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Identification and segregation of citrus fruit with diseases and peel blemishes are

required to preserve market value. Previously developed machine vision

approaches could only distinguish cankerous from non-cankerous citrus, while

this research focused on detecting eight different peel conditions on citrus fruit

using hyperspectral (HSI) imagery and an AI-based classification algorithm. The

objectives of this paper were: (i) selecting the five most discriminating bands

among 92 using PCA, (ii) training and testing a custom convolution neural network

(CNN) model for classification with the selected bands, and (iii) comparing the

CNN’s performance using 5 PCA bands compared to five randomly selected

bands. A hyperspectral imaging system from earlier work was used to acquire

reflectance images in the spectral region from 450 to 930 nm (92 spectral bands).

Ruby Red grapefruits with normal, cankerous, and 5 other common peel diseases

including greasy spot, insect damage, melanose, scab, and wind scar were tested.

A novel CNN based on the VGG-16 architecture was developed for feature

extraction, and SoftMax for classification. The PCA-based bands were found to

be 666.15, 697.54, 702.77, 849.24 and 917.25 nm, which resulted in an average

accuracy, sensitivity, and specificity of 99.84%, 99.84% and 99.98% respectively.

However, 10 trials of five randomly selected bands resulted in only a slightly lower

performance, with accuracy, sensitivity, and specificity of 98.87%, 98.43% and

99.88%, respectively. These results demonstrate that an AI-based algorithm can

successfully classify eight different peel conditions. The findings reported herein

can be used as a precursor to develop a machine vision-based, real-time peel

condition classification system for citrus processing.

KEYWORDS

hyperspectral imaging, citrus canker, disease detection, food safety, convolution
neural network (CNN), machine vision
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Introduction

Infections and other blemishes on the peels of citrus typically

lower market value, and for certain locales, can prevent import

or export. Citrus Canker and Citrus Black Spot (CBS) are among

the latter category, but other lesser peel conditions such as

melanose, greasy spot, wind damage and insect damage might

only affect fruit price. Citrus Canker, included in this study, is a

severe disease which has negatively impacted the Florida Citrus

Industry for over two decades, it is usually characterized by

conspicuous, erumpent lesions on leaves, stems, and fruit, and

can cause defoliation, blemished fruit, premature fruit drop, twig

dieback, and tree decline (Schubert et al., 2001). Considered one

of the most devastating diseases that threaten fresh market citrus

crops, canker at best reduces visual appeal to consumers, and at

worst disqualifies entire shipments of fruit for export (Dewdney

et al., 2022). Detection and removal of infected citrus at or before

the packinghouse is essential to minimizing losses due to canker,

but manual removal of infected fruit is inefficient and expensive.

Automated identification of citrus peel conditions which not

only detects more severe infections, but also differentiates

between them and superficial blemishes would help assure

fruit qual i ty and safety, while also enhancing the

competitiveness and profitability of the citrus industry.

Machine vision offers great potential for quality evaluation

and safety inspection for food and agricultural products. Early

work to inspect citrus for defects includes Sweet and Edward’s

method to assess damages due to citrus blight disease on citrus

plants using reflectance spectra of the entire tree (Sweet and

Edward, 1986). Pydipati et al. (2006) utilized various textural

features extracted with the color co-occurrence method (CCM)

to identify diseased and normal citrus leaves using discriminant

analysis. Blasco et al. (2007) showed that different spectra

facilitate detection of different injuries and pathogens.

Contemporary machine vision work with citrus canker

inspection has harnessed Hyperspectral Imagery (HSI) and

deep learning (DL) to improve and automate feature selection.

Instead of imaging with three broad frequency bands as

typical cameras do, hyperspectral imaging cameras produce

dozens of images in narrow bands, which can accentuate

defects. HSI can also be used to evaluate the entire surface of

food products and crops (assuming a rotating mechanism is

present), as opposed to spot measurements with traditional

visible/near-infrared spectroscopy. Food defects detected with

HSI include bruises on cucumbers (Ariana et al., 2006), cracks in

shell eggs (Lawrence et al., 2008), diseased poultry carcasses (Qin

et al., 2008), and degradation of spinach leaves (Diezma et al.,

2013). Contaminants detected with HSI include traces of nuts in

wheat flour (Zhao et al., 2018), foreign objects in cut vegetables

(Cho, 2021), contaminants on meat (Gorji et al., 2022) and fecal

and ingesta contaminants on poultry carcasses (Park et al.,

2007). Fresh fruits inspected with HSI include mandarins
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(Zhang et al., 2020), nectarines (Huang et al., 2021), jujubes

(Pham and Liou, 2022), citrus (Gómez-Sanchis et al., 2008; Qin

et al., 2013; Kim et al., 2014), tart cherries (Qin and Lu, 2005),

pears (Lee et al., 2014), and mangoes (Rivera et al., 2014).

