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Introduction: Cassava (Manihot esculenta) is an annual root cropwhich provides

themajor sourceofcalories foroverhalf abillionpeoplearoundtheworld.Since its

domestication ~10,000 years ago, cassava has been largely clonally propagated

through stem cuttings. Minimal sexual recombination has led to an accumulation

of deleterious mutations made evident by heavy inbreeding depression.

Methods: To locate and characterize these deleterious mutations, and to measure

selection pressure across the cassava genome,we aligned 52 related Euphorbiaceae

andother relatedspecies representingmillionsofyearsofevolution.Withsinglebase-

pair resolutionofgeneticconservation,weusedprotein structuremodels, aminoacid

impact, and evolutionary conservation across the Euphorbiaceae to estimate

evolutionary constraint. With known deleterious mutations, we aimed to improve

genomic evaluations of plant performance through genomic prediction. We first

tested this hypothesis through simulation utilizing multi-kernel GBLUP to predict

simulated phenotypes across separate populations of cassava.

Results: Simulations showed a sizable increase of prediction accuracy when

incorporating functional variants in the model when the trait was determined

by<100 quantitative trait loci (QTL). Utilizing deleteriousmutations and functional

weights informed through evolutionary conservation, we saw improvements in

genomic prediction accuracy that were dependent on trait and prediction.

Conclusion: We showed the potential for using evolutionary information to track

functional variation across the genome, in order to improve whole genome trait

prediction.We anticipate that continuedwork to improve genotype accuracy and

deleterious mutation assessment will lead to improved genomic assessments of

cassava clones.

KEYWORDS

genetic load, deleterious mutation, cassava (Manihot esculenta), genomic prediction,
evolutionary conservation
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1 Introduction

Cassava (Manihot esculenta) is a root crop that is clonally

propagated and grown widely in the tropical regions of Africa,

Asia, and South America. It is estimated that cassava is a major

caloric source for almost half a billion people around the world

(Parmar et al., 2017; Ferguson et al., 2019). Although it is

naturally an outcrossing perennial, it has been clonally

propagated and grown as an annual since its domestication

between 5,000-10,000 years ago (Wang et al., 2014). During the

colonial era it was also brought to Africa, where today it is valued

for its ability to grow with minimal inputs in marginally

fertile lands.

Many generations of clonal propagation have caused cassava

to accumulate genetic load that inhibits its potential crop

performance. This genetic load is most apparent in the heavy

inbreeding depression exhibited in cassava, as observed through

low performance of selfed offspring (Rojas et al., 2009; de Freitas

et al., 2016). Studies have shown that this genetic load is present

as deleterious recessive mutations that are masked by

heterozygosity which can be maintained through the clonal

propagation (Ramu et al., 2017). With minimal sexual

reproduction these deleterious mutations are maintained

(McKey et al., 2010) and inhibit current breeding efforts to

improve cassava performance (de Freitas et al., 2016).

Plant breeders have worked on various methods to detect

and manage genetic load throughout history. Many crop species

exist as polyploids, which enables them to more easily mask

recessive deleterious mutations responsible for genetic load (van

de Peer et al., 2021). Hybrid crop breeding has been another

common method of applying strong selection pressures by

selecting on inbred lines (Labroo et al., 2021), eliminating the

possibility of recessive deleterious mutations. Some crops with

similar high inbreeding depression to cassava, like potato, have

made recent efforts to breed with inbred diploids (Bachem et al.,

2019), however the deleterious mutations targeted by this

methodology reduce plant viability.

During the past decade, plant breeders have seen the

emergence of methodical application of genotyping and

genomic selection as a method to improve breeding selections

and leverage understanding of genomic information. Genomic

selection, which uses genome markers and a phenotyped

training population to predict unobserved offspring

performance, can decrease selection cycle time and improve

selection accuracy. Efforts have been made to improve genomic

selection by using causative knowledge, however understanding

the true causative elements in the genome is not a trivial exercise.

Many studies have shown that benefits from including genome-

wide association (GWA) hits in genomic prediction can

diminish when predicting unrelated material (Cheruiyot et al.,

2022), indicating population specific quantitative trait locus

(QTL) or a misinterpretation of a variant as causative, when it

is only in high linkage disequilibrium (LD) with the causative
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variant (Cheruiyot et al., 2022). For cassava, an ideal genomic

annotation would explain underlying causative elements, while

being consistent across populations structures.

