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Are cell wall traits a component
of the succulent syndrome?
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Frederiksberg, Denmark, 2Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew,
Richmond, Surrey, United Kingdom, 3School of Natural and Environmental Sciences, Newcastle
University, Newcastle Upon Tyne, United Kingdom, 4School of Life Sciences, University of Essex,
Colchester, United Kingdom, 5Institute of Plant Genetics and Biotechnology, Slovak Academy of
Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
Succulence is an adaptation to low water availability characterised by the

presence of water-storage tissues that alleviate water stress under low water

availability. The succulent syndrome has evolved convergently in over 80 plant

families and is associated with anatomical, physiological and biochemical traits.

Despite the alleged importance of cell wall traits in drought responses, their

significance in the succulent syndrome has long been overlooked. Here, by

analyzing published pressure–volume curves, we show that elastic adjustment,

whereby plants change cell wall elasticity, is uniquely beneficial to succulents

for avoiding turgor loss. In addition, we used comprehensive microarray

polymer profiling (CoMPP) to assess the biochemical composition of cell

walls in leaves. Across phylogenetically diverse species, we uncover several

differences in cell wall biochemistry between succulent and non-succulent

leaves, pointing to the existence of a ‘succulent glycome’. We also highlight the

glycomic diversity among succulent plants, with some glycomic features being

restricted to certain succulent lineages. In conclusion, we suggest that cell wall

biomechanics and biochemistry should be considered among the

characteristic traits that make up the succulent syndrome.

KEYWORDS

succulence, plant diversity, cell walls, cell wall elasticity, CoMPP, glycomics, turgor
Abbreviations: Physiological parameters: e, Bulk modulus of cell wall elasticity; P, Turgor pressure; RWC,

Relative water content; TLPY, Turgor loss point, i.e. water potential at which turgor is lost; Y, Water

potential; pO, Osmotic potential of tissue at full hydration. Cell wall polymers: AGP, Arabinogalactan

protein; HG, Homogalacturonan; RG-I, Rhamnogalacturonan I; DM, Degree of methyl-esterification; DP,

Degree of polymerization.
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Introduction

Climate change-induced aridity is expected to increase

across much of the globe in the future (Sheffield and Wood,

2008; Jiao et al., 2021). Consequently, it has become imperative

that we understand the ways in which plants cope with drought

(Choat et al., 2018; Trueba et al., 2019). Recently, plant scientists

have begun to pay renewed attention to the drought adaptations

found in succulent plants (Heyduk et al., 2016; Males, 2017;

Fradera-Soler et al., 2021; Leverett et al., 2021). Succulence is

defined by the presence of water stores, in the leaf, stem and/or

roots, which can be mobilized when a plant is dehydrated

(Ogburn and Edwards, 2010). Typically, succulent tissues (i.e.

the tissues responsible for water storage) arise due to the

development of enlarged cells, either in the photosynthetic

tissue (chlorenchyma), in a specialized achlorophyllous water-

storage tissue (hydrenchyma), or a combination of the two (Eggli

and Nyffeler, 2009; Borland et al., 2018; Heyduk, 2021; Leverett

et al., 2022). If water stored in large cells can be mobilized during

drought, succulent plants can dehydrate whilst maintaining

water potentials (Y) at safe, stable levels. By buffering plant Y,

succulence prevents a number of detrimental processes from

occurring, such as the closing of stomata, the buckling of cells

and the formation of emboli in the xylem (Brodribb et al., 2016;

Vollenweider et al., 2016; Zhang et al., 2016; Henry et al., 2019).

The benefits conferred by succulence have resulted in the

succulent syndrome being found in plants across the globe,

following adaptive radiations into the world’s arid and semi-arid

ecosystems (Arakaki et al., 2011).

The adaptive benefits of succulence have recently drawn the

attention of synthetic biologists, who have begun to recognize

the potential this adaptation could have for food security and

bioenergy in a drying world under climate change scenarios

(Borland et al., 2009; Grace, 2019). Both modelling and field

trials have assessed the value of growing succulent Agave and

Opuntia in dry marginal and underused lands (Owen and

Griffiths, 2014; Davis et al., 2017; Hartzell et al., 2021;

Neupane et al., 2021). Furthermore, progress has been made to

synthetically produce succulence in non-succulent species. The

introduction of an exogenous transcription factor gene into

Arabidopsis thaliana led to increased tissue succulence and

higher water-use efficiency (Lim et al., 2018; Lim et al., 2020).