Out of the many DL algorithms, convolutional neural

networks (CNNs) are widely used for object detection and

image classification tasks (Guo et al., 2016; Liang et al., 2019;

Krishnaswamy Rangarajan and Purushothaman, 2020). CNNs

can outperform traditional machine vision methods, especially

when processing time is a consideration (Fan et al., 2020). A few

well-known CNN architectures researched for fruit inspection

include ResNet (Mohinani et al., 2022), VGG-16 (Sustika et al.,

2018) and AlexNet (Sustika et al., 2018; Behera et al., 2021;

Ismail and Malik, 2022). With adequate training data, even

several disease classes (26) and crop species (14) have been

classified with 99.35% accuracy (Mohanty et al., 2016). The

many applications of CNN for object detection and image

classification include the disease classification in eggplant by

Krishnaswamy Rangarajan and Purushothaman, 2020,

classification of tobacco leaf pests by Swasono et al. (2019),

kiwifruit defect detection by Yao et al. (2021), volunteer cotton

plant detection by Yadav et al. (2022a); Yadav et al. (2022b);

Yadav et al. (2022c); Yadav et al. (2022d), and identification of

fecal contamination on meat carcasses by Gorji et al. (2022), etc.

For citrus specifically, Syed-Ab-Rahman et al. (2022)

distinguished CBS, canker, and citrus greening disease or

Huanglongbing (HLB) on citrus leaves with a two-stage CNN,

achieving mid-90’s detection accuracy on each of the three

diseases. CNNs have been recently employed to detect, inspect,

and track oranges on a rolling conveyor with 93.6% accuracy

(Chen et al., 2021), to grade lemons with 100% accuracy

(Jahanbakhshi et al., 2020), and to detect citrus fruit diseases

(Dhiman et al., 2022). CNNs are often designed to balance speed

with classification performance, as Fan et al. (2020) did when

creating a custom architecture for an online apple sorting

system. CNNs have a unique ability for automatic feature

extraction which makes classification and detection tasks

easier and autonomous.

Since the ability to automatically extract features allows for

recognition of spectral features (Zhao and Du, 2016) in necessarily

large HSI datasets, CNNs also complement HSI. CNNs were paired

with HSI to detect anthracnose in olives (Fazari et al., 2021) with

100% accuracy for images taken 5 days after inoculation. Liu et al.

(2018) employed an autoencoder combined with a CNN to learn

features, quickly (14 ms per sample) and accurately (91.1%

accuracy) detecting cucumber defects. VGG16 is one such widely

used CNN architecture that is structurally simple and by successive

means of 3x3 convolution improves the network’s performance for

better feature extraction (Yang et al., 2021). It has been successfully

used for many past image classification tasks, such as eggplant

disease classification at 99.4% accuracy (Krishnaswamy Rangarajan

and Purushothaman, 2020).
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Citrus inspection has also employed HSI. Abdulridha et al.

(2019) classified cankerous trees with 100% accuracy by imaging

a citrus grove with an HSI camera on a UAV. Kim et al. (2014)

used spectral information divergence (SID) to segment CBS

from other orange peel conditions in HSI with 97% accuracy.

But accurate classification of diseased citrus has been achieved

with a small number of bands: Qin et al. (2011) used four,

Lorente et al. (2013) used three plus the normalized difference

vegetation index (NDVI), Bulanon et al. (2013) used two, and Jie

et al. (2021) used three. However, all but the last of these

extracted features without the aid of DL. And, the focus of

Kim et al. (2014) was CBS detection, not classification of the

other peel conditions.

The sheer size of HSI presents a processing challenge, which

can be circumvented by reducing the number of bands from

which features are extracted, while still retaining important

spectral features. Spectral matching algorithms is one family of

methods to segment images (Qin et al., 2009) and reduce

dimensionality. van der Meer (2006) showed that SID

outperforms other classical spectral matching algorithms.

Principal Component Analysis (PCA) is another popular

means of reducing dimensionality, widely employed to extract

and select features (Khalid et al., 2014; Jollife and Cadima, 2016).

Su et al. (2014) used PCA as a standard by which to evaluate

performance of other methods of selecting hyperspectral bands

for display. Rodarmel and Shan (2002) and Farrell and

Mersereau (2005) reduced hyperspectral imagery to fewer

principal components using PCA without negatively impacting

performance. PCA can also be employed to rank bands by

contribution to the principal components, instead of

projecting to a lower dimensional space. Li et al. (2019) used

PCA loadings to select bands from hyperspectral imagery to

inspect apples for decay. Li et al. (2011) used PCA to first select

six bands from HSI cubes of oranges, and afterwards to extract

the third principal component image. Eight types of defects were

distinguished from healthy fruit with 94% accuracy. The

advantage of using PCA is that the bands corresponding to the

principal components are uncorrelated and therefore

information contained in each of the bands is maximum

(Cocianu et al., 2009).

For commercial fruit inspection applications, there are

financial and performance reasons for eventually choosing a

multi-spectral imaging (MSI) system over an HSI one. However,

it is necessary to start with the full 92 HSI bands, determine the

most prominent bands for classification and then implement

those bands in MSI. Reduction from the original HSI’s 92 bands

to just a few principal component bands is undesirable since

these would still require the entire range of 92 bands to generate

the reduced set of PCA bands. Instead, if a few salient spectral

bands can be chosen from the 92, bandpass filters can capture

images at only those wavelengths. PCA’s ubiquity, simplicity,

and proven value for feature reduction make it an appealing

technique for band selection, especially since it can also be
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employed to rank bands by contribution to the principal

components, instead of projecting to a lower dimensional

space, as nonlinear techniques do. Previous efforts to use a few

selected HSI bands for online citrus disease inspection largely

relied on manual feature extraction methods, which do not

necessarily generalize to new defect conditions or other fruit

varieties. On the other hand, a custom CNN can automatically

extract optimal features. Therefore, the combination of a

reduced set of spectral bands with a CNN-based feature

extractor holds great potential for fast and accurate multiclass

defect inspection. Moreover, many previous approaches dealt

with only a few classes, while this study seeks to distinguish

between eight unique peel condition classes with comparable or

better performance.

