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Plant leaf veins coupling
feature representation and
measurement method based
on DeepLabV3+

Xiaobao Liu, Biao Xu, Wenjuan Gu, Yanchao Yin*

and Hongcheng Wang

Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology,
Kunming, China
The plant leaf veins coupling feature representation and measurement method

based on DeepLabV3+ is proposed to solve problems of slow segmentation,

partial occlusion of leaf veins, and low measurement accuracy of leaf veins

parameters. Firstly, to solve the problem of slow segmentation, the lightweight

MobileNetV2 is selected as the extraction network for DeepLabV3+. On this

basis, the Convex Hull-Scan method is applied to repair leaf veins.

Subsequently, a refinement algorithm, Floodfill MorphologyEx Medianblur

Morphological Skeleton (F-3MS), is proposed, reducing the burr

phenomenon of leaf veins’ skeleton lines. Finally, leaf veins’ related

parameters are measured. In this study, mean intersection over union (MIoU)

and mean pixel accuracy (mPA) reach 81.50% and 92.89%, respectively, and the

average segmentation speed reaches 9.81 frames per second. Furthermore,

the network model parameters are compressed by 89.375%, down to 5.813M.

Meanwhile, leaf veins’ length and width are measured, yielding an accuracy of

96.3642% and 96.1358%, respectively.

KEYWORDS

plant leaf veins, coupled features, lightweight, convex hull-scan, F-3MS refinement
algorithm
1 Introduction

The leaf veins are essential constituents of the leaves, which play a crucial role in

transporting and supporting, regarded as the “transporters” of plant nutrients. In agriculture,

leaf veins’ parameters are significant indicators of a crop’s growth state. Leaf veins’ length and

thickness can be used to judge the ability to transport water, inorganic salts, and trace

elements (Konch et al., 2021; Pan et al., 2022). After measuring the leaf veins, the obtained

parameters can be used to analyze the efficiency of leaf veins in transporting nutrients, which

is crucial for the morphogenesis of leaf veins (Ma et al., 2021). The morphology of leaves can
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also be judged through leaf veins, by which the speed of

photosynthesis is predicted (Huang et al., 2022; Zhang et al.,

2022). Meanwhile, leaf vein morphology is associated with

specific climatic oscillations and varies within species along

altitudinal gradients. By measuring the leaf veins’ parameters, the

quality of the local ecosystem can be reflected (Rodrıǵuez-Ramıŕez

et al., 2021). Therefore, to achieve a quantitative analysis of the

growth state of crops, leaf veins’ segmentation and parameters’

measurement techniques are paramount for agriculture (Li et al.,

2006; Radha and Jeyalakshmi, 2014; Zhu et al., 2020). However, the

state of leaf veins in crops is usually judged by farmers based on

personal experience traditionally, which is time-consuming and

labor-intensive. There is a certain misjudgment in the crop growth

state by observing the leaf vein morphology. To some extent, it may

cause losses to national agricultural production. Hence, identifying

leaf veins quickly andmeasuring parameters accurately is an urgent

demand. In this study, the problems mentioned above can be

solved with the help of lightweight deep neural networks and leaf

vein repair technology. Subsequently, the measurement of leaf

veins’ related parameters is more accurate.

The leaf veins contain important plant physiological

information (Wen et al., 2018; Ye et al., 2021; Huang et al.,

2022). With the rapid development of digital image processing

technology, many scholars analyzed plant leaf veins with

Software Aids, Morphological Image Processing, Color Space,

and traditional machine learning algorithms. For example,

(Bühler et al., 2015) measured vein-related parameters with

the phenoVein Image Analysis Tool based on manually

corrected leaf veins, before which veins information was

highlighted by compensating for the local uneven brightness.

(Jiyou et al., 2019) chose eCognition software to perform multi-

scale segmentation of plant leaf veins in the microscopic state,

and subsequently, a leaf vein extraction data parameters library

was built through the relevant spectral and geometric

information, which can be applied to study the correlation

mechanism of plant leaf ecology. However, repeated manual

operations and the method’s low efficiency lead to no real-time

segmentation. (Zheng and Wang, 2010a) proposed a

morphology-based algorithm for leaf vein extraction, in which

a threshold segmentation method was brought forward, using

digital morphology operation based on the leaf images processed

to grayscale. (Li et al., 2018) proposed a method to detect leaf

veins by combining fuzzy logic with sequential morphology. The

Sugeno blur model, which could enhance contrast for leaf vein

images, was combined with a composite sequential

morphological detection algorithm to detect leaf veins. (Zheng

and Wang, 2010b) presented a grayscale morphology method to

extract leaf veins. In this research, the morphology was selected

to eliminate overlap color between leaf veins and the background

in a grayscale image, and the color difference was adjusted

through linear intensity. Finally, the OUST method was used

to separate leaf veins from the background. However,

morphological processing can only be applied to simple leaves,
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and large non-leaf vein regions were extracted for more complex

leaves. (Li et al., 2011) combined hue information with an

improved Sobel operator to extract leaf veins by transferring

the leaves’ image into HIS color space. Nevertheless, due to

differences in leaf color for each crop, after transitioning to a

different color space, there were still significant errors in the

human senses to adjust each color space, which cannot perform

batch extraction. Meanwhile, a multitude of traditional machine

learning algorithms were proposed to extract leaf veins. (Selda

et al., 2017) introduced a method for plant identification through

leaf vein images, in which SVM was used to classify plant species

based on the features detected by the SIFT algorithm. (Lee and

Hong, 2013) developed an identification system of plant leaves

through leaf veins and shape. The core idea is to use Fast Fourier

Transform (FFT) method to identify leaf vein features. (Samanta

et al., 2021) identified plant categories through three tree leaf

vein parameters (jackfruit, mango, and linden) based on the K-

means clustering and K-Nearest Neighbors (KNN) technique.

Nevertheless, some traditional machine learning algorithms do

not accept missing data. For instance, SVM is very sensitive to

outliers in the datasets. K-means and KNN require the pre-input

of cluster classes, leading to unadaptable feature extraction.

Therefore, these algorithms cannot be well applied in some

complex agricultural fields.

In recent years, convolutional neural networks (CNNs) have

been used for many advanced computer vision tasks (Westphal

and Seitz, 2021; Ulku and Akagündüz, 2022; Lu et al., 2022a).

Meanwhile, the advantages of CNN-based autonomous feature

extraction have a wide range of applications for agriculture

(Ghazi et al., 2017; Barré et al., 2017; Too et al., 2019).

Additionally, image segmentation tasks are also widely put

into use in crop recognition. (Deepalakshmi et al., 2021)

used the CNN algorithm to extract features from the input

image to distinguish between healthy and diseased leaves.