These findings strongly suggest that bioengineering succulence

has the potential to enhance drought resistance in crops. Whilst

some work has been done to understand the genetic programs

controlling the development of succulence (Heyduk, 2021), a

great deal more research is needed if we are to fully utilize this

adaptation in agricultural settings. In addition, we must

appreciate every important trait that makes up the succulent

syndrome. Beyond the genetic control of cell size, succulent

species often exhibit a number of other co-adaptive traits, such

as 3D vascular patterning, crassulacean acid metabolism (CAM)
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and waxy cuticles (Griffiths and Males, 2017). Cell walls have

recently been postulated as an often-overlooked key component

of the succulent syndrome (Ahl et al., 2019; Fradera-Soler et al.,

2022), yet the precise mechanistic relevance of cell walls in

succulent tissues remains largely speculative. In the present

study, we analyse cell wall biomechanics and biochemistry in

diverse succulent species and propose that these traits should be

considered among the characteristic components of the

succulent syndrome.
Cell wall biomechanics in succulents

All plant cells are encased in a lattice-like structure, the cell wall

(Popper et al., 2011). Primary, extensible cell walls are complex and

dynamic systems composed largely of polysaccharides, polyphenols

and certain types of glycoproteins (Carpita et al., 2015). When plant

cells are hydrated, an osmotic gradient exists across the plasma

membrane which results in water moving into the protoplasm

(Beadle et al., 1993). This intake of water causes the plasma

membrane to push against the cell wall, generating a positive

pressure called turgor (P). The bulk modulus of cell wall elasticity

(e) relates to P according to the equation:

e =  
dP

dRWC
(1)

where relative water content (RWC) is the percentage of

total water present in a tissue. Higher values of e indicate greater
cell wall rigidity and thus more resistance for the plasma

membrane to push against, with changes in RWC resulting in

large changes in P. Conversely, when e is low and cell walls are

highly elastic, changes to RWC have a lower impact on P,

because cell walls can stretch and provide less resistance.

For succulent plants, e has the potential to affect the point at
which turgor is lost. As plant tissues dehydrate, Y falls, which

results in a linear drop in P (Beadle et al., 1993). Eventually, Y
falls to a point where P = 0, meaning there has been a total loss of

turgor. When this turgor loss point (TLPY) has been reached,

leaves will typically wilt and cells will begin to experience

damage (Trueba et al., 2019). Consequently, it is beneficial for

plants to avoid reaching their TLPY (Kunert et al., 2021). Bartlett

et al. (2012) found that the TLPY can be estimated by:

TLPY =
pO  �   e
pO +   e

(2)

where pO is the osmotic potential of fully hydrated tissues (a

more negative pO corresponds to a higher concentration of

osmotically active solutes). Modifying e or pO are named

elastic and osmotic adjustment, respectively, and can be used

to alter the TLPY in order to allow cells to maintain turgor at

more negative water potentials. Lower e could result in cell walls

capable of changing shape and folding as the protoplasm within
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shrinks (Ahl et al., 2019; Fradera-Soler et al., 2022). This would

prevent the catastrophic disruption of the membrane-wall

continuum and other forms of irreversible damage due to

mechanical stress which occur when the TLPY is reached.

However, studies of non-succulent species have found that e is

generally so high that changes to this trait are inconsequential

for the TLPY (Bartlett et al., 2012). Put differently, in non-

succulent species, cell walls are quite rigid, which means that

even substantial changes to their elastic properties will not affect

their TLPY. This can be visualized by considering Figure 1A. If

pO is held constant and e is allowed to vary, the TLPY can be

simulated using Equation 2. This simulation forms a curve, and

in non-succulent tissues the true value of e intersects at the flat
portion of the curve. Consequently, the phenotypic space

inhabited by non-succulent species is one where changes to e
have no effect on the TLPY.