The overall goal of this study was to use a DL-based

approach with CNN to classify eight different peel conditions

of citrus with HSI images. For this, we developed a custom CNN

network that could do automatic feature extraction and

classification of eight different peel conditions. The specific

objectives were to (i) develop a CNN model and train it to

classify HSI images of citrus with eight different peel conditions

using 5 randomly selected bands (RS-5), (ii) use PCA-based 5

most contributing bands (henceforth abbreviated as PCA-5) and

then train the developed CNN for classification of HSI images of

citrus, (iii) study the effect of choosing the number of PCA-based

bands on the performance metrics (accuracy, sensitivity and

specificity) of the CNN model and (iv) compare the results of

using RS-5 bands with that of PCA-5 bands for training the

CNN model and classifying the HSI images of citrus.
Materials and methods

Hyperspectral imaging system

A hyperspectral imaging system was developed in previous

work for acquiring reflectance images from citrus samples, and

its schematic diagram is shown in Figure 1 (Kim et al., 2001; Qin

et al, 2008). This unit was based on the original concept by Kim

et al. (2001). It is a push broom, line-scan based imaging system

that utilizes an electron-multiplying charge-coupled-device

(EMCCD) imaging device (iXon, Andor Technology Inc.,

South Windsor, CT, USA). The EMCCD has 1004×1002 pixels

and is thermoelectrically cooled to -80°C via a double-stage

Peltier device. An imaging spectrograph (ImSpector V10E,

Spectral Imaging Ltd., Oulu, Finland) and a C-mount lens

(Rainbow CCTV H6X8, International Space Optics, S.A.,

Irvine, CA, USA) are mounted to the EMCCD. The

instantaneous field of view (IFOV) is limited to a thin line by

the spectrograph aperture slit (30 mm), and the spectral

resolution of the imaging spectrograph is 2.8 nm. Through the

slit, light from the scanned IFOV line is dispersed by a prism-

grating-prism device and projected onto the EMCCD.
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Therefore, for each line-scan, a two-dimensional (spatial and

spectral) image is created with the spatial dimension along the

horizontal axis and the spectral dimension along the vertical axis

of the EMCCD.

The reflectance light source consists of two 21 V, 150 W

halogen lamps powered with a DC voltage regulated power

supply (TechniQuip, Danville, CA, USA). The light is

transmitted through optical fiber bundles toward line light

distributors. Two line lights are arranged to illuminate the

IFOV. A programmable, motorized positioning table (BiSlide-

MN10, Velmex Inc., Bloomfield, NY, USA) moves citrus

samples (five for each run) transversely through the line of the

IFOV. 1,740-line scans were performed for five fruit samples,

and 400 pixels covering the scene of the fruit at each scan were

saved, generating a 3-D hyperspectral image cube with the

spatial dimension of 1740×400 for each band.

The hyperspectral imaging system parameterization and

data-transfer interface software were developed using a SDK

(Software Development Kit) provided by the camera

manufacturer on a Microsoft (MS) Visual Basic (Version 6.0)

platform in the MS Windows operating system (Kim et al.,

2001). Spectral calibration of the system was performed using an

Hg-Ne spectral calibration lamp (Oriel Instruments, Stratford,

CT, USA). Because of inefficiencies of the system at certain

wavelength regions (e.g., low light output in the visible region

less than 450 nm, and low quantum efficiency of the EMCCD in

the NIR region beyond 930 nm), only the wavelength range
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between 450 nm and 930 nm (totaling 92 bands with a spectral

resolution of 5.2 nm) was used in this investigation.
Citrus samples

Grapefruit is one of the citrus varieties that are most

susceptible to canker which emerged as major Florida citrus

disease in early 2000s. Ruby Red grapefruit, a high value citrus

crop in Florida, was used in this study. Fruit samples with

normal marketable, canker, five common diseased peel

conditions (i.e., greasy spot, insect damage, melanose, scab,

and wind scar) and with mixed peel conditions were collected

at the University of Florida and first reported by Qin et al.

(2008). The diseases on the fruit surface show different

symptoms. Greasy spot, melanose, and scab are all caused by

fungi, which generate surface blemishes that are formed by

infection of immature fruit during the growing season. Greasy

spot produces small necrotic specks, and the affected areas are

colored in brown to black and exhibit greasy in appearance.