(Beikmohammadi et al., 2022) proposed a novel multi-stage

method to identify leaves based on deep CNN. This study uses

the computer vision task of leaf classification to recognize plant

species automatically. The apple leaf segmentation method was

introduced based on an asymmetric mixed-wash convolutional

neural network (Zifen et al., 2021). In this research, by using the

asymmetric shuffling module to replace the original convolution

module, the receptive field was improved for higher

segmentation accuracy. (Fuentes-Pacheco et al., 2019)

introduced a plant segmentation network based on an

encoder-decoder framework. In this study, the onboard

camera was used to photograph crops, and the CNN was used

to learn the difference in the leaf’s appearance to achieve pixel

segmentation of crops and non-crops. (Lu et al., 2022b)

proposed a plant leaf segmentation and feature extraction

method based on multi-view time series images, which was

achieved through segmenting stems and leaves of arabidopsis,

corn, and physalis by Mask-RCNN. (Bosilj et al., 2020) used

transfer learning to reduce the retraining time and labeling effort
frontiersin.org

https://doi.org/10.3389/fpls.2022.1043884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1043884
required for new crops, in which crops and weeds were

segmented in precision agriculture. (Milioto et al., 2018)

proposed real-time semantic segmentation of crops and weeds

using precision agriculture robots by leveraging background

knowledge in CNNs. In this study, the training weights

achieved by neural networks were implanted into precision

robots to remove weeds from field sugar beets. Many scholars

have studied plant leaves through semantic segmentation (Barth

et al., 2018; Miao et al., 2020; Kolhar and Jagtap, 2021; Masuda,

2021). However, the conventional semantic segmentation

network has a large number of parameters and needs a long

training time. Moreover, the segmentation is less effective with a

small proportion of target pixels, which cannot meet the

accuracy requirements of real-time segmentation in agriculture.

This study aims to develop a method of real-time

segmentation and parameter measurement for plant leaf veins

that can be applied in agriculture to solve problems of slow

segmentation and large parameter measurement errors.

Specifically, the DeepLabV3+ semantic segmentation network

is selected as the basic framework (Chen et al., 2018). The main

contributions of this study are as follows:
Fron
1. The Xception feature extraction network is replaced

with the lightweight MobileNetV2 (Sandler et al.,

2018). It greatly reduces the number of model

parameters, shortens the network’s training time, and

meets the requirements of onl ine real- t ime

segmentation of leaf veins.

2. A Convex Hull-Scan method is proposed to repair and

obtain more complete leaf veins, improving the

measurement accuracy of leaf veins’ parameters.

3. In repaired leaf veins, there are still fine cavities and

slightly rough veins’ contours, resulting in a large

number of burrs when extracting leaf veins’ skeleton

lines, which affects the accuracy of the parameter

measurement. An F-3MS refinement algorithm is

adopted to reduce the burr phenomenon.
The remainder of the study is organized as follows: In Section

2, the acquisition of image datasets is described in detail. The

MoileNetV2-DeepLabV3+ lightweight network is constructed to

segment leaf veins. This study developed two methods, the

Convex Hull-Scan method and the F-3MS refinement

algorithm, which can repair leaf veins incompletely segmented

and eliminate burrs along leaf veins’ skeleton lines. The length of

the leaf veins is also measured. Finally, a width geometric model is

constructed to measure the leaf vein width. In Section 3, the

implementation details of the experiment are presented. In

section 4, a detailed experimental analysis is carried out to

verify the algorithm’s feasibility. Section 5 introduced the

algorithm’s benefits, limitations, and follow-up work. Section 6

concludes this study and provides an outlook for the future.
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2 Materials and methods

The data used for this research, including data acquisition,

split, and annotation, is presented in Section 2.1. The model

construction is introduced in Section 2.2. Measuring leaf vein

parameters is elaborated in detail in Section 2.3.
2.1 Data

2.1.1 Data acquisition
The experimental data are obtained from Yunnan Tobacco

Quality Supervision and Monitoring Station in Kunming, China,

and the image data are flue-cured tobacco leaves. The image

acquisition platform is provided by an agricultural company.

During image data acquisition, the equipment used is a

Hikvision MV-CA050-11U camera with a USB interface. The

light source model is XC-BK-650-1100, the lens model is

M0824-MPW2, and the light source is customized to

1000×600. The shooting distance between the lens and the leaf

surface is 90 cm. These images were collected in November 2021.

The flue-cured tobacco leaves were placed on the conveyor belt.

This study uses RGB images with a resolution of 2304×1520

pixels. A total of 800 images were acquired. The detailed

equipment for data acquisition is shown in Figure 1.
2.1.2 Data annotation
This study uses supervised learning for neural network

training. Therefore, the region of leaf veins should be

annotated so that the network can recognize them. Each pixel

on the images is annotated as a leaf vein and background class by

using the open-source annotation program Labelme3.16.7. A

visual example is shown in Figure 2. It is worth noting that leaf

veins are thin strips in shape, and per pixel-level annotation is

very time-consuming. The annotation mask work was

accomplished in almost two months.
2.1.3 Data split
This study mainly focuses on the analysis of plants’ main

veins. Scaling, translation, mirroring, and rotation are used in

image data augmentation for enhancing generalization ability,

improving segmentation accuracy, and preventing overfitting.

These augmented RGB images are divided into training,

validation, and test sets (at 8:1:1 ratio). Finally, the datasets are

made according to the PASCAL VOC.
2.2 Model construction

This section illustrates the network construction in detail.

MobileNetV2-DeepLabV3+ is introduced in Section 2.2.1.
frontiersin.org
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The lightweight extraction network is elaborated in Section 2.2.2.

And Section 2.2.3 presents a Convex Hull-Scan method.

In this study, the plant leaf veins coupling feature

representation and measurement method based on

DeepLabV3+ is proposed to solve problems of slow

segmentation, partial occlusion of leaf veins, and low

measurement accuracy of leaf veins parameters. The flowchart

involved in leaf vein segmentation and parameter measurement

is shown in Figure 3. The RGB image is uniformly scaled to

512 × 512 pixels and input into the network. The MobileNetV2-

DeepLabV3+ is used to segment leaf veins. The Convex Hull-

Scan method is used to repair and form a complete vein, and the
Frontiers in Plant Science 04
F-3MS algorithm removes the blur phenomenon of the vein’s

skeleton lines.