Regarding genetic load, evolutionary conservation has

shown to be an effective method to assess deleterious

mutations and explain functional variation (Xiang et al., 2019)

in a population agnostic manner. Multiple studies in crops such

as maize (Yang et al., 2016; Ramstein and Buckler, 2022),

sorghum (Valluru et al., 2019; Lozano et al., 2021), and barley

(Kono et al., 2019) have demonstrated potential benefits for

detecting and using deleterious mutations in genomic

prediction. The potential benefit of understanding these

deleterious mutations in cassava will be limited by the absolute

number of mutations and how much variation of agronomic

traits they each explain.

The purpose of this study is first, to identify likely deleterious

mutations in cassava, and second to evaluate their potential

impact on genomic prediction for the goal of improving future

breeding selections. We sequenced, assembled, and gathered 52

genomes from species that all shared ancestry within the last 50

million years in order to score conservation and detect

deleterious mutations.

We designed an experiment that uses evolutionary

information to augment genomic predictions within and

across two different populations of 1048 cassava clones present

in two different breeding programs in Sub-Saharan Africa, the

International Institute of Tropical Agriculture (IITA), Ibadan,

Nigeria, and the National Crops Resources Research Institute

(NaCRRI), Namulonge, Uganda. By performing phenotype

simulations using real genotypic data and generating genomic

predictions with known, simulated QTL, we first evaluated the

best possible benefit of including causative information in our

genomic predictions under different scenarios. We then used

genomic and phenotypic data from these cassava clones to test

genomic predictions, while including various functional

annotations based on deleterious mutations.
2 Results

2.1 Evolutionary conservation

Utilizing many germplasm resources, we sampled,

sequenced and assembled 27 Euphorbiaceae species

(Supplementary Table 1). These assemblies were combined

with available genome from Euphorbiaceae and other related

species to form a set of 53 species, including cassava. We

obtained multiple sequence alignments from for each gene,

requiring transcript alignment of ≥90% of length of the

cassava gene. Only the best matching ortholog from each

species was retained and, of the ~26k genes examined, 24565

genes had ≥4 orthologs, allowing them to be scored for

evolutionary conservation using PAML’s baseml tool. Over
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half of all base pairs across these genes have an alignment depth

of ≥31 species (Figure 1). The large number of aligned orthologs

from the many species to measure conservation is benefited from

sampling species from within shorter evolutionary time,

although it is limited by poorer gene reconstruction in

assemblies from short-read sequence.
2.2 Deleterious mutations

We used evolutionary conservation and predicted protein

mutation effects to classify the deleterious effects of 66k

nonsynonymous SNPs segregating in the two target

populations. Firstly, we used the intersection of baseml

evolutionary rate and SIFT deleterious scores to classify 2,210

deleterious sites that are segregating in both cassava

populations (Figure 2). While both methods rely on

evolutionary information, the high coincidence of low

evolutionary rate and low SIFT score support their signal for

functionally important sites in the genome. Deleterious burden

for each clone was then calculated as the number of derived

alleles at these sites. We separated this deleterious burden into

homozygous and heterozygous genetic load. Genome wide

association for all nonsynonymous sites as well as the

deleterious sites was performed on fresh root yield and dry

matter percentage traits, and some loci passed Bonferroni

significance testing for fresh root yield (Supplementary

Figures 4, 5). Secondly, we leveraged a RandomForest

prediction model to weight the functional importance of the

nonsynonymous mutations. This prediction produces a score

between 0-1, a quantitative weight for the functional

importance of each amino acid residue altered by mutations

at the nonsynonymous sites (Figure 3).
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2.3 Phenotype simulation

To validate our methodology and guide our expectations we

performed genomic predictions using simulated phenotypes on

1048 cassava clones originating from IITA and NaCRRI breeding

programs. These simulations represent some best-case scenarios for

genomic prediction, where all QTL and their effect sizes are known.

The simulated QTL effects represent a suite of different

genetic architectures ranging from highly complex genetic

traits controlled by thousands of small effect QTL to

oligogenic traits controlled by a handful of large effect QTL.