Melanose is characterized by scattered raised pustules with dark

brown to black in color. Scab appears as corky raised lesions

usually with the color of light brown. Different from the fungal

diseases, citrus canker is caused by bacteria, and it is featured

with conspicuous dark lesions. Most circular in shape, canker

lesions vary in size, and they are superficial (up to 1 mm deep)

on the fruit peel (Timmer et al., 2000). Diameter of the canker
BA

FIGURE 1

(A) Hyperspectral imaging system for acquiring reflectance images from citrus samples. (B) HSI single band sample image with canker peel
condition on 5 fruit instances.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1043712
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yadav et al. 10.3389/fpls.2022.1043712
lesions tested in this study was approximately in the range of 2-

9 mm. Insect damage is characterized by irregular grayish tracks

on the fruit surface, which are generated by larvae of leafminers

that burrow under the epidermis of the fruit rind. Wind scar,

which is caused by leaves, twigs, or thorns rubbing against the

fruit, is a common physical injury on the fruit peel, and the scar

tissue is generally gray.

Fruit samples were handpicked from a grapefruit grove in

Fort Pierce, Florida during the spring 2008 harvest season. All

the grapefruits were washed and treated with chlorine and

sodium o-phenylphenate (SOPP) at the Indian River Research

and Education Center of University of Florida in Fort Pierce,

Florida. The samples were then stored in an environmental

control chamber maintained at 4°C, and they were removed

from cold storage about 2 hours before imaging to allow them to

reach room temperature. During image acquisition, the citrus

samples were placed on the rubber cups that were fixed on the

positioning table (Figure 1) to make sure the diseased areas were

on the top of each fruit as first reported in Qin et al. (2008). Each

image band of the dataset is denoted by its center wavelength

and is about 5.2 nm from adjacent bands. Figure 2 displays one

fruit from each of the eight defect classes of the dataset at a

selected wavelengths representing the range of imaged

wavelength bands. The MATLAB (The MathWorks Inc.,

Natick, MA) program was used to apply the same grayscale

transformation to different images, to show varying levels of

contrast among both fruits and defects. Being orange/yellow, the

fruits themselves generally appeared brighter at longer

wavelengths, but certain infections are more apparent in

specific bands. Greasy spot and melanose are all but invisible

at higher wavelength bands, but prominent at 577 nm. Scab and

insect damage appear to contrast with healthy peel most at 640

nm. These suggest that classifying multiple peel conditions will

require multiple wavelengths.
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Table 1 shows the number of HSI image samples that were

collected for each of the eight different peel conditions, with each

image including five fruits. This resulted in 1020 HSI image

samples consisting of 5100 fruit specimens.
CNN with softmax classifier

The CNN architecture that we developed for this study is a

modified version of VGG16 (Simonyan and Zisserman, 2014)

that was developed by the Visual Geometry Group (VGG) in

2014 at Oxford University. The original architecture of VGG16

consists of 13 convolution layers, 3 fully connected (FC) layers

and five max-pooling layers with softmax as the classifier. The

original architecture was designed to accept input images of size

224x224 pixels which is why the trained weights are of similar

size and therefore wasn’t suitable for our case applications for

images of size 870x200 pixels. The customized network accepts

images along a single channel which is why all the 92 spectral

channels of each HSI input image were reshaped accordingly. To

minimize the number of parameters significantly and hence the

training and computation time, two of the three FC layers were

reduced from 4096 to 128 units each and third to 8 units

(corresponding to the number of classes) as more than 90% of

the parameters and hence the weights are present in the last

three FC layers (Braga-Neto, 2020). Padding of type “SAME”

was used which ensured a convolution filter was applied to each

of the input pixels. Adadelta (Zeiler, 2012) was used as an

optimization algorithm for the training process with a learning

rate of 0.01. The network architecture is shown in Figure 3.

The custom VGG16 network was attached to the softmax

classifier that is a generalized version of logistic regression

function used for multi-class classification (Stanford, 2013;

Yadav et al., 2022a). Mathematically, a softmax classifier
FIGURE 2

Plots of images of eight different peel conditions using the 23rd fruit from each class. Each HSI image contains five fruit samples for each of the
peel conditions, but just one is displayed here.
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function is given as (Qi et al., 2018):

f j zð Þ = ezj

oke
zk

(1)

The softmax transforms the input into a probability

distribution function that ranges from 0 to 1.
Principal component analysis

Principal component analysis (PCA) is a multivariate

statistical analysis technique that is used to analyze inter-

correlated dependent variables in data. It is used to extract the

most important information from data and then express them as

a set of new orthogonal variables that are called principal

components (Rodarmel and Shan, 2002). Assuming a set of

bands as B1, B2, B3…, Bp then the first principal component is the

standardized linear combination of features Z1 = Ф11B1 + Ф12B2
+…. Ф1pBp with the greatest variance. The components Ф11,

Ф12, … Ф1p are called loadings of the first principal component

and Ф1= (Ф11+ Ф12+…. Ф1p)
T is called the loading vector. PCA

is a widely used technique in dimension reduction which

eliminates highly correlated information from the ones with

higher variance. Therefore, it is a commonly used tool in HSI

based image processing to select the most important bands for

classification purposes (Rodarmel and Shan, 2002). A scree plot

in PCA analysis shows variance among each of the PC and

therefore can be used to choose the number of components

(Holland, 2019).
Performance metrics

The CNN-based model was trained and validated on image

datasets divided in the ratio 4:1 using the metrices accuracy,

sensitivity and specificity as defined in equations (2)-(4). In the

equations, TP, TN, FP, and FN represent True Positive, True

Negative, False Positive and False Negative respectively.
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Accuracy ¼ TP+TN
TP+TN+FP+FN

(2)

Sensitivity ¼ TP
TP+FN

(3)

Specificity ¼ TN
TN+FP

(4)

Sensitivity and Specificity are also known as true positive

rate (TPR) and true negative rate (TNR) respectively. Besides

these, we also used the area under receiver operating

characteristic curve (AU-ROC) as the performance measure

since it has been shown to give a better measure of classifier

performance as compared to overall accuracy (Bradley, 1997).