2.2.1 MobileNetV2-DeepLabV3+ network
Semantic segmentation networks can meet most conventional

objects’ accuracy of segmentation and recognition. However, the

segmentation accuracy for objects with small pixel proportions is

still low. Moreover, limited computer resources are far from

meeting the purpose of real-time segmentation in practical

application scenarios. To solve the problem of slow segmentation,

MobileNetV2 is chosen as the feature extraction network for

DeepLabV3+. Firstly, the image (512×512 pixels, 3 channels) is
FIGURE 2

The image example. (A) The RGB image of plant leaves; (B) manual annotation of leaf vein region, where red and black represent the leaf vein
and background, respectively.
FIGURE 1

Professional acquisition machine for images. The image data collector consists of conveyor belts, industrial cameras, operating systems,
sensors, collecting boxes, etc.
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inputted to generate a feature map (32×32 pixels, 320 channels) by

the MobileNetV2. The feature map (32×32 pixels, 320 channels) is

passed into atrous spatial pyramid pooling (ASPP) to obtain deeper

semantic information, followed by upsampling and concatenation

with the shallow feature map (128×128 pixels, 24 channels). Finally,

the concatenated feature map is convolved and up-sampled to

obtain leaf veins. The MobileNetV2-DeepLabV3+ can ensure the

needed accuracy while improving the segmentation speed.

2.2.2 Lightweight feature extraction network
The residual structure of the Xception module is used for

feature extraction by three times 3 × 3 depthwise separable

convolutions in the original DeepLabV3+. As the number of

channels in a convolutional layer is up to 512, the network runs

slowly due to the computer resources occupied by a large

number of model parameters. To solve this problem without

sacrificing accuracy, the lightweight network used can improve

the training speed to achieve real-time segmentation (Ma et al.,

2018; Zhang et al., 2018; Chaturvedi et al., 2020; Wang

et al., 2020).

Common feature representation methods include the Local

Binary Patterns (LBP) algorithm (Zhao and Pietikainen, 2007),

the Histogram of Oriented Gradient (HOG) feature extraction

algorithm (Dalal and Triggs, 2005), and the Scale-invariant feature

transform (SIFT) operator (Cheung and Hamarneh, 2009). In

computer vision tasks, image features are mainly composed of

color, geometry, texture, and local features. A single feature

representation method for complex image segmentation tasks

cannot obtain the required target. The convolutional neural
Frontiers in Plant Science 05
network based on deep learning can automatically learn and

obtain feature representation. The features learned by the

shallow layer are simple edges, corners, textures, geometric

shapes, surfaces, etc., and the features learned by the deep layer

are more complex and abstract. When representing images, the

feature values might correspond to the pixels of an image. The

convolution kernel weights of each convolutional neural network

layer are learned by data-driven learning. Data-driven

convolutional neural networks learn features from simple to

complex layer by layer, and complex patterns are composed of

simple patterns. This combination is carried out relatively flexibly,

so it has a solid ability to obtain feature representation.

The regions of leaf veins occupy a small proportion of pixels in

the entire image. Continuous convolution and pooling operations

lead to the loss of leaf veins’ feature information when the feature

extraction network layers are too deep. Meanwhile, the deep

network layers lead to a large number of model parameters and

a long training time. The feature extraction network with shallow

network layers only extracts the color and texture information of

the leaf veins, and the deeper semantic information cannot be

extracted. Hence, MobileNetV2 is used for plant leaf veins’

extraction in this study. While ensuring that the network layer

is deep enough, many depthwise separable convolutions are used

to reduce model parameters and shorten training time.

In the study, the higher segmentation speed lightweight

MobileNetV2 network is selected to replace Xception

according to the accuracy requirements of the leaf veins’

segmentation. The MobileNetV2 structure is shown in

Figure 4. The network mainly comprises standard convolution,
FIGURE 3

The algorithm flow chart. The inputted RGB image goes through four processes: feature extraction, occlusion region repair, leaf vein skeleton
line extraction, and leaf vein parameter measurement. CBR consists of convolution, batch normalization, and activation function layers. Fusion
means “Concat” splicing shallow features with deep features. “Unsample by 4” means that the feature map is upsampled by 4, and the model
uses 2 upsampling operations.
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depthwise separable convolution, and the ReLU6 activation

function. Among them, the inverted residual structure is the

most critical module in the network.

1. Through a feature extraction network, the feature map can

be obtained from the input image by standard convolution.

Firstly, the 1×1 and 3×3 standard convolutions carry out feature

map information perception through specified step size and

receptive field. Then, the inner product of the feature map and

the convolution kernel are performed to obtain the activation

value of the target. Finally, feature extraction can be achieved

through channel stacking. Feature extraction is calculated using

the following formula (1),

Y (i,j) = ½X⊗Z�(i,j) =o
C

c=1
o
K

m=l
o
K

n=1
Xc(Si +m, Sj + n)Wc(m, n)
� �

(1)

where, X, the input feature information, and Y, the output

feature information of the image after the convolution operation;

(i,j) , the size of the feature map;⊗ , the convolution operation; c,

m, and n, intermediate variables; C, the feature channel; K, the

size of the convolution kernel; S, the convolution stride; Z, the

convolution kernel.

2. Many depthwise separable convolutions are used in

MobileNetV2 to reduce model parameters and the occupancy

rate of computer memory resources.

As shown in Figure 5, the depthwise separable convolution is

divided into a deep convolution and a pointwise convolution.

Depthwise convolution processes each channel and the

convolution kernel separately, among which the number of

channels must equal the number of convolution kernels.

Subsequently, the number of feature channels is recovered by a

pointwise convolution operation with 1×1 convolution.

Standard convolution and depthwise separable convolution

model parameters are analyzed. As shown in Figure 6,

DF×DF×M , the size of the input feature map; DF×DF×N , the
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size of the output feature map. Among, DF , the height and width

of the feature map;M and N, the numbers of channels; DK×DK ,

the size of the convolution kernel.

The calculation amount of standard convolution is

calculated using the following formula (2),

Dataconv = DK � DK �M � DF � DF � N (2)

The calculation amount of depthwise separable convolution

is calculated using the following formula (3),

DataDSC = DK � DK �M � DF +M � DF � DF � N (3)

The ratio of the calculation amount of standard convolution

and depthwise separable convolution is calculated using the

following formula (4),

z =
Dataconv
DataDSC

=
DK � DK �M � DF � DF � N

DK � DK �M � DF +M � DF � DF � N

=
1
N

+
1
D2

K
(4)

If a 3×3 convolution kernel is used, the calculation amount

of depthwise separable convolution is only about one-ninth of

standard convolution.

3. A ReLU activation function is usually connected to

alleviate the overfitting problem in convolutional neural

networks. To implant a MobileNetV2 network into mobile

devices, the activation value is limited to (0, 6). On the mobile

device, float18/INT8 can satisfy the resolution and reduce the

occurrence of gradient disappearance. The ReLU6 calculation

formula is calculated using the following formula (5),

F(x) = Min Max(0, x), 6ð Þ (5)
FIGURE 4

MobileNetV2 network for feature extraction. There are 17 inverted residual modules included in the network. Each inverted residual module
consists of a depthwise separable convolution, and the depthwise separable convolution is composed of 1×1 and 3×3 standard convolutions,
batch normalization, and relu6 activation functions.
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In the above formula, x, the input feature map; Max , the

upper limit of the restricted range; Min , the lower limit of the

restricted range; F(x) , the output feature map; (0, 6), the output

range of the ReLU6 activation function. So the derivative is also 0

when x is more than 6.
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The MobileNetV2-DeepLabV3+ is proposed in this study to

perform leaf veins’ segmentation. MobileNetV2 is used for the

feature extraction network, and the ASPP structure is used to

obtain more in-depth semantic feature information. Finally, the

shallow and deep feature information is fused to obtain the final

segmentation result. Based on the semantic segmentation

network, a large number of datasets can be calibrated, and then

the supervised learningmethod is used to extract the target feature

information. In this study, 512×512 pixels RGB images are

entered into the model for training by the transfer learning

method. The segmentation results are shown in Figure 7.

