreased community C:N ratio (P<0.01, Figure 5D), whereas

warming did not affect plant C:N ratio at community level.

Warming had a positive effect on community N:P ratio (P<0.05,

Figure 5E), but precipitation increase did not affect plant N:P

ratio at community level. Warming and precipitation increase

interactively influenced community TC, TN, TP concentrations,

and C:N:P stoichiometry (Figure 6). The interactive effects of

warming and precipitation increase on soil TC and TN

concentrations were synergistic (Figures 6A, B). There was an

additive interaction in community C:N ratio (Figure 6D), while

antagonistic interactions were observed in community TP

concentration, N:P, and C:P ratios (Figures 6C, E, F).
A B C

D E F

FIGURE 3

The Shannon-Wiener index (A), aboveground biomass of the community (B), aboveground biomass of grasses (C), aboveground biomass of
legumes (D), aboveground biomass of sedges (E), and aboveground biomass of forbs (F) in an alpine meadow. CK, control; W, warming; P,
precipitation increase; WP, the combined warming and precipitation increase. Data are shown as means ± SE. Lowercase letters indicate
differences between treatments (Duncan’s multiple comparison post hoc test: P<0.05).
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Factors determining community
C:N:P stoichiometry

Based on our prior conceptual models (Figure S3), the final

SEMs predicted that warming, precipitation increase, and their

combination had significant effects on community C:N:P

stoichiometry (Figure 7). The SEMs indicated all predictor

variables included in the models explained 74%, 69%, and 54%

of the variance in community C:N:P stoichiometry in warming,

precipitation increase, and their combination plots, respectively.

The positive and direct effects on community C:N:P

stoichiometry were primarily due to changes in the sedges C:

N:P stoichiometry, diversity, and aboveground biomass of

functional groups in the warming plot (Figure 7A).

Precipitation increase indirectly affected community C:N:P

stoichiometry through variation in grasses C:N:P stoichiometry

(Figure 7B). The significant indirect effects of combined

warming and precipitation increase on community C:N:P

stoichiometry were mainly due to change in sedges C:N:P

stoichiometry (Figure 7C).

Discussion

Soil nutrient concentration and C:N:P stoichiometry reflect C

cycle, soil fertility, and available nutrient in the terrestrial ecosystems

(Whitehead et al., 2018; Li et al., 2021a). Plant C:N and C:P ratios

imply the N and P use efficiency, respectively (Patterson et al., 1997),

and N:P ratio reflects the nutrient limit during plant growth

(Güsewell, 2004). Our results showed that warming and
Frontiers in Plant Science 07
precipitation increase showed antagonistic effects on plant and soil

N:P and C:P ratios, indicating that precipitation increase offsets the

effect of warming on N:P and C:P ratios of plant and soil. Our results

provided evidence for the individual, combined, and interactive effects

of warming and precipitation increase on plant and soil C:N:P

stoichiometry in an alpine meadow.
Effects of warming on plant and soil C:N:
P stoichiometry

Conflicted with our first hypothesis, warming did not alter soil

TC, TN, TP concentrations and C:N:P stoichiometry (Figure 1),

similar observations have been made in the previous studies that

the effects of warming on soil nutrition and C:N:P stoichiometry

appear to be negligible (Wang et al., 2014; Yu et al., 2019a). These

consistent results indicate that soil has high stoichiometric

homeostasis under future warming scenarios in an alpine

meadow, which is supported by previous meta-analysis (Yue

et al., 2017) and case study (Xu et al., 2022).

Warming exerted a significantly negative impact on plant

diversity, which is consistent with previous studies from the

Tibetan plateau (Ganjurjav et al., 2016) and the Arctic tundra

(Alatalo et al., 2021). This phenomenon might be explained by

the opposite effect of warming on legumes and sedges. In this

study, warming significantly increased the aboveground biomass

of legumes (Figure 3D), which is in line with previous studies in

alpine meadows (Wang et al., 2012; Xu et al., 2018). On the

contrary, the aboveground biomass of sedges was significantly

decreased by warming (Figure 3E). The result is explicable by the
A B C

D E F

FIGURE 4

Plant total C (TC), total N (TN), total P (TP) concentration, and C:N:P stoichiometry of four functional plant groups under treatments in an alpine
meadow. TC (A), TN (B), TP (C), C:N (D), N:P (E), and C:P (F). CK, control; W, warming; P, precipitation increase; WP, the combined warming and
precipitation increase. Data are shown as means ± SE. *P<0.05, **P<0.01. Lowercase letters indicate differences among treatments, and
uppercase letters indicate significant differences among four functional groups (Duncan’s multiple comparison post hoc test: P<0.05).
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fact that OTCs warming promotes soil evaporation and plant