The ROC is plotted by putting TPR along y-axis and FPR (1-

Sensitivity) along the x-axis and each point in the curve

represents probability of classification at a particular threshold

value. In other words, it considers the whole range of threshold

values between 0 and 1 unlike the overall accuracy. The AU-

ROC value represents degree of separability of a particular class.

The advantage of using this metric is that it is not affected by

class distribution, classification priori probability and

misclassification cost (Xu-hui et al., 2009).
Experiment setup

In this study we evaluated several band reductions

approaches in conjunction with an CNN classifier to reduce

computational demands. The first approach identified the PCA-

5 bands and then used them to train the CNNmodel and classify

the images using a CNN approach. This approach was later

repeated using the 4,3,2 and single most contributing band to

determine their classification accuracy in comparison to the

PCA-5 bands. The entire process was repeated three times after

which a fixed-effect test was done to analyze the effect of

choosing the number of PCA-based bands on the accuracy,

sensitivity, and specificity as explained by Borenstein et al.

(2010). In a third approach, it was desirable to compare 10

sets of 5 randomly chosen bands (RS-5) with the PCA-5 results.
TABLE 1 Number of sampled HSI images with each peel condition.

Peel Condition Label Class Number Images Fruits/Image Images with 5 Bands

Canker CK 0 42 5 210

Greasy Spot GS 1 24 5 120

Insect Damage ID 2 12 5 60

Mixed Stem End MD 3 12 5 60

Market Quality MK 4 30 5 150

Melanose MN 5 36 5 180

Scab SB 6 36 5 180

Wind Scar WS 7 12 5 60
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In both cases, the CNN-based model was used to train and

classify images. The resulting RS-5 accuracy, sensitivity and

specificity were analyzed statistically and compared to the

PCA-5 results. The first three approaches were based on

groups of five fruit exhibiting the same peel conditions as

shown in Figure 1. In the final approach we re-packaged the

HSI dataset into individual fruits HSI images, so all training and

classification were done on single fruit. Consequently, we have

considered four test cases scenario shown in Table 2; (TC1)

Determine the five strongest HSI bands among the 92 bands

using PCA (referred to as PCA-5) and run CNN based training

and classification to determine accuracy, sensitivity and

specificity; (TC2) Compare results of TC1 with mean results

from 10 RS-5 groups from the 92 original bands; (TC3)

Compare CNN accuracy, sensitivity and specificity results

from best five, four, three, two and single PCA selected bands

(abbreviated as PCA-5, PCA-4, PCA-3, PCA-2, and PCA-1,

respectively); and finally (TC4) Separate the original 5 fruit per

HSI image data set into an individual fruit HSI data set, and

compare performance of the PCA-5 CNN classifier for

individual fruit to that of the five fruit classifier in TC1.
CNN model training

The Google Colab Pro+ (Google LLC., 342 Melno Park, CA)

platform was used to train the CNN model on an NVIDIA Tesla

P100-PCIE GPU 343 (Santa Clara, CA) running Compute Unified

Device Architecture (CUDA) version 11.2 and driver 344 version

460.32.03. The training was done with “EarlyStopping” enabled

with a value of “patience” as 10 and “mode” set as “min”. This is

used when the goal is to minimize the loss during the training

process. By enabling this functionality, the training stops when the

loss stops decreasing for any consecutive 10 iterations. Similarly,

“ReduceLROnPlateu” functionality was used with a factor of 0.1

and patience of 7. This functionality reduces the learning rate by a

factor of 0.1 for every 7 consecutive iterations without any

improvement in the loss function. In each of the experiments,

the CNNmodel was trained for 25 iterations with a batch size of 8

as the loss function converged in almost all the cases except in the

case of TC4 in which the training iterations were increased to 35.
Results and discussion

A typical reflectance spectrum of the grapefruit samples with

normal and diseased conditions over the wavelength range

between 450 nm and 930 nm are shown in Figure 4 to

demonstrate the general spectral patterns. Each spectrum plot

in Figure 4 was extracted from the hyperspectral image using an

average spatial window covering 5×5 pixels for each peel

condition. A cankerous sample was also included for the

purpose of comparisons.
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All the reflectance spectra were featured as two local minima

around 500 nm and 675 nm due to the light absorption of

carotenoid and chlorophyll A in the fruit peel, respectively.

Chlorophyll is responsible for the green color of the citrus

peel, while the yellow color of the fruit peel is related to

carotenoid. The carotenoid and chlorophyll absorptions for

greasy spot and canker were not as prominent as other peel

conditions. Values of the reflectance for the diseased peel

conditions were consistently lower than those from the normal

fruit surface over the entire spectral region. Canker had the

lowest reflectance except for the spectral region from 450 nm to

550 nm, in which greasy spot showed similar reflectance with

canker. In the spectral region from 450 nm to 930 nm, the

relative reflectance values of canker and normal peel were in the

range of 12-43% and 31-66%, respectively, while other peel

conditions generally had values in between.