Leaf veins are segmented accurately in the mobileNetV2-

DeepLabV3+ network. However, some leaf veins are segmented

incompletely due to leaf folds occasionally, which needs to be

further optimized.

2.2.3 Convex Hull-Scan method
Due to wrinkles on the leaves, the leaf vein segmentation is

incomplete, which affects the accuracy of related parameter

measurements. This study introduces the Convex Hull-Scan

method to repair and obtain more complete leaf veins. The

implementation process of the Convex Hull-Scan method is

as follows.

Firstly, Graham’s method in Convex Hull is used to find the

incomplete segmentation regions of leaf veins. Convex polygon

point sets (P) are formed by the edge vertices of the leaf veins’

incomplete segmentation regions, the noise points between

regions, and small isolated regions. As shown in Figure 8, the

Convex Hull method constructs the minimum convex polygon.

The specific implementation process of Graham’s method to

find the minimum convex polygon vertices was as follows.
FIGURE 6

(A) standard convolution; (B) deep convolution; (C) pointwise convolution.
FIGURE 5

(A) The feature extraction process is performed by standard
convolution; (B) The feature extraction process is performed by
depthwise separable convolution.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1043884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1043884

Fron
(1) The minimum value on all x-axes is found through the

image coordinate system in the leaf veins’ occlusion

regions. If there are multiple identical values on the x-

axis, it takes the minimum value on the y-axis, so that

the starting coordinate point, P1(xmin,ymin) , is

determined.

(2) All coordinate points are sorted counterclockwise

according to polar angles. Precedence is given to the

nearest coordinates to the starting point when the polar

angles are equal.

(3) The minimum convex hull formation process is shown

in Figure 9. An array, ARR[N] , is used to store the set of
tiers in Plant Science 08
Convex Hull points in leaf veins’ occlusion regions.

Firstly, P1 and P2 are stored in an array. Subsequently,

all coordinate points of the Convex Hull point set are

scanned. The point Pi is determined on the periphery of

the array by the cross-product between ARR[N] and

ARR[N−1] .
The implementation formula is calculated using the

following formula (6),

Dat = ARR½N � � Pi − ARR½N � � ARR½N − 1� − ARR½N

− 1� � Pi + ARR½N − 1�f g2 (6)
FIGURE 7

Test the result of leaf vein segmentation; A1, A2, and A3 are three images of flue-cured tobacco chosen at random; B1, B2, and B3 are manual
annotations of leaf vein regions; and C1, C2, and C3 are the results of leaf vein segmentation using the MobileNetV2-DeepLabV3+.
FIGURE 8

Minimum convex polygonal construction diagram. A minimum convex polygon is formed by the edge vertices of the leaf veins’ incomplete
segmentation regions, the noise points between regions, and small isolated regions.
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where, if Dat>0 , it is the set of points inside the convex

packet, and if Dat<0 , it is the set of vertices of the convex packet.

Subsequently, the set P of all points is ordered into the least

convex polygon. According to the permutation formula, all

coordinate points are scan-connected using the Euclidean

distance to fill incomplete segmentation regions. As shown in

Figure 10, a complete leaf vein is obtained by using the Convex

Hull-Scan method.
2.3 Leaf veins parameters measurement

This section illustrates the leaf veins parameter measurement

in detail. The length measurement is introduced in Section 2.3.1,

and the width measurement is elaborated in Section 2.3.2.

Length and width parametric indicators are extracted based

on the repaired leaf veins. This paper does more fine-grained

processing for leaf veins to increase the accuracy of leaf vein

measurement. An F-3MS refinement algorithm is proposed to

extract leaf veins’ skeleton lines.

2.3.1 Length measurement
The repaired leaf veins needed to be preprocessed through

grayscale, binarization, and nonlinear filtering to measure the

leaf veins’ width. And then, a single-pixel skeleton line is

obtained by the Morphological Skeleton refinement algorithm.

The length of the leaf veins is measured indirectly through the

number of pixel points. However, there are still fine cavities and

slightly rough contours in the repaired regions of leaf veins.

Moreover, there were many burrs in leaf veins’ skeleton lines by

ordinary refinement algorithms, resulting in low parameter

measurement accuracy. In this research, an F-3MS refinement

algorithm is proposed, which can reduce the burrs’ appearance
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of skeleton lines. The specific implementation process of the

algorithm is as follows.

(1) Firstly, the Flood Fill Algorithm is put forward to fill the

background of the segmented image with white. Subsequently,

the NOT operation is used to fill the image with the Flood Fill

Algorithm. Finally, the OR operation is performed on the

original image with the NOT operation image. Therefore,

these fine holes inside the leaf veins are filled in three steps.

(2) These isolated dots in leaf vein regions are eliminated by

open operation.

(3) Leaf vein images are processed with three different

weights for RGB to obtain a gray image. The gray processing

formula is calculated using the following formula (7),

Gray = 0:299� R + 0:587� G + 0:114� B (7)

where R, G, and B represent the values of the three primary

colors—red, green, and blue—of the leaf veins segmentation

image. “Gray” is a grayscale value.

(4) To preserve more leaf vein details, median filtering is

used to smooth leaf veins’ contours and remove noise points.

(5) The maximum interclass variance method is used to

binarize images. This principle is shown below.

The pixel value of the leaf vein image is divided into [1,2,⋯,l]

levels, and ni is used to represent the number of certain image

values. So the total pixels’ value of the leaf veins image is (8),

N = n1 + n2 +⋯+ni +⋯+nl (8)

Where the frequency of a single pixel in the image is (9),

pi =
ni
Ni

,   pi: > 0, p1 + p2 +⋯+pn = 1 (9)

Define two variables as the sum of local frequency values,

and the relationship is (10),
FIGURE 9

Minimum convex polygonal construction diagram. Traverse coordinate points (A), P1P2
��!� P1P3

��!
> 0, deposit P3 (B), P2P3

���!� P2P4
���!

> 0, deposit P4

(C), P3P4
���!� P3P5

���!
> 0, deposit P5 (D), P4P5

���!� P4P6
���!