evapotranspiration, resulting in a reduction of soil moisture,

which is not conducive to the growth of sedges with roots

distributed in the shallow soil (Ganjurjav et al., 2016; Xu et al.,

2018). Warming did not influence the aboveground of grasses

and forbs in our experiment (Figures 3C, F), which implies that

these two functional groups were less sensitive to warming.

The C:N:P stoichiometry of four functional groups had

distinct responses to warming (Figure 4). These results

supported our first hypothesis that warming significantly

change plant C:N:P stoichiometry. Given the significantly

increased TN concentration and unchanged TP concentration

in response to warming, a significantly positive response of N:P
Frontiers in Plant Science 08
ratio was observed in grasses. Furthermore, the N:P ratio of

grasses under the warming treatment was 18.57, which was

significantly higher than that of 14.81 under the CK. The

uncoupled change in TN and TP concentration of grasses

indicated warming shifted grasses from N and P limitation to

P limitation (Koerselman and Arthur, 1996; Güsewell, 2004).

The community C:N:P stoichiometry of ecosystem reflects

the sum impacts of the functional groups (Bai et al., 2012; Ning

et al., 2021). Hence, the community-level C:N:P stoichiometry is

a strong indication of the elemental balance of the ecosystems

(Ning et al., 2021). Our results showed that warming tended to

increase community N:P ratio (Figure 5E), which is comparable

with similar findings in previous study (Yue et al., 2017; Zhou
TABLE 1 The individual effect sizes of warming and precipitation increase, as well as their interaction effect sizes with 95% confidence intervals
on the plant total C (TC), total N (TN), total P (TP) concentration and C:N:P stoichiometry of four functional groups.

Response
variable

Individual effect
sizes of warming

Individual effect sizes of
precipitation increase

Warming and precipitation
increase interaction effect sizes

Lower
95% C.L.

Upper
95% C.L.

Interaction
type

Grasses TC 0.25 -0.35 0.33 -0.02 0.68 additive

TN 1.84 2.47 0.77 0.41 1.13 synergistic

TP -1.21 -0.59 1.93 1.55 2.30 antagonistic

C/
N

-0.69 -3.31 -0.26 -0.61 0.09 additive

N/
P

2.11 2.00 -1.10 -1.46 -0.74 antagonistic

C/
P

1.21 0.24 -1.56 -1.93 -1.19 antagonistic

Legumes TC 1.98 -0.28 1.00 0.64 1.36 synergistic

TN -0.67 1.43 0.16 -0.19 0.51 additive

TP -0.52 1.88 -1.24 -1.61 -0.88 antagonistic

C/
N

1.37 -1.59 -0.67 -1.03 -0.31 synergistic

N/
P

0.17 -0.91 0.97 0.61 1.33 antagonistic

C/
P

1.05 -1.88 1.17 0.81 1.53 antagonistic

Sedges TC -1.60 -1.58 -0.01 -0.36 0.34 additive

TN -1.65 0.85 2.19 1.81 2.57 antagonistic

TP -0.90 0.24 3.15 2.74 3.55 antagonistic

C/
N

-0.04 -1.21 -1.99 -2.37 -1.62 synergistic

N/
P

-0.66 0.68 -1.17 -1.53 -0.81 antagonistic

C/
P

0.52 -0.49 -3.47 -3.88 -3.05 antagonistic

Forbs TC 0.62 -0.24 0.93 0.57 1.29 synergistic

TN -2.26 -2.00 -0.41 -0.77 -0.06 synergistic

TP -0.33 -0.44 -0.91 -1.27 -0.56 synergistic

C/
N

0.21 -0.68 -1.32 -1.68 -0.95 synergistic

N/
P

-0.45 -0.73 0.80 0.44 1.16 antagonistic

C/
P

0.68 -0.05 0.83 0.47 1.18 synergistic
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A B C