For canker disease, once the bacterial pathogen invades the

fruit peel, the region infected continually loses its moisture

content through the season, and the lesions on the fruit

surface usually become dark in appearance. This may be the

reason for the low reflectance characteristics of the canker

disease in visible and short-wavelength near-infrared region.

The spectral differences between canker and normal as well as

other diseased peel conditions provide a basis for detecting citrus

canker using hyperspectral or multispectral imaging approach.
TC1: CNN classification with
PCA-5 bands

In our first approach, TC1, we trained the CNN model using

the five most important bands based on PCA, which would

significantly reduce the computational complexity and thus

training and validation time required when using all the 92

bands of the HSI images. We also considered five bands to be a

reasonable transition from hyperspectral analysis (5 or more

bands) to multispectral implementation (4 or less bands). From

the given scree plot (Figure 5), it was found that the first 5 PCs

accounted for a total of 98.32% of variance, with PC1 accounting

for 96.74% by itself.

In Table 3, explained variance for each of the PC and

corresponding bands are shown. From this, it was found that

the most important bands were 42, 48, 49, 77 and 90. For PC2

and PC5 the same band 48 was the most important one,

therefore, the second most important band for PC5 i.e., band

49 was chosen as the most important band in PC5. Once the

PCA-5 bands were determined, the custom CNN model was

trained to classify the images. Based upon three trials of training

and validating with PCA-5 most important bands, the average

accuracy, sensitivity, and specificity were found to be 99.84%,

99.84% and 99.98% respectively. The training and validation loss

graphs that were generated on HSI dataset with 5 fruit instances

are shown in Figure 6A, B. These graphs were generated during
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one of the three trails. The graphs converged within the 25th

iteration (epoch). The sensitivity and specificity were also

tracked and plotted during the training process using both the

training (Figure 6C) and validation datasets (Figure 6D). The

AU-ROC as seen in Figure 7A, shows that the CNNmodel when
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trained with PCA-5 bands was able to discriminate all the classes

almost equally on HSI images with 5 fruit instances over all the

range of threshold values. The graphs also show that the ability

of the model to detect TPR improves during the training process

while its ability to detect TNR remains almost the same. The

confusion matrix in Figure 7B shows the total number of

correctly classified and misclassified images in the validation

dataset. In this example trial run, all the 204 validation images

were correctly classified.
TC2: CNN classification with 10
replicates of RS-5

As a result of the high accuracy of TC1, the question was

raised, would the CNN do just as well if 5 random bands were

selected out of the 92. Consequently, the model was trained and
FIGURE 3

CNN network architecture generated by Netron visualization software that was used to classify hyperspectral images of citrus peels with eight
different conditions.
TABLE 2 Description of four types of experiments that were
conducted in the study.

Experiment Fruits Per
Image

Description

TC1 Five Train CNN with PCA-based 5 bands

TC2 Five Train CNN with random 5 bands

TC3 Five Train CNN with PCA-based 5,4,3,2,1
band

TC4 Single Train CNN with PCA-based 5 bands
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tested for 10 repetitions (with 5 random combinations each

time) and the results are shown in box plots (Figure 8). It was

found that, the CNN was able to classify the HSI images at an

average accuracy, sensitivity, and specificity of 98.87%, 98.43%

and 99.88% respectively. This performance was better than our

previous approach (spectral information divergence) which was

used to classify canker versus non-canker peel conditions

resulting in an overall accuracy of 96.2% (Qin et al., 2009).

However, when compared to the PCA-5 bands (TC1), the

performance was found to be slightly lower, indicating to use

the TC1 approach.

Similarly, based on the AU-ROC, images belonging to the

class MD were the most separable with a perfect AUC value of 1

followed by CK (AUC = 0.99818), GS (AUC = 0.98198), MK

(AUC = 0.9712), MN (AUC = 0.94564), ID (AUC = 0.93866),

WS (AUC = 0.93114) and SB (AUC = 0.88222). This was an

interesting result as the number of images available for SB (180)
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were more than that of WS (60) and still the features of SB were

less discriminative than that of WS. Similarly, even though ID,

MD andWS had equal number of images available (60 each), the

features of MD were more distinctive than those of ID and WS.

This makes sense because MD always has a stem end feature

along with other mixed peel conditions.
TC3: Comparing results of CNN
with PCA-5, PCA-4, PCA-3, PCA-2,
PCA-1 bands

As a practical matter, it should always be considered how well

the classifier would work if the imaging system was implemented

in a multispectral application using four or less bands in a custom

filtered multispectral camera. Consequently, in TC3, CNN

performance was evaluated using PCA-5, PCA-4, PCA-3, PCA-
FIGURE 4

Mean reflectance spectra of grapefruits with eight different peel conditions. Dashed lines represent five wavelengths (666.15, 697.54, 702.77,
849.24 and 917.25 nm) selected by principal components analysis.
FIGURE 5

A scree plot of PCA analysis showing the percentage of variances accounted by each of the principal component.
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2, PCA-1 band combinations (Table 4). These results were used to

test the effect of number of PCA-based bands on the performance

of CNN-based classifier using a fixed-effect model with JMP Pro

version 16.1.0 software (SAS Institute, North Carolina, U.S.A.).