< 0, pop up P5 (E), P3P4
���!� P3P6

���!
> 0, deposit P6 (F), P4P6

���!� P4P7
���!

< 0, pop up P6 (G),…, form the
smallest convex polygon (H).
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w0 =o
k

i=1

pi,w1 = o
l

i=k+1

pi (10)

The image’s foreground and background frequencies

are (11),

uT =o
l

i=1
i*pi, u0 =o

k

i=1
i*

pi

ok
i=1pi

, u1 = o
l

i=k+1

i*
pi

ok
i=k+1pi

(11)

The relationship in the above equation can be described

as (12),

w0u0 + w1u1 = uT ,w0 + w1=1 (12)

(6) To measure leaf vein length, a single-pixel skeleton line is

obtained by the Morphological Skeleton refinement algorithm.

Hence, the F-3MS refinement algorithm is constructed.
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2.3.2 Width measurement
As shown in Figure 11, leaf veins’ contour can be obtained

through the Canny edge detection after binarization.

Subsequently, the AND operation is performed on the contour

and skeleton line images to obtain the fusion image. Finally, the

geometric model is constructed in the fused image to calculate

the leaf veins’ width.

As shown in Figure 12, the leaf veins’ vertical distance is [v

(x)−u(x)]/2 . However, in most cases, the vertical distance

between the leaf veins cannot represent its true width, and the

true width is less or equal to [v(x)−u(x)]/2 . The image

coordinate system is used to denote any point P on the

skeleton lines to obtain the true width of leaf veins, Pi(xi,[v(x)

−u(x)]/2) . Therefore, the front and back pixels coordinates of P

are Pi−1(xi−1,[v(xi−1)−u(xi−1)]/2) and Pi+1(xi+1,[v(xi+1)−u(xi+1)]/

2) , respectively.
FIGURE 11

Width geometry model construction. Before measuring the leaf veins’ width, the skeleton line of the complete leaf veins needs to be extracted
by the F-3MS refinement algorithm. At the same time, the edge detection algorithm extracts the leaf veins’ contour. Finally, by constructing a
width geometric model and using the image bit operation, the width of the leaf veins is measured.
FIGURE 10

Leaf veins repair images. The A1, A2, and A3 show that the segmented leaf vein regions pass through MobileNetV2-DeepLabV3+, and all three
images have leaf vein occlusion, resulting in incomplete segmentation; B1, B2, and B3 show that the leaf veins were repaired using the Convex
Hull-Scan method.
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The cosine of the angle q can be calculated between the

coordinates of two-pixel points according to the triangular

geometry formula. The cosine of the angle q formula is

calculated using the following formula (13),

cos q =
xi+1 − xi−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xi+1−xi−1)
2 + v(xi+1) − u(xi+1)½ �=2 − v(xi−1) − u(xi−1)½ �=2ð Þ2

q (13)

Then the leaf vein’s true width passing through any point

P on the skeleton lines can be expressed as (14),(15),(16),

x1, u(x1)ð Þ, x2, u(x2)ð Þ,⋯, xi, u(xi)ð Þ,⋯, xm, u(xm)ð Þ½ � (14)

x1, v(x1)ð Þ, x2, v(x2)ð Þ,⋯, xi, v(xi)ð Þ,⋯, xm, v(xm)ð Þ½ � (15)

x1,
v(x1)−u(x1)

2

� �
, x2,

v(x2)−u(x2)
2

� �
,⋯, xi,

v(xi)−u(xi)
2

� �
,⋯, xm,

v(xm)−u(xm)
2

� �� 	

(16)

And the vertical distance of each pixel coordinate passing

through the leaf vein’s skeleton lines is (17),

v(x1)−u(x1)
2

,
v(x2)−u(x2)

2
,⋯,

v(xi)−u(xi)
2

,⋯,
v(xm)−u(xm)

2

� 	

(17)

The cosine angle is (18),

½cos q1, cos q2,⋯, cos qi,⋯, cos qm� (18)

Therefore, the leaf vein’s true width through the coordinates

of each point of the skeleton lines is (19),
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v x1ð Þ − u x1ð Þ
2

cos q1,
v x2ð Þ − u x2ð Þ

2
cos q2,⋯,

v xið Þ − u xið Þ
2

cos qi,⋯,
v xmð Þ − u xmð Þ

2
cos qm

� 	

(19)
3 Implementation details

This section illustrates implementation in detail. The

experimental platform construction is introduced in Section

3.1. The network evaluation is elaborated in Section 3.2, and

the train details used for the network’s performance are

explained in Section 2.3.
3.1 Experimental platform construction

The experimental hardware for this study includes an Intel

i5-12600KF CPU, and an NVIDIA GeForce RTX3060 GPU with

12 GB memory. A series of experimental operations are

performed on Ubuntu20.04 L.S.T. Based on the PyCharm2020

open-source software, Python3.8.12 and Pytorch1.10.0 are used

to build the model of plant leaf veins segmentation, and

OpenCV4.1.12 is selected as the development platform to

achieve leaf vein repair and parameter measurement.
3.2 Network evaluation

In this study, to evaluate the segmentation performance of the

network, five standard metrics in semantic segmentation are

selected: MIoU, mPA, FPS, FLOPs, and model parameters. MIoU
FIGURE 12

Measure the true width of the leaf veins. the screen coordinate system is established in the image. The solid lines u(x) and u(x) represent the
upper and lower contours of the leaf veins, respectively, and the dashed lines represent the refined vein skeleton lines.
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and mPA are two standard metrics for semantic segmentation. It

calculates the intersection and merging ratio of the two sets, which

are the true (ground truth) and predicted (predicted segmentation)

values in the semantic partitioning problem. The MIoU and mPA

formulas are calculated as follows (20), (21),

MIoU =
1

k+1o
k

i=0

pii

ok
j=0pij +ojkpji − pii

(20)

mPA =
1

k+1o
k

i=0

pii

ok
j=0pij

(21)

where, k+1, the total number of categories; i, ground truth; j,

predicted segmentation.

The MIoU and mPA formulas are equivalent to formulas

(22), (23),

MIoU =
1

k + 1o
k

i=0

TP
FN+FP+TP

(22)

mPA =
1

k + 1o
k

i=0

TP+TN
FN+FP+TP+TN

(23)

where, TP, true positive; TN, true negative; FP, false positive;

FN, false negative.

Intuitive understanding is shown in Figure 13.

In this study, the leaf vein is a positive class(1), and the

background is a negative class(0). A detailed description is

shown in Table 1.

The model segmentation speed is evaluated in frames per

second (FPS). Model parameters evaluate the training speed and

memory resource usage of the model. FLOPs are floating point
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operations per second. It is worth noting that FPS is the number

of images segmented per second during the testing phase.
3.3 Train details

This study uses transfer learning to train the network in the

leaf vein segmentation stage. The network is trained for 100

epochs. To allow the network to train the dataset properly, the

size of the image in the input network is 512×512 pixels. To

prevent the influence of image data on the network, the training

and validation sets are randomly shuffled before being input to

the model. The network’s gradient decreases through iterative

algorithms to decrease the learning rate, and better segmentation

performance can be obtained ultimately.