These genetic architectures are represented by the proportion of

the 66k variants simulated as causative QTL (Figure 4). These

66k variant sites were selected using nonsynonymous sites that

showed high conservation (low evolution rate) from baseml. We

modeled a range of dominance levels at each QTL in order to

match our empirical scenario more closely in cassava

(Supplementary Figure 1), where genetic load due to recessive

deleterious alleles are expected to affect many agronomic, fitness

related, traits (Bosse et al., 2019).
2.4 Genomic prediction with
simulated phenotypes

Once QTL effects were modeled, we then calculated phenotypes

for each of the 1048 clones (Supplementary Figure 2), where a

positive effect is attributed to the ancestral allele. To Evaluate the

effect of QTL structure, prediction model, and population, we

performed genomic predictions. For all predictions in this study,

we performed cross-population and within-population predictions

designated as follows: IITA cross-validation (IITA_CV), NaCRRI

cross-validation (NaCRRI_CV), Training with the IITA population

and predicting in the NaCRRI population (IITA->NaCRRI), and

“Training with the NaCRRI population and predicting in the IITA

population (IITA->NaCRRI). Cross-population prediction

accuracy is calculated by masking all phenotypes in one

population and predicting using the other, then calculating the

correlation between the true phenotype and the predicted

phenotype. Within-population prediction accuracy is calculated

similarly, using a 10-Fold prediction scheme where phenotypes in

10% of a population are masked and predicted by the other 90%.

We saw a marked increase in prediction accuracy when

including the QTL information into the prediction model only

when the trait was controlled by less than around 100 QTL

(Figures 5C, D). Complex traits that are controlled by many

small effect QTL across the genome show no increase in

prediction accuracy with the inclusion of causative information

(Figures 5A, B). For traits with an intermediate number of QTL

(Figure 5C), the improvements in prediction accuracy are further

increased by weighting the QTL information by their relative effect

sizes. While the improvements are visible in both cross-population
FIGURE 1

Species Alignment Depth Across Cassava Genes. Alignment
depth represented by the number of species with homologous
alleles in each multiple sequence alignment at any given protein
coding base pair in the cassava genome.
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and within- population predictions, the improvements show some

evidence of being more pronounced in cross-populations scenarios.

These simulations show that even with perfect knowledge of QTL

effects, improvements in prediction accuracy from using this

information are limited by the relative abundance of those QTL.
2.5 Genomic prediction utilizing
functional annotation

With deleterious mutations and functional weights for the

segregating nonsynonymous sites, we mirrored the genomic
Frontiers in Plant Science 04
predictions that we previously performed using simulated

phenotypes, only this time using real data collected on the

1048 cassava clones.

We predicted two different traits common in cassava

breeding trials, fresh root yield and dry matter percentage,

using the same cross-population and within-population

scenarios previously shown. Multiple genomic prediction

models were tested to evaluate the value of including the

functional annotations.

Our two examples of a baseline prediction, where no

functional information is present, are genomic prediction

using the input marker data set and a genome-wide imputed

dataset. In predicting fresh root yield, our results show that

imputation alone does not improve cross-population prediction

accuracy, however it does show some positive effect on within-

population prediction (Figure 6). However, when including only

imputed, segregating, non-synonymous variants, the prediction

accuracy in cross-population predictions does increase over the

two baseline models. Finally, we observed a further increase in

prediction accuracy when weighting the non-synonymous

variants and including derived genetic load from the

deleterious mutations for both the cross-population

predictions of fresh root yield and for within-population

predictions in among the NaCRRI clones (Figure 6;

Supplmentary Figure 6). For genomic prediction of cassava

tuber dry matter percentage, we observed mostly negative or

neutral effects of imputation and inclusion of deleterious

annotations (Figure 7; Supplementary Figure 7). The

improvements from functional information in predicting fresh

root yield suggest it is correlated with fitness signals captured by

the evolutionary information, while dry matter percentage may

represent different, historical selection pressures.
BA

FIGURE 2

Defining Deleterious Mutations. (A) baseml evolutionary rate is plotted against SIFT scores. Deleterious mutations were classified as derived
alleles at those sites with a baseml evolutionary rate < 0.5 and a SIFT score < 0.05 (Black box). (B) Distribution of homozygous and heterozygous
deleterious mutations across 1048 cassava clones.
FIGURE 3

Predicted Functional Weights. Histogram of functional weights
produced through RandomForest prediction of conservation for
nonsynonymous variant sites. High functional weights
correspond to highly conserved sites where nonsynonymous
mutations are predicted to have large functional effects.
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3 Discussion