Number of PCA-based bands had significant effects on all the

three-performance metrics (accuracy, sensitivity, and specificity)

of the CNNmodel in classifying HSI images of eight different peel

conditions of citrus fruits as shown in Table 5, where the p-values

for accuracy, sensitivity and specificity were found to be <.0001,

<.0001 and <.0250 respectively at 95% confidence level (a = 0.05).

However, number of PCA-based bands had relatively more

significant effects on accuracy and sensitivity than the specificity

because of higher variances among the group means for the

formers than the latter as reflected by their corresponding F-

ratios (Table 5). This essentially means that if one needs to obtain

higher order of performance in classifying HSI images of citrus

peels then one must be careful in choosing the number of PCA-

based bands, since there is a significant drop off in performance

when going from 4 bands to 3 bands. Thus, choosing the PCA-5

bands resulted in a mean accuracy, sensitivity, and specificity of

99.84%, 99.84% and 99.98% respectively, while 3 bands resulted in

a mean accuracy, sensitivity, and specificity of 82.34%, 79.57% and

98.27% respectively, and single band resulted in a mean accuracy,
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sensit ivi ty , and specificity of 45.53%, 35.61% and

96.21% respectively.
TC4: comparing results of single fruit
images with PCA-5 bands to that of TC1

In the TC4 approach, we compared the results of CNN-

based classifier by training and validating the model using HSI

images containing single fruit instances using PCA-5 bands. The

scree plot showing the 5 PCs with the corresponding variance

percentages is shown in Figure 9. It was found that the top 5 PCs

contributed to a total of 100% of the variances in the dataset and

the 5 most important bands were found to be 42, 48, 69, 84 and

91 respectively. Table 6 shows the values of explained variances

corresponding to the top 5 bands based on the top 5 PCs.

The plots of using the PCA-5 bands (42, 48, 69, 84 and 91)

for training and validating CNN model are shown in

Figures 10A–D. The accuracy, sensitivity and specificity were

found to be 98.53%, 98.53% and 99.80% respectively.

In Figures 10A–D, it is seen that the training iterations were

slightly less than 35 as no improvement was observed in 10

consecutive iterations because “EarlyStopping” functionality was
TABLE 3 PCA Explained Variance for choosing the most important bands (PCA-5).

PC# Bands Wavelength (nm) Explained Variance

1 42 666.15 0.105053

43 671.38 0.105005

41 660.92 0.105005

40 655.69 0.104917

39 650.46 0.104820

2 48 697.54 0.281800

49
47

702.77
692.31

0.273946
0.272569

50 708.00 0.253240

51 713.23 0.225765

3 77 849.24 0.184790

76 844.01 0.184519

78 854.47 0.183582

75 838.78 0.181392

79 859.70 0.180943

4 90 917.25 0.200681

91 922.48 0.200554

89 912.02 0.198949

88 906.79 0.195807

87 901.55 0.193065

5 48 697.54 0.319693

49 702.77 0.265349

47 692.31 0.264272

91 922.48 0.244818

90 917.25 0.210242
Bold values refer to the most contributing wavelengths for each PC component.
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B

C D

A

FIGURE 6

Graphs generated when custom VGG16 network was trained and validated with PCA-5 most contributing bands and with images containing 5
fruit instances (TC3). (A) CNN training and validation loss graph. (B) CNN training and validation accuracy graph. (C) CNN sensitivity and
specificity graphs on training dataset. (D) CNN sensitivity and specificity graphs on validation dataset.
BA

FIGURE 7

(A) ROC plots with corresponding AUC values for each class. (B) Confusion matrix showing number of correctly and misclassified images for
each class (refer to Table 1 for class numbers along x and y axis).
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used with a patience value of 10. It is also worth noting that due

to lack of convergence of the loss function within 25 iterations,

the CNN model was trained for 50 iterations even though it was

found to stop within the 35th iteration (Figures 10A–D). In a trial

of 3 repetitions, the average accuracy, sensitivity, and specificity

were found to be 94.41%, 94.31% and 99.23% respectively. The

loss functions on training data converged close to 0 while on the

validation data it converged around 0.4 (Figure 10A). Based on

the AU-ROC, images of MD class were the most accurately

classified while the ones belonging to WS class were the least

accurately classified (Figure 11A). The sensitivity on training
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dataset improved to almost perfect value of 1 (Figure 10C) while

it converged around 90% on the validation dataset (Figure 10D).

The specificity remained almost perfect throughout the training

process as seen in the case of TC1. The diagonal elements in the

confusion matrix show the number of correctly classified images

and the non-diagonal elements represent the number of mis-

classified images (Figure 11B). Even though ID class had the

highest number of misclassified images (12), it still resulted in

better performance than SB and WS over a range of thresholds

as seen by AU-ROC (Figure 11A). When compared to the TC1,

TC4 based approach resulted in a decrement of overall
FIGURE 8

Box plots showing distribution of accuracy, sensitivity and specificity using 10 sets of RS-5 bands for the CNN model with images containing 5 fruits.
TABLE 4 Results of trained CNN with PCA-based bands.