The model’s parameters are updated using the Adaptive

Moment Estimation (Adam) optimizer: the initial learning rate

is 0.001, the “cos” learning scheduler is selected to adjust the

learning rate, the weight decay is 5e−4, b1 = 0.9, b2 = 0.99, and

the gamma is 0.94. Due to computer hardware and graphics card

memory limitations, the feature extraction network is frozen for

training at the first 50 epochs with a mini-batch size of 8, and the

entire network is loaded for training after 50 epochs with a mini-

batch size of 4. Additionally, the dropout size is set to 0.5. The

process of updating model parameters during network training

is shown in Table 2.
4 Results

This section illustrates the results in detail. The network fine-

tuning is in Section 4.1. Comparison with other networks is
FIGURE 13

Intersection graph. The red circle represents the ground truth, the yellow circle represents the predicted segmentation, and the orange part is
the intersection of the two circles. Calculate the ratio between the intersection of two circles (the orange part) and the union of two circles (red
+orange+yellow). Ideally, the two circles coincide, and the ratio is 1.
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elaborated in Section 4.2, and the parameters’ measurement

verification is analyzed in Section 4.3.
4.1 Network fine-tuning

In neural networks, when the parameters are selected

differently, the training results will be significantly affected. For

better performance of leaf vein segmentation, fine-tuning the

network’s parameters is essential. Given initial learning, the rate

is 0.001, and the individual parameters of the network are fine-

tuned, as shown in Table 3. This study compares the tuning

strategy of the learning rate, the optimizer’s choice, the

multiplicity of feature map downsampling, and whether

focal_loss is used. Firstly, the “step” and “cos” learning

schedulers are selected, and using “cos” is higher than using

“step” for MIoU and mPA at 2.7% and 2.59%, respectively.

Secondly, the SGD and Adam optimizers are often selected to

train deep convolutional neural networks. Compared to the SGD

optimizer, using the Adam optimizer, MIoU and mPA reach

81.50% and 92.89%, respectively. Meanwhile, the feature map is

downsampled 8 times when the network is trained, and the

performance of the segmentation is better. Finally, Focal_loss is

added to the network, but the segmentation performance is not

very good. Therefore, when training the network, this study
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chooses the “cos” learning scheduler, Adam optimizer, and 8

times downsampling. The training effect of the network model is

relatively excellent.

Based on Table 3, different learning rates are chosen and the

results are shown in Table 4. Similarly, when the initial learning

rate is set to 0.001, the training result of the network model

is optimal.

For the leaf vein segmentation, although a smaller dataset is

used, the results of this training are very satisfactory, as shown in

Figure 14. During the training process, the network model

converged rapidly in the first 60 epochs and gradually stabilized

after 40 epochs. The high performance of segmentation can be

attributed to two main reasons. Firstly, professional industrial

cameras are used to capture the images at the time of data

acquisition, which greatly reduces the influence of variations in

environmental lighting on the captured images and makes the

image data distribution relatively consistent, and it is possible to

make the training model more robust with a smaller training data

set. This has been investigated as a key for agricultural

applications. Secondly, in addition to the use of specialist

equipment to acquire image data, the use of data augmentation

and network fine-tuning also has an extremely significant impact

on the final trained model. Because data augmentation can

prevent overfitting of the model, and network fine-tuning can

greatly take advantage of the performance of the model.
TABLE 2 Pseudo-code for the process of updating model parameters during network training.

1. Initialization: learning rate (lr)

2. Initialization: Smoothing constant (decay rate) b1 and b2 for smoothing m and v, respectively.

3. Initialization: Parameters that can be learned q0
4. Initialization: m0 =0, v0 =0, t=0

5. while doing:
(No stopping training)

6. Number of training sessions updated: t+=1

7. Calculated gradients: gt (All learnable parameters have their own gradients, so gt represents the set of all gradients)

8. Cumulative gradient: mt=b1*mt−1+(1−b1)*gt (Each derivative corresponds to an m, so m is also a set.)

9. Square of cumulative gradient: vt=b2*vt−1+(1−b2)*(gt)2 (Each derivative corresponds to a v, so v is also a set)

10. Deviation correction m: m̂ t =
mt

1 − (b1)t

11. Number of training sessions updated: v̂ t =
vt

1 − (b2)t

12. Number of training sessions updated: qt = qt−1 −
m̂ tffiffiffiffiffiffiffiffiffiffiffiffi
v̂ t + ϵ

p *lr

13. end while
TABLE 1 Leaf veins segmentation confusion matrix.

Ground truth Predicted segmentation

Leaf veins (1) Background (0)

Leaf veins (1) TP (true positive) FN (false positive)

Background (0) FP (true negative) TN (false negative)
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4.2 Comparison with other networks

DeepLabV3+ is compared with the following baselines,

which consist of three feature extraction networks: Xception,

ResNet50, and MobileNetV2.

Xception (Chollet, 2017): Xception is an improved network

of InceptionV3 proposed by Google after Inception. The main

improvement is to use depthwise separable convolution to

replace the multi-size convolution kernel feature response

operation in Inception v3.

ResNet50 (He et al., 2016): ResNet has been used in a wide

variety of feature extraction applications. The number of layers

of the deep learning network is greater and theoretically more

expressive. However, the CNN network reaches a certain depth

and then deepens, and the classification performance does not

improve. At the same time, it causes the network to converge

more slowly and the accuracy rate to decrease. Even if the dataset

is increased to solve the over-fitting problem, the classification

performance and accuracy will not improve. Hence, a residual

structure in resnet50 was proposed to solve this problem of

gradient disappearance and deep network training difficulty.

MobileNetV2 (Sandler et al., 2018): The MobileNetV2

network was proposed by the Google team in 2018 and is

more accurate and has a smaller model compared to the

MobileNetV1 network. There are three main advantages in

this network: inverted residuals, linear bottlenecks, and ReLU6

activation functions.

This study uses the above three networks as feature

extraction networks. As shown in Table 5, MobileNetV2 as a

feature extraction network has the highest MIoU and mPA, and
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the number of model parameters is only 5.813M, with a

segmentation speed of 9.81 frames per second.

In this study, to compare the segmentation performance of

different networks, UNet (Ronneberger et al., 2015), PSPNet

(Zhao et al., 2016), DeepLabV3 (Chen et al., 2017), DeepLabV3

+ (Chen et al., 2018), LRASPP (Howard et al., 2019), HRNet (Sun

et al., 2019), ResUNet (Fid et al., 2020), CGNet (Wu et al., 2021),

TransUNet (Chen et al., 2021), and MobileNetV2-DeepLabV3+

(Ours) are all selected to train network. For different objects, the

evaluation indicators of each network model are not consistent.