The primary cell walls in succulent tissues are generally very

thin and elastic (Goldstein et al., 1991; Ogburn and Edwards, 2010).

Thus, the true value of e for succulent species more often falls on the

curved portion of the line (Figure 1B). This means that for many

succulent tissues, changes to cell wall biomechanics through elastic

adjustment would have a muchmore substantial effect on the TLPY
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than in non-succulent plants. We sought to quantify this effect of e
on TLPY by repeating the simulation in Figures 1A, B for several

species. Ogburn and Edwards (2012) studied the relationship

between parameters derived from pressure–volume curves and

measures of succulence in 25 species in the Caryophyllales, an

angiosperm order comprising many succulent-rich groups with a

broad range of tissue succulence. Using their published data, pO was

held constant for each of the 25 species and ewas allowed to vary in
order to simulate the TLPY according to Equation 2. Then, for each

species, we found the derivative of the curve, at the true value of e
(i.e. where the dashed line intersects the curve). This derivative, f’(e),
is a quantitative estimate of the extent to which changing e affects
the TLPY. As e values become very low in highly succulent species,

f’(e) becomes exponentially higher (Figure 1C). Finally, we explored

the relationship between f’(e) and saturated water content (SWC),

as the latter has been shown to be a powerful metric to quantify

succulence in the Caryophyllales (Ogburn and Edwards, 2012).

Log-transformed estimates of f’(e) correlated significantly with

SWC, using a linear regression model (Figure 1D).

Together, our data show that unlike non-succulent species,

succulent plants occupy a phenotypic space in which increases in

cell wall elasticity during drought (i.e. elastic adjustment) can
A B

DC

FIGURE 1

The unique role of cell wall biomechanics in succulent species. Using data from 25 species in the Caryophyllales published by Ogburn and
Edwards (2012), the turgor loss point (TLPY) was simulated according to Equation 2 by holding the osmotic potential at full hydration (pO)
constant for each species and varying the bulk modulus of elasticity (e). (A) In non-succulent species, such as Calandrinia colchaguensis, the
true value of e (dashed line) intersects at the flat portion of the curve. Hence, changes to e have little to no effect on the TLPY. (B) In some
succulent species, such as Grahamia bracteata, the true value of e intersects at the curved potion of the line, meaning changes to e affect the
TLPY. A quantitative estimate of the extent to which changing e affects the TLPY was generated by finding the derivative of the curve at the
point where the dashed line intersects [f’(e)]. (C) Among the 25 species, lower values of e result in exponentially higher values of f’(e). An
exponential curve still fit these data well when the species with the highest f’(e) value was removed (data not shown). (D) Among the 25 species,
saturated water content (SWC) correlates with the f’(e), after this value has been log transformed.
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result in substantial decreases in TLPY. Furthermore, once a

succulent species moves into this phenotypic space, decreasing e
has an exponential effect on f’(e), so that alterations to cell wall

biomechanics become an increasingly efficient means of

controlling the TLPY. This agrees with the recently observed

drought-induced modifications of pectic polysaccharides in

hydrenchyma cell walls of Aloe (Ahl et al., 2019), which are

believed to be a form of elastic adjustment that allows them to

fold as cells shrink during dehydration.
Cell wall biochemistry in succulents

One way to assess the biochemical composition of cell walls is

to investigate the extracellular glycome, which encompasses the

entirety of extracellular carbohydrates in a tissue, organ or plant,

and the majority of which corresponds to the cell wall.

Characterizing glycomic profiles across different plant species

can indicate which cell wall components have been favored

under different environmental conditions. Whilst the glycomes

of some economically important succulent taxa, such as Agave,

Aloe and Opuntia, have recently been analyzed (Ginestra et al.,
Frontiers in Plant Science 04
2009; Li et al., 2014; Ahl et al., 2018; Jones et al., 2020), little has

been done to compare the cell wall composition of other distantly

related succulent species. Hence, we sought to test the hypothesis

that the extracellular glycome of phylogenetically diverse

succulent species will exhibit some differences from those of

non-succulents, so that a common ‘succulent glycome’ emerges.