Replicate Number of Bands Accuracy Sensitivity Specificity

1
2
3

5
5
5

100
99.51
100

100
99.51
100

100
99.93
100

1
2
3

4
4
4

99.39
98.17
97.56

99.39
96.95
96.95

99.91
99.83
99.83

1
2
3

3
3
3

72.36
88.62
86.18

65.32
87.1
86.29

97.47
98.85
98.5

1
2
3

2
2
2

81.71
81.71
80.49

73.81
73.81
76.19

98.47
98.81
98.29

1 1 36.58 34.09 90.91

2 1 43.9 29.55 98.7

3 1 56.1 43.18 99.03
fro
TABLE 5 Fixed-effect model test to see if the number of PCA-based bands has any effect on accuracy, sensitivity, and specificity. .

Response variables Source Nparm DF Sum of Squares F Ratio p-value

Accuracy Band_Num 1 1 4739.3928 45.3264 <.0001

Sensitivity Band_Num 1 1 6896.5873 58.0544 <.0001

Specificity Band_Num 1 1 23.549880 6.4177 <.0250
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performance. In other words, the CNN resulted in more

misclassifications of images with single fruit instances than the

ones with 5 fruit instances. It is assumed that this may be because

a greater number of features were able to propagate through the

CNN network when trained with larger images (870x200 pixels)
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with multiple fruit instances in TC1 than in TC4 (174x200

pixels). It should be noted that classes MD, ID and WS had

significantly fewer number of single fruit specimens than the

other classes (MD, ID and WS had 60 images each while other

classes had between 120 and 210). MD has very distinct features
TABLE 6 PCA Explained Variance for choosing the most important bands.

PC# Band Wavelength(nm) Explained Variance

1 42 666.15 0.104908

43 671.38 0.104885

41 660.92 0.104863

40 655.69 0.104788

39 650.46 0.104712

2 48 697.54 0.291559

49 702.77 0.283128

47 692.31 0.279432

50 708.00 0.259928

51 713.23 0.229653

3 48 697.54 0.214328

69 807.39 0.20794

47 692.31 0.206631

70 812.62 0.206057

68 802.16 0.205691

4 84 885.86 0.239097

85 891.09 0.236266

83 880.63 0.235453

86 896.32 0.232663

87 901.55 0.226195

5 48 697.54 0.290974

91 922.48 0.277828

49 702.77 0.245112

90 917.25 0.240679

47 692.31 0.225747
Bold values refer to the most contributing wavelengths for each PC component.
FIGURE 9

Scree plot showing the top 5 principal components when used with HSI images containing single fruit instances.
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of nearly constant size due to stem end which likely attributed to

its excellent accuracy, while ID and WS has highly variable

feature size and shape due to nature of insect damage and wind

scar. It is likely that the lower number of samples of ID and WS
Frontiers in Plant Science 14
resulted in higher number of misclassifications of single fruit

images in TC4 compared to the five fruit images in TC1. In

addition, the SB class has strong similarity with CK and MN,

which can be seen in Figure 11B confusion matrix where SB
B

C D

A

FIGURE 10

Graphs generated with PCA-5 bands on images with single fruit instances. (A) CNN training and validation loss graph. (B) CNN training and validation
accuracy graph. (C) CNN sensitivity and specificity graphs on training dataset. (D) CNN sensitivity and specificity graphs on validation dataset.
BA

FIGURE 11

(A) ROC plots with corresponding AUC values for each class. (B) Confusion matrix showing number of correctly and misclassified images for
each class(refer to Table 1 for class numbers along x and y axis).
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misclassified 7 times into MN and 2 times into CK. This could be

improved possibly by a more balanced number of HSI for all

classes. However, this remains to be a subject for future study.
Conclusion

In this paper, we were able to show that the developed CNN

models were able to classify HSI images of citrus peel with eight

different conditions at a higher accuracy than our previously

developed methods. We were also able to demonstrate the

capability of PCA-based 5 most important band selection and

then using them for training the CNN which resulted in a better

performance than randomly selecting 5 bands. Apart from this,

we were also able to demonstrate that using 5 fruit samples in

each image results in slightly better classification accuracy (~ 4%

higher) than the images with single fruit samples. Therefore, this

study recommends using PCA for most important band

selection, and then using those bands for training the CNN

model to classify HSI images of citrus peels (possibly containing

multiple fruit samples). WS, ID and SB had greater

misclassification rates as they all appear spectrally similar. It

was also observed that adjusting the threshold value of the

classifier may slightly decrease the misclassification rate of ID.

It, however, may not improve the performance of WS images as

its misclassification rate remained the lowest in either of

the cases.

The potential outcome of this study could be to deploy the

trained CNN model on a machine vision based scouting systems

in the field or at processing lines for real-time citrus peel

condition detection at a faster speed and possibly

better accuracy.
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Fazari, A., Pellicer-Valero, O. J., Gómez-Sanchis, J., Bernardi, B., Cubero, S.,
Benalia, S., et al. (2021). Application of deep convolutional neural networks for the
detection of anthracnose in olives using VIS/NIR hyperspectral images. Comput.
Electron. Agric. 187, 106252. doi: 10.1016/J.COMPAG.2021.106252

Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-
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