D E F

FIGURE 5

Plant total C (TC), total N (TN), total P (TP) concentration, and C:N:P stoichiometry at community level under treatments in an alpine meadow.
TC (A), TN (B), TP (C), C:N (D), N:P (E), and C:P (F). CK, control; W, warming; P, precipitation increase; WP, the combined warming and
precipitation increase. Data are shown as means ± SE. Lowercase letters indicate differences between treatments (Duncan’s multiple
comparison post hoc test: P<0.05).
A B C

D E F

FIGURE 6

The main and interactive effects of warming and precipitation increase on community total C (TC), total N (TN), total P (TP) concentration, and
C:N:P stoichiometry. TC (A), TN (B), TP (C), C:N (D), N:P (E), and C:P (F). Values represent means with 95% confidence intervals (CIs).
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et al., 2021). These results may be attributable primarily to

enhanced P dilution of plant (Zong et al., 2018), and

facilitated N uptake of plant caused by the increased rates of

soil N mineralization and nitrification under warming (Melillo

et al., 2011). This may be an indication that warming alleviates N

limitation and increase P limitation of plant growth (N:P

ratio=18.67) (Dijkstra et al., 2012). However, the enhanced

plant N:P ratio induced by warming was inconsistent with

those results obtained from typical and meadow steppes (Yan

et al., 2022). These distinct observations might be attributed to

difference in the limited environmental factors. Moreover, SEM

indicated that the aboveground biomass of functional groups

played a more crucial role than sedges C:N:P stoichiometry and

diversity in regulating the response of community C:N:P

stoichiometry to warming (Figure 7A). Given that grasses were

the functional group with the highest relative biomass, the

positive response of their N:P ratio resulted in a significant

higher community N:P ratio under warming. Although warming

had a negative effect on total N concentration of forbs, the minor
Frontiers in Plant Science 10
contribution of forbs to community biomass (< 15%) resulted in

a non-significant effect on community total N concentration.
Effects of precipitation increase on plant
and soil C:N:P stoichiometry

Our results indicated that soil nutrients had no significant

responses to precipitation increase (Figures 1A–C), suggesting

that increased 20% rainfall hardly affects soil fertility. The

negative response of soil C:N ratio to precipitation increase is

probably because the increased rainfall alleviates N-limitation

(Yuan and Chen, 2015; Li et al., 2021b). The result supports our

first hypothesis that soil C:N:P stoichiometry respond to

precipitation increase. The higher N:P and C:P ratios under

precipitation increase compared with control were partially

owing to marginally increased soil TP concentration.

The availability of water, nutrients, and other resources shape

plant community composition (Tilman, 1987). In line with
A B

C

FIGURE 7

The piecewise structural equation modes performed for the scenarios of warming (A), precipitation increase (B), and combined warming and
precipitation (C), linking community C:N:P stoichiometry to soil and plant characteristics. Solid arrows indicate significantly directions and
effects (*P<0.05, **P<0.01, ***P<0.001), and grey dashed arrows denote non-significant directions and effects but crucial to the final model fit
(P>0.05). Numbers associated with solid and dashed arrows indicated the standard path coefficient. R2 indicates the variance explained by the
models of each dependent variable.
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previous studies (Ponce-Campos et al., 2013; Xu et al., 2018), our

results showed that precipitation increase significantly increased

total aboveground biomass (Figure 3B). The positive response of

total aboveground biomass might attribute to a remarkable

increase in aboveground biomass of grasses. TN concentration

of grasses had a positive response to precipitation increase

(Figure 4B). A possible mechanism for the result is that grasses

often become increasingly dominant under water supply due to

their higher ability to absorb nutrients, whereas other functional

groups are located on the relatively low canopy, so it has weak

light competition compared with the upper grasses (Collins et al.,

2012; Li et al., 2019). Although precipitation increase did not

significantly change TC concentration of grasses, the C:N ratio

was decreased significantly due to the significant increase in TN

concentration of grasses. In addition, the positive response of N:P

ratio in grasses to precipitation increase indicated that the growth

of grasses might be limited by P concentration. It was noteworthy

that legumes had a lower C:P ratio under precipitation increase

relative to control due to unchanged TC concentration and

increased TP concentration. This may be an indication that

increased rainfall facilitates the uptake of P by legumes (Zhang

et al., 2020b).