Genetic load, as defined as the accumulation of deleterious

mutations through domestication, drift, mutation-selection

balance and other means, has been identified as an

impediment to the genetic value of a crop (Agrawal and
Frontiers in Plant Science 05
Whitlock, 2012; Smýkal et al., 2018). Through simulation, we

explored the possible scenarios in which knowing the exact

deleterious mutations could improve breeding selections. In this

study, we went on to use evolutionary conservation and genomic

information to quantify deleterious mutations in cassava clones,

as well as predict their potential effects.
B

C D

A

FIGURE 5

Genomic Prediction Accuracies with Simulated QTL. Prediction accuracies are shown on the y-axis as the correlation between predicted
andtrue breeding values. The x-axis delineates the prediction scenario being tested. Barplot color corresponds to the genomic information used
in the prediction model. Error bars represent a 95% confidence interval for simulations. Simulations were repeated with different proportions of
the markers acting as causative QTL: 0.1 (A), 0.01 (B), 0.001 (C), and 0.0001 (D).
FIGURE 4

Simulated QTL Effects. Histograms show count of QTL effects in one example simulation. Each facet shows a genetic architecture with different
proportions of the markers acting as QTL (resulting in ~ 6600, 660, 66, and 6 QTL on average). The x-axis represents the positive effect of
carrying the ancestral allele at a given QTL.
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3.1 Simulation informs genomic
prediction potential

The simulation of phenotypes under differing genetic

architectures allowed us to manage expectations for the best

possible scenarios in which understanding the causative

variation of a trait could help inform genomic selection

decisions. As we only observed benefits to genomic prediction

under scenarios with<~100 QTL, it is clear that LD structure

captured by genome wide markers is sufficient for genomic
Frontiers in Plant Science 06
prediction under highly complex genetic architectures

(Figure 5). The scenario with the fewest QTL (<~10)

represents a more Mendelian or oligogenic architecture, which

might benefit more from a marker assisted selection

methodology, but it follows that traits with higher effect sizes

of QTL will see more improvements from causative knowledge

in genomic prediction. Interestingly, within-population

predictions showed smaller, but still substantial benefits in

genomic prediction accuracy. These results indicate that our

empirical predictions have the potential to benefit from

deleterious mutation annotations, only if there are a few or

intermediate number of QTL (<~100) with substantial effects.

Importantly, the expected benefits shown through simulations

depend directly upon the population and LD structure in our

tested clones and cannot necessarily be useful to interpret

potential benefits in other scenarios.
3.2 Evolution conservation reveals
deleterious mutations

We used evolutionary conservation and protein annotations

to classify certain mutations as deleterious. By aligning over 50

species of relatively recent ancestry, we were able to assess the

conservation status of a large majority of the cassava genome.

We used separate neutral trees for each gene, rather than the

entire chromosome or species, to address the difference between

gene ancestry common in plants due to historical gene and

genome duplication. Because of the millions of years of

evolution, it is very difficult to predict the sizes of selection

coefficients from evolutionary conservation alone (Huber et al.,

2020). We then needed predicted protein effects of these

mutations from SIFT to refine our set of putatively deleterious

mutations. After defining our deleterious alleles, we separated

the assessment of deleterious load into homozygous and

heterozygous, because most deleterious mutations are assumed

to be recessive (Bosse et al., 2019) and cassava has been shown to

mask deleterious mutations through heterozygosity (Ramu et al.,

2017). These assessments of genetic load are at least

partially validated by a negative correlation (R=-0.18) between

plant yield and homozygous deleterious mutations

(Supplementary Figure 3).

As previously mentioned, evolutionary conservation alone

cannot easily resolve effect sizes of mutations. For this reason, we

used protein perturbation information from SIFT and UniRep to

prioritize functional variants similar to work recently done in

Maize (Ramstein and Buckler, 2022). Another advantage of this

weighting method is that it does not imply a directional effect of

the mutations, thereby allowing for potential positive or adaptive

effects (Loewe and Hill, 2010) of derived mutations at conserved

sites. While most derived alleles at conserved positions are

predicted to be deleterious, these derived alleles could
FIGURE 7

Dry Matter Percentage Genomic Prediction Leveraging
Deleterious Annotations. Prediction accuracy is measured in
cross-population and within-population prediction scenarios.
Genomic models are represented as bar graph colors where
various genomic and deleterious data are used in the genomic
prediction. Error bars represent a 95% confidence interval for
within-population 10-fold prediction.
FIGURE 6