MIoU, Params, FPS, and FLOPs are more widely recognized

evaluation indicators for semantic segmentation. After training for

100 epochs, Table 6 displays the experimental results. Although

LRASPP and CGNet have smaller network model parameters and

lower FLOPs, the network has faster training segmentation speed,

the segmentation accuracy of the network is lower, which does not

meet the actual production requirements. TransUNet has the

highest MIoU, but the network has a large number of model

parameters, the training speed is slow, and the segmentation speed

is only 1.46 frames per second. In addition, during the training of

TransUNet, the hardware configuration of the computer is also

very high. However, the MobileNetV2-DeepLabV3+ performs

faster segmentation speed and smaller model parameters, while

it can meet actual production requirements.
4.3 Parameters measurement verification

The F-3MS and Morphological Skeleton refinement

algorithms are used to extract skeleton lines from repaired leaf
TABLE 4 Comparison of network training at different learning rates.

Number Learning rate MIoU (%) mPA (%)

① 0.05 81.36 92.57

② 0.01 81.45 92.19

③ 0.005 81.39 92.60

④ 0.001 81.50 92.89

⑤ 0.0005 81.46 92.74

⑥ 0.0001 81.48 92.89
fro
TABLE 3 Network segmentation performance comparison for different parameters selection.

Number Learning scheduler optimizer Downsample_factor Focal_loss MIoU(%) mPA(%)

step cos SGD Adam 8 16

① ✓ ✓ ✓ 74.15 87.66

② ✓ ✓ ✓ 76.85 90.25

③ ✓ ✓ ✓ 81.50 92.89

④ ✓ ✓ ✓ 81.49 92.51

⑤ ✓ ✓ ✓ ✓ 81.39 92.87
n
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veins. The refinement effect of skeleton lines is shown

in Figure 15.

Median filtering is processed with the convolution kernel

sizes of 1×1, 3×3, 5×5, and 7×7 for the two refinement

algorithms, respectively, and then the leaf vein length and

width are measured. The measurement accuracy is shown

in Table 7.

It can be seen from Table 7 that the Morphological Skeleton

refinement algorithm and the F-3MS refinement algorithm

maintained high accuracy when using convolution kernels of

5×5 and 7×7 in the leaf vein length measurement. However, the

F-3MS refinement algorithm used in this paper to process leaf

veins indicates a higher accuracy rate. This study conducted a

comprehensive performance comparison and selected the 5×5

convolution kernel to filter the leaf vein images. In measuring

leaf vein parameters, the 5×5 convolution kernel possesses

higher accuracy than other convolution kernels.

To verify the algorithm’s performance without considering

systematic errors, 192 leaf vein images are divided into 6 groups
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for parameter error measurement without considering the

existing systematic error. The results are shown in Tables 8

and 9.

Finally, this study verifies the effectiveness of three image

processing methods: Flood Fill Algorithm, Open Operation, and

Median Filtering. As shown in Table 10, the control variable

method is used to evaluate algorithm performance.

where, F, Flood Fill Algorithm; O, open operation; M,

median filtering; Lacc , the accuracy rate of length; Wacc , the

accuracy rate of width.

As shown in Table 10, the Morphological Skeleton refinement

algorithm is directly used to refine leaf veins without any image

processing. The algorithm’s accuracy in length is 40.7995% and

only 21.1662% in width when measuring leaf vein parameters,

which is far from the requirements of actual agriculture. When the

Flood Fill Algorithm is added to eliminate leaf vein fine holes, the

measurement accuracy of leaf vein length and width is improved

to 80.7226% and 72.5739%, respectively. Subsequently, the

contour is optimized by using an open operation to eliminate
A B

DC

FIGURE 14

Training and validation process for the leaf vein dataset. Parameters are evaluated after each epoch. (A) is loss evaluated on the training sets.
(B) is loss evaluated on the validation sets. (C) is MIoU evaluated on the training sets. (D) is MIoU evaluated on the validation sets.
TABLE 5 Compare the segmentation performance of different feature extraction networks.

Network MIoU (%) mPA (%) Params (M) FPS FLOPs (G)

Xception 79.51 90.1 54.709 5.55 83.420

ResNet50 73.34 83.11 39.634 6.52 48.673

MobileNetV2 81.50 92.89 5.813 9.81 39.962
f
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the contour’s fine roughness. Compared with the above method

added with the Flood Fill Algorithm, the measurement accuracy of

length and width is increased by 5.2863% and 4.2538%,

respectively. Finally, the median filter is introduced to remove

the noise points of segmentation leaf vein images. Hence, the F-

3MS refinement algorithm is formed to extract leaf vein skeleton

lines. Its vein length and width measurement accuracy rates are

96.3642% and 96.1358%, respectively. This way, the parameters

related to leaf veins can be accurately measured, indicating certain

agricultural practical value.

As seen from the analysis in Table 6, the leaf vein’s regions

can be identified accurately through the MobileNetV2-

DeepLabV3+, and the segmentation speed is faster than other

networks when extracting plant leaf veins. Therefore, the

MobileNetV2-DeepLabV3+ is more suitable for segmenting
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plant leaf veins. Meanwhile, this proposed method can

segment plant veins and measure related parameters in a

distributed system. Firstly, the training weight is implanted

into the system to segment and extract leaf veins.

Subsequently, the segmented veins are further processed using

the Convex Hull-Scan method and the F-3MS refinement

algorithm. Finally, the related parameters of leaf veins are

measured. For example, in the grading of flue-cured tobacco

leaves, the extraction of various digital elements in flue-cured

tobacco leaves is essential for tobacco grading. To a certain

extent, the length, width, and exposure degree of tobacco leaf

veins can reflect the growth parts of tobacco leaves. The

proposed method in this study can be used to extract digital

elements from flue-cured tobacco leaves, which play an essential

role in the grading of tobacco leaves.
TABLE 6 Comparison with other networks.

Network mIOU (%) Params (M) FPS FLOPs (G)

UNet 82.50 24.891 7.42 225.836

PSPNet 73.11 46.707 6.99 59.213

DeepLabV3 73.93 60.991 3.12 251.815

DeepLabV3+ 79.51 54.709 5.55 83.420

LRASPP 64.70 3.218 21.58 2.073

HRNet 75.27 29.538 7.98 45.462

CGNet 64.00 0.493 34.67 1.468

ResUNet 79.68 43.933 8.72 92.050

TransUNet 88.68 93.192 1.46 128.677

Ours 81.50 5.813 9.81 39.962
f

FIGURE 15

Refinement of leaf vein images. A1, A2, and A3 are images of restored leaf veins using the Convex Hull-Scan method; B1, B2, and B3 are leaf
vein skeleton lines extracted using the Morphology Skeleton refinement algorithm; and C1, C2, and C3 are leaf vein skeleton lines extracted
using the F-3MS algorithm.
rontiersin.org

https://doi.org/10.3389/fpls.2022.1043884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1043884
5 Discussion

In deep learning semantic segmentation tasks, the quality of

the dataset is one of the core factors affecting the performance of

the segmentation network. The result of the model’s training is

affected by the small size of the captured image, the different

sizes of each image, the different angles of the capture, and the

different lighting of the capture. Therefore, the same machine is

used for image data acquisition at the same location.