There were no significant responses of plant TC, TN, and TP

concentrations to precipitation increase (Figures 5A–C). Given

that grasses were the functional group with the highest relative

biomass, the negative response of their C:N ratio resulted in a

significantly negative effect of precipitation increase on

community C:N ratio. This result was also verified in SEM

that grasses C:N:P stoichiometry and aboveground biomass of

functional groups mediated the impact of precipitation increase

on community C:N:P stoichiometry (Figure 7B). Lower C:N

ratio at community level indicated that precipitation increase

inhibited the plant N use efficiency and promote plant growth to

compete for resources such as water in favorable environments

(Zhang et al., 2020a). Non-significant N:P and C:P ratios

indicated that precipitation increase did not alter nutrient

limitation and P use efficiency during plant growth.

Antagonistic effects of warming and
precipitation increase on plant and soil
C:N:P stoichiometry

Actually, global climate change usually involves the

simultaneous occurrence of multiple climate factors (e.g.,

warming and altered precipitation), which interactively affect

plant and soil C:N:P stoichiometry (Yuan and Chen, 2015; Yue

et al., 2017). Confirming our second hypothesis, antagonistic

effects dominated the response of soil total P concentration, C:N,

N:P, and C:P ratios to warming and precipitation increase

(Figures 2C–F). Furthermore, warming greatly dampened the

effects of precipitation increase on soil N:P and C:P ratios,

resulting in non-significant effects of the combined treatment.

These results indicated that the interactive effect of warming and
Frontiers in Plant Science 11
precipitation increase on soil C:N:P stoichiometry was weaker

than that of single factor treatment (Larsen et al., 2011;

Leuzinger et al., 2011). This is because precipitation increase

mitigates or even offsets the inhibition of soil water availability

caused by warming (Yu et al., 2019b; Zhao et al., 2019).

The response of functional groups to the combination and

interaction of warming and precipitation increase was

inconsistent from the perspective of plant C:N:P stoichiometry

(Figures 4, 5). Precipitation increase dampened the effects of

warming on total N and P concentrations and C:P ratio of

sedges, resulting in non-significant effects of the combined

treatment. The significant effect of the interaction of warming

and precipitation on TN and TP concentrations and non-

significant TC concentration in sedges caused significant

responses of C:N and C:P ratios and non-significant response

of N:P ratio. Warming and precipitation increase had

antagonistic effects on N:P and C:P ratios of grasses, legumes,

and sedges, thus exacerbating nutrient limitation and inhibiting

P use efficiency (Yan et al., 2022).

At the community level, precipitation increase weakly

suppressed the positive effect of warming on plant N:P ratio

due to their antagonistic effects. As a result, precipitation

increase alleviated P limitation for plant growth caused by

warming. However, the combined treatment of warming and

precipitation increase still had a higher community N:P ratio

relative to the control, indicating that the inhibited effect of

precipitation increase on the warming-induced increase in plant

N:P ratio was non-significant.
Conclusion

Warming and precipitation increase affected soil and plant

C:N:P stoichiometry to some extent. First, soil C:N:P

stoichiometry showed high stoichiometric homeostasis to

warming and the interaction of warming and precipitation,

whereas precipitation increase had a significantly negative

effect on soil C:N ratio. The combined treatment had no

significant effects on soil N:P and C:P ratios due to

antagonistic interaction between warming and precipitation

increase. Second, warming shifted plant community structure

to more legumes and fewer sedges. Warming increased grasses

and community N:P ratios, indicating the shift in plant nutrient

limitation from N and P limitation to P limitation. Precipitation

increase enhanced the productivity of alpine meadows, and

reduced C:N ratio of grasses and community. Finally, warming

and precipitation increase had antagonistic effects on N:P and C:

P ratios of soil and plant. Although precipitation increase

alleviated warming-induced P limitation of plant growth, the

combined treatment of warming and precipitation increase still

had a higher community N:P ratio relative to the control. This

study demonstrated that warming and precipitation increase

could interact antagonistically on N:P and C:P ratios of plant
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and soil in alpine meadows, which might have important

implications for predicting the future nutrient cycle of high-

altitude grassland ecosystems. Therefore, the interactive effects

between warming and precipitation increase should be taken

into account when assessing the effects of climate change on

biogeochemical cycles in grassland ecosystems.
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