Fresh Root Yield Genomic Prediction Leveraging Deleterious
Annotations. Prediction accuracy is measured in cross-
population and within-population prediction scenarios. Genomic
models are represented as bar graph colors where various
genomic and deleterious data are used in the genomic
prediction. Error bars represent a 95% confidence interval for
within-population 10-fold prediction.
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represent directed selection from domestication or adaptive

evolution specific to cassava.
3.3 Leveraging functional data in
genomic prediction

The inclusion of deleterious and functional mutations

derived from evolutionary conservation showed promising

value in informing the genetic value of cassava clones. Our

results displayed improvements for cross-population predictions

of fresh root yield as well as some of the within-population

predictions in NaCRRI (Figure 6). This follows with the

understanding that total plant growth, and even root yield, are

correlated with total plant fitness (Pan and Price, 2001), while

root dry matter percentage, which is primarily a quality trait,

likely has little direct correlation with evolutionary fitness

(Figure 7). We expect this trend would continue for other

traits; however, few traits are measured identically across

multiple populations.

In this study, we used multi-kernel GBLUP methods of

genomic prediction to partition the additive and dominant

genetic effects, while substituting unweighted and weighted

genomic relationship matrices formed from subsets of the

genomic data. These methodologies rely on the assumption

that our selected functional variants, and the weights

prescribed to them, are derived from a separate, and more

functional, distribution of effects from a default, genome-wide

relationship. Other methods, including Bayesian models, exist to

prioritize functional information in genomic prediction,

however multiple studies have found it to be difficult to

prescribe consistent, significant differences in prediction

accuracy results between them and GBLUP models, and the

specific benefit of one method or the other are often situational

(Moghaddar et al., 2019; Khansefid et al., 2020; Cheruiyot

et al., 2022).
3.4 Reflections on load

In an effort to improve cassava’s role as a reliable food source

around the world, our results show the importance and potential

of addressing the impact of genetic load. We used evolution and

protein annotations to determine these deleterious mutations

responsible for genetic load. It is important to note that, while

the methods used in this study detected impactful deleterious

variation across the genome, they ignore the many deleterious

mutations likely found in regulatory regions of the genome.

The improvements made in genomic prediction validate the

effects of these deleterious mutations and offer one possible

avenue for their potential application. As observed in the within-

population prediction of IITA, where prediction accuracy is

higher and unaffected by our annotations, the application of this
Frontiers in Plant Science 07
understanding of genetic load may not be beneficial in every

breeding scenario, however cross-population prediction is not

the only instance where deleterious information may prove

informative. Rapid cycle recurrent selection, where generations

of selection occur without phenotyping, could be another

situation in which tracking functional information across the

genome could improve genomic selection decisions. As

generations of selection occur, linkage disequilibrium between

causative mutations and genome-wide markers breaks down,

making the functional tracking of causative effects more

impactful in prediction.

In addition to genomic prediction scenarios, the

understanding of the deleterious mutations responsible for

genetic load in cassava could suggest alternative methods for

crop improvement. Many crops today utilize hybrid breeding,

where multiple groups of inbred parents are bred for use in

creating a superior hybrid. Selecting on inbred individuals

exposes recessive, or partially recessive, deleterious mutations,

allowing them to be effectively purged in fewer generations.

While difficulties due to severe inbreeding depression in cassava

have hindered this genre of breeding, efforts being made in crops

like potato show it’s potential in a crop burdened by heavy

genetic load (Bachem et al., 2019). Doubled haploidization has

been a common tool in some inbred crops, while historically

difficult to implement in some crops like cassava, however newer

implementations such as those reported from ScreenSys (https://

www.screensys.eu) offer a possible method of producing enough

viable embryos for crops with heavy inbreeding depression like

cassava. (Nasti and Voytas, 2021). With the understanding of the

extent to which deleterious mutations account for missed

potential in cassava performance, further consideration for

how to effectively purge genetic load will be needed.