To this end, we sampled leaf material from 10 species with

succulent leaves and 10 with non-succulent leaves, representing

diverse lineages within the angiosperms (Figure 2A and Table S1).

Using the succulence index (SI) fromOgburn and Edwards (2010)

as a proxy for the degree of succulence (see Suppl. Methods), these

two groups differed significantly (p < 0.01) (Figure 2B and Table

S2). We used comprehensive microarray polymer profiling

(CoMPP) to estimate and compare the relative polysaccharide

contents of leaves from these species (see Suppl. Methods) (Moller

et al., 2007; Ahl et al., 2018). We used whole leaves for

comparability across species, assuming that mesophyll tissues

would dominate the results. In the current study we used three

extraction steps: water (targeting soluble unbound or loosely

bound polysaccharides), CDTA (targeting primarily pectins)

and NaOH (targeting primarily hemicelluloses). CoMPP relies

on antibody-based molecular probes, so we used 49 monoclonal
A

B

C

FIGURE 2

The succulent glycome: succulents and non-succulents occupy different phenotypic spaces in terms of glycomic profiles. (A) Cladogram
representing the phylogenetic relationship (according to Baker et al., 2022) among the 20 species included in this study; some major clades are
indicated in grey for clarity. (B) Boxplot of succulence index (SI) values for all the species; the two groups differ significantly (**p < 0.01)
according to Welch’s t-test. (C) 3D score plot of the first three MFA dimensions (17%, 12.1% and 10.8% of total variance respectively) of glycomic
data from 10 leaf succulents and 10 non-succulents (see Table S1 for abbreviations), with concentration ellipsoids for each group. Succulents
and non-succulents occupy distinct phenotypic spaces, particularly along dimension 3.
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antibodies (mAbs) to target the majority of known cell wall

polymer motifs (Moller et al., 2007; Rydahl et al., 2018) (Tables

S3–S5). No representatives of commelinid monocots were

included, given that their type-II cell wall biochemistry is

particularly distinct from that of the rest of angiosperms

(Carpita et al., 2015). CoMPP results in heatmap format can be

found in Suppl. Data.

CoMPP results were analyzed using multiple factor analysis

(MFA) (see Suppl. Methods), which indicated that succulent species

occupy a distinct phenotypic space different from non-succulent

species (Figure 2C). Of particular note is MFA dimension 3,

along which succulents and non-succulents differed significantly

(p < 0.01) and was driven mostly by glycoprotein- and pectin-

targeting mAbs (Figure S1). Three succulent species were “pulling”

along dimension 1 and fell far from themain cluster, but even when

omitting these three outliers from the MFA, the results still showed

a significant difference between succulents and non-succulents

(Figure S2). We observed a higher signal for rhamnogalacturonan

I (RG-I) backbones in succulents compared to non-succulents

(Figure 3). RG-I and its side chains (i.e. arabinans, galactans and/

or arabinogalactans) have been linked to increased cell wall elasticity

(Harholt et al., 2010; Carroll et al., 2022) and have been postulated

as cell wall plasticizers, which is a crucial feature for cells undergoing

structural wall changes during dehydration and rehydration (Moore
Frontiers in Plant Science 05
et al., 2013). Furthermore, we observed a higher signal for

homogalacturonans (HGs) with a high degree of methyl-

esterification (DM) in succulents (Figure 3), which may indicate

highly elastic cell walls. In contrast, non-succulents had a higher

signal for low-DM HGs (Figure 3), which may indicate stiffer cell

walls. According to the textbook model, low-DM HGs can cross-

link in the presence of Ca2+ and stiffen the cell wall, whereas a high

DMprevents the formation of these cross-links and renders the wall

more elastic (Willats et al., 2001; Cosgrove, 2005). However, several

factors (e.g. pH, Ca2+ availability, different enzymatic activities) can

influence the outcome, so caution should be taken when using DM

as a proxy for cell wall mechanics (Palin and Geitmann, 2012;