Additionally, for the leaf veins’ measurement algorithm to be
Frontiers in Plant Science 17
used in practical agricultural production, the leaves should be

kept closer to their original state during image acquisition

without any preprocessing operations.

In the semantic segmentation task, the network’s selection,

the model structure’s adjustment, and the parameter

optimization are all complex. This research focuses mainly on

plant leaf veins’ extraction and parameter measurement. Due to

the elongated shape of the leaf veins and the need for more

texture information, there is no need for very deep network

layers for feature extraction. MobileNetV2 is selected as the
TABLE 7 Comparison of accuracy of leaf vein parameter measurement.

Algorithm 1 × 1 3 × 3 5 × 5 7 × 7

Length Width Length Width Length Width Length Width

Morphological Skeleton 40.7955 21.1662 84.0921 69.7683 98.6972 78.7432 95.5889 80.3382

F-3MS 86.0089 76.8277 99.4463 85.4013 96.3642 96.1358 95.2083 87.9258
frontie
TABLE 8 Comparison of measurement results of leaf vein length.

Groups Scale Bar/(mm∙Pixel-1) Actual Length/mm Average Pixel/Pixel Measuring Length/mm Error/mm

① 0.2645 126.976531 461.62500 122.0998 5.008969

② 0.2645 140.705734 511.15625 135.2008 5.620625

③ 0.2645 134.985922 495.28125 131.0019 4.099750

④ 0.2645 133.225344 480.5625 127.1088 6.232281

⑤ 0.2645 134.341203 490.59375 129.7620 4.579156

⑥ 0.2645 150.682344 551.59375 145.8965 4.785797
TABLE 9 Comparison of measurement results of leaf vein width.

Groups Scale Bar/(mm∙Pixel-1) Actual Width/mm Average Pixel/Pixel Measuring Width/mm Error/mm

① 0.2645 4.266402286 16.81806469 4.448378111 0.186210587

② 0.2645 4.322903885 17.04709003 4.508955313 0.190707262

③ 0.2645 4.061104479 15.86600711 4.196558881 0.137903307

④ 0.2645 4.236429857 16.8325939 4.452221086 0.223878704

⑤ 0.2645 4.284880092 16.78426195 4.439437285 0.154557193

⑥ 0.2645 4.210911183 16.47386206 4.357336515 0.146425333
TABLE 10 Comparison of parameter measurements for different image processing methods.

Number F O M lacc (%) Wacc (%)

① – – – 40.7995 21.1662

② ✓ – – 80.7226 72.5739

③ ✓ ✓ – 86.0089 76.8277

④ ✓ ✓ ✓ 96.3642 96.1358
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feature extraction network in this study. Meanwhile, pre-

training weights are loaded in the experiments to make the

model not be trained from zero. Transfer learning is adopted to

train the model and gain a better weight. To shorten the training

time, a staged approach to training network models is proposed.

The feature extraction network is frozen for training at the first

50 epochs with a mini-batch size of 8, and the entire model is

loaded for training after 50 epochs with a mini-batch size of 4.

The advantages and disadvantages of the proposed method

and follow-up research are now discussed. Currently, the

method of leaf vein segmentation and parameter measurement

in this study has the following advantages:
Fron
(1) A professional image data acquisition setup is used for

image data acquisition and to produce datasets for leaf

vein segmentation.

(2) The image data is collected without any filtering, and the

samples are closer to the natural field conditions,

making the model more generalizable for actual

agricultural production.

(3) The MobileNetV2-DeepLabV3+ has shown excellent

leaf vein segmentation performance.

(4) The MobileNetV2-DeepLabV3+ can support a 4G

graphics card for network training. However, at least

conventional segmentation networks often need a 6G

graphics card for model training. Hence, most computer

configurations can support the training of our network.

(5) The execution of the proposed network is fast, so the

execution time for leaf vein segmentation is short, saving

computational resources and recognition time.

(6) The Convex Hull-Scan method can repair the leaf veins

very well, making it closer to the actual shape.

(7) Due to the fact that the contour of the repaired leaf veins is

not smooth, there aremany burrs in the skeleton line of the

leaf vein extracted by the ordinary refinement algorithm,

which leads to a large error in the following parameter

measurement. The F-3MS refinement algorithm proposed

in this research can eliminate the burr phenomenon and

improve the parameter measurement accuracy.
The proposed algorithm also has the following limitations:
(1) This experimental image dataset collected 800 images and

later expanded to 3912 images. The dataset samples are

still small. The segmentation performance of the network

will be improved by adding more image data samples.

(2) The leaf veins are thin strips, and more attention should

be paid to the shallow texture information when

constructing the network. If multiple shallow feature

fusions are used, the segmentation effect of the leaf veins

may be better.
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(3) Different convolutional network models have different

sensitivities to the learning rate. In this research,

employing the same learning rate for all convolutional

networks may not achieve optimal performance for each

network.
Follow-up work is as follows: (1) More images need to be

acquired to expand the dataset. (2) Fusion multiple shallow

features of the network. (3) To meet the training needs of more

computers, the network needs to be compressed further in the

next step. (4) For different networks, different parameter tuning

methods can be used for optimization, and then the model’s

performance is evaluated. (5) This study is used in distributed

systems, and the application must be verified in more

practical scenarios.
6 Conclusions

This study aims to develop a method for automatically

measuring leaf vein parameters. It mainly solves problems of

slow segmentation speed, partial occlusion of veins, and low

measurement accuracy of leaf vein parameters. Experiments

show that when using MobileNetV2 as the feature extraction

network, MIoU and mPA increased to 81.50% and 92.89%,

respectively. Moreover, the segmentation speed is 9.81 frames

per second. The model parameters are compressed by 89.375%,

down to 5.813M. The measurement accuracy of leaf vein length

and width increased to 96.3642% and 96.1358%. Experimental

results validate that the proposed algorithm can accomplish the

research objective. The study provides a new idea for measuring

leaf vein extraction and parameters. Under the studied scenarios,

the method can meet the transplant requirements of embedded

equipment in agriculture. Future studies will focus on: (1)

Transferring the proposed algorithm to other plant leaf vein

segmentation and related parameter measurements by fine-

tuning the new dataset. (2) Optimizing the algorithm and

improving the operating efficiency.
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