Historical evolution and population genetics continues to

shed light on our understanding of genomic functions, as seen in

our study in cassava. We showed the utility of using evolutionary

derived deleterious mutations to improve genomic prediction

across cassava populations. Additionally, the genetic load was

identified from<~100 homozygous deleterious mutations per

clone (Figure 2). This number of mutations could be the target of

further improvement through gene editing or other means. In

the future, as genome sequencing accelerates, coupled with our

understanding of protein functions, we may be able to make

targeted decisions to purge genetic load from cassava and

advance genetic gains.
4 Methods

4.1 Euphorbiaceae sequencing &
assembly

We gathered a total of 52 related species, 26 of which we

sequenced and assembled, to evaluate evolutionary conservation
frontiersin.org
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across the cassava genome. In order to maximize the amount of

evolutionary time sampled, while maintaining reliable

alignments to cassava, we sampled 26 species across the

Euphorbiaceae family, to which cassava belongs. We then

sequenced these species using Illumina NovaSeq-6000.

Genome sizes were estimated using k-mer spectra in order to

estimate sequence input coverage for assembly (https://

bioinformatics.uconn.edu/genome-size-estimation-tutorial/).

Additional short-read sequences were downloaded from SRA

corresponding to 11 unspecified Euphorbiaceae taxa (Liu et al.,

2019). We then used a short-read sequence assembler

MEGAHIT (Li et al., ), with modified parameters of “-m 0.2 -t

10 –no-mercy –min-count 3 –k-min 31 –k-step 20” to create

contig assemblies. We additionally obtained long-read sequences

using PacBio Sequel II for 7 species among our sampled

Euphorbiaceae taxa. These sequences were assembled using

Hifiasm (<xr rid="r6">Cheng et al., 2021</xr>) utilizing

default settings. An additional 15 genome assemblies from

other related species were downloaded from SRA and added to

our assembled genomes resulting in a total of 52, excluding

cassava (Supplementary Table 1).
4.2 Sequence alignment and
evolutionary conservation

We used gene alignments from Cassava V7.1 gene

annotations to the 52 species to extract homologous gene

sequences for multiple sequence alignment. Gene transcripts

were aligned using minimap2, and the best aligned region with

>= 90% alignment length matching was retained as homologous

coding sequences for each species were then extracted and

aligned using MAFFT (Katoh et al., 2002) multiple sequence

alignment. With a multiple sequence alignment for each gene,

we then generated gene trees using RAxML (Stamatakis, 2014),

and calculated evolutionary rates using baseml from the PAML

(Yang, 2007) suite of tools. We then identified ancestral alleles at

every site across the genic regions of the genome, using the

ancestral node containing Manihot, Hevea, and Cnidoscolus

genera. We used evolutionary conservation to select

representative gene models for each gene, as well as only

retaining genes with 5’ and 3’ untranslated regions annotated

resulting in ~25k genes models.
4.3 Deleterious mutations

We used evolutionary conservations & protein structure

conservation to identify deleterious mutations and produce

weights for functional importance of sites across the cassava

Genome. Deleterious mutations were categorized as sites with a

baseml evolutionary rate of <0.5 and a “Sorting Intolerant From

Tolerant” (SIFT) score of < 0.05 (Ng and Henikoff, 2003).
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Additionally, we required deleterious sites to have < 20%

minor allele frequency in the cassava HapMap (Ramu et al.,

2017) (Figure 2).

In addition to identifying a binary classification of

deleterious, we used a RandomForest model to obtain a

quantitative prediction of conservation similar to a previously

reported method reported (Ramstein and Buckler, 2022). We

used baseml evolutionary rates to classify nonsynonymous sites

as either conserved (evolutionary rate< 0.3) or non-conserved

(evolutionary rate > 2), while sites with values outside these

ranges were excluded from model training. SIFT, UniRep, and

100bp windowed GC% totaling ~500 predictors in the

RandomForest model implemented by the R package “ranger”

(Wright and Ziegler, 2017). From the SIFT database, we used

both the mutation type and SIFT score, which gives the

predicted deleterious effect of a base-pair substitution. UniRep

is a deep learning technique which characterizes protein

structure (Alley et al., 2019), which we used to produce 256-

unit representations of each protein and its associated mutated

forms (https://github.com/churchlab/UniRep).

To increase the number of observations in the model, we

used both the known HapMap mutations and in silico non-

synonymous mutations at every possible site in our gene models.

This resulted in over 1 million non-synonymous mutations

whose genomic conservation could be modeled. We then used

a leave-one-out prediction scheme where each of the 18 cassava

chromosomes was