Bidhendi and Geitmann, 2016; Chebli and Geitmann, 2017; Hocq

et al., 2017). Together, MFA of the CoMPP results suggests that

fundamental differences exist between the cell wall composition of

diverse succulent and non-succulent species. The three outlying

succulent species (Anacampseros namaquensis, Lithops

karasmontana and Portulacaria afra) belong to the core

Caryophyllales, and two of them (A. namaquensis and P. afra) to

suborder Portulacineae. These species showed remarkably high

signal for RG-I and its side chains and for glucuronoxylans

(Figure 3), which most likely reflects the presence of highly

hydrophilic apoplastic mucilage in succulents in the

Caryophyllales, particularly those in the Portulacineae (Figure 4)
FIGURE 3

The succulent glycome: main glycomic differences between succulents and non-succulents. Selection of antibodies depicting the main
glycomic differences between succulents and non-succulents for pectins (homogalacturonans and rhamnogalacturonan I), glucuronoxylans and
mannans (see Suppl. Data for raw data). Each column corresponds to a specific antibody and rows represent the three fractions (i.e. CoMPP
extraction steps); the y-axes represent relative intensity of signal within a specific fraction. Some outlying species have been labelled (see Table
S1 for abbreviations). Significant differences between the two groups, assessed using either Welch’s t-test (if both are normally distributed) or
Wilcoxon test, are indicated by asterisks (*p ≤ 0.05; **p ≤ 0.01).
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(Cárdenas et al., 1997; Vignon and Gey, 1998; Hernandes-Lopes

et al., 2016; Cole, 2022).

In addition to MFA, we used a random forest (RF) algorithm

to determine whether glycomic profiles can be used to predict if

a species is succulent or non-succulent (see Suppl. Methods).

Based on CoMPP data alone, the RF algorithm was able to

classify species in their respective categories with 90% accuracy

(Suppl. Data). The variable importance plot from the RF

algorithm identified several cell wall components driving this

classification (Figure S3), namely arabinogalactan proteins

(AGPs), xylans, low-DM HGs and RG-I (incl. arabinan and

galactan side chains). Regarding HGs and RG-I, these results

agree with the differences between succulents and non-

succulents mentioned above. We also observed drastically

lower levels of xylans in the succulents studied, compared to

the non-succulent species (Suppl. Data). However, xylans are

often found in lignified support tissues (Zhong et al., 2013), and

small-stature succulent species such as the ones we studied

generally lack these tissues, relying primarily on turgor for

support (Niklas, 1992; Gibson, 1996; Bobich and North, 2009).

Thus, such differences may not hold for larger succulents. An

interesting observation concerns AGPs, a notoriously complex
Frontiers in Plant Science 06
group of cell wall glycoproteins with many suggested functions

(Seifert and Roberts, 2007; Silva et al., 2020). LM14 and

MAC207, two mAbs that recognize the same or structurally

related AGP epitopes (Marzec et al., 2015; Yan et al., 2015), did

not yield any signal among succulents despite being present in

most non-succulent species tested (Suppl. Data). In contrast,

other AGP-targeting mAbs (e.g. JIM13) showed comparable

levels between the two groups, likely reflecting the diversity of

AGPs and their numerous alleged functions. For instance,

periplasmic AGPs have been postulated as stabilizers of the

membrane-cell wall continuum and may also act as cell wall

plasticizers when they are released from their membrane

anchors (Gens et al., 2000; Knox, 2006; Lamport et al., 2006;

Liu et al., 2015). The striking differences in signal intensity of the

AGP-targeting mAbs we used warrant further exploration into

the specific epitopes that they recognize and their functions.

The mobilization of soluble mannans has been suggested as a

general drought response among succulents, based on studies of

succulent leaves of Aloe and succulent-like storage organs of

orchids and monocot geophytes (Ranwala and Miller, 2008;

Wang et al., 2008; Chua et al., 2013; Ahl et al., 2019). However,

our CoMPP data showed no clear difference between the
A

B

C

FIGURE 4

Glycomic diversity among succulent plants. (A) Succulent tissues have thin and highly elastic cell walls and, as shown in this study, elastic adjustment
through cell wall remodelling likely plays a crucial role in preventing turgor loss during dehydration. Despite the clear differences between succulents
and non-succulents, we also noted considerable glycomic diversity among succulents. (B) Mucilage-producing succulent lineages, mostly those in the
Caryophyllales and particularly in the Portulacineae, accumulate pectin-rich mucilage in the periplasmic space of mucilage cells and/or in intercellular
spaces, which boosts their water-storage capacity (Mauseth, 2005; Ogburn and Edwards, 2009). (C) Storage mannans can be found in vegetative tissues
of many monocot lineages, often stored within vacuolar compartments. In succulent monocots, mobilization of these mannans may be part of the
drought response, as seen in Aloe (Ahl et al., 2019), in which cell wall-associated mannan is remobilized into the protoplasm. However, the dynamics
between cell-wall associated and vacuolar mannans in monocots remain largely unexplored. Created with BioRender.com.
frontiersin.org
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mannans of succulents and non-succulents (Figure 3). Instead,

two species exhibited remarkably high signal for loosely bound

soluble mannans, Aloe distans (leaf succulent) and Epipremnum

aureum (non-succulent), with Dioscorea oppositifolia (non-

succulent) also showing above-average levels. These three

species are the only non-commelinid monocots included in

this study. Among angiosperms, the presence of storage

mannans in vegetative tissues is believed to be restricted to

monocots, with mannans being stored in granular or highly

hydrated mucilaginous form within vacuolar cell compartments

(Meier and Reid, 1982; He et al., 2017). Soluble mannans may

therefore be uniquely important to monocots, being repurposed

for drought response in succulent monocots (e.g. Ahl et al., 2019;

Figure 4), and not a component of a more general

succulent glycome.
Conclusions and future directions

Cell wall biomechanics and biochemistry of succulent leaves

exhibit distinct differences from non-succulent species. In non-

succulent species, highly rigid cell walls prevent elastic

adjustment from having a physiologically meaningful impact

on the TLPY (Bartlett et al., 2012). However, many succulent

species have highly elastic cell walls, and our modelling indicates

that even slight increases in cell wall elasticity (i.e. decreases in e)
in these species can have a large exponential effect on the TLPY.

Therefore, succulent plants use elastic adjustment advantageously

during dehydration to acclimate to declining Y. In addition to

biomechanical differences, our glycomic data show several

similarities across phylogenetically diverse succulent species,

namely a higher degree of HG methyl-esterification and a

greater abundance of RG-I. These biochemical differences likely

contribute to the high elasticity in the cell walls of succulent

organs, which in turn facilitates the folding process during

dehydration (Fradera-Soler et al., 2022). Interestingly, some

glycomic features seem to be restricted to certain succulent

lineages, pointing to some glycomic diversity among succulent

plants: succulent monocots may have co-opted soluble mannans

for drought response, whereas succulents in the Caryophyllales

contain pectin-rich apoplastic mucilage which boosts their water-

storage capacity. Together, our data demonstrate that succulent

plants occupy a unique phenotypic space regarding both cell wall

biomechanics and biochemistry. We suggest that cell wall traits

should be regarded as one of the core components of the

adaptations that make up the succulent syndrome.

Looking forward, it will be valuable to explore cell wall

biology among closely related succulent taxa and considering cell

wall trait heterogeneity within succulent organs. Cell wall

thickness and elasticity are known to differ between

hydrenchyma and chlorenchyma in some succulent organs

(Goldstein et al., 1991; Nobel, 2006; Leverett et al., 2022), but

further examination of cell wall biomechanics and biochemistry
Frontiers in Plant Science 07
is needed to fully understand how these traits aid in whole-plant

survival during drought. Ultimately, further research is needed

into the dynamic nature of cell walls in succulent plants and to

determine whether cell wall traits are indeed regulated during

drought. Besides high-throughput methods based on immune-

profiling such as CoMPP, our understanding of cell wall

composition, structure and assembly in succulents can also be

advanced using visualization with fluorescent probes (Rydahl

et al., 2018; Bidhendi et al., 2020), high-resolution microscopy

techniques (Zhao et al., 2019; DeVree et al., 2021), and nuclear

magnetic resonance (NMR) (Zhao et al., 2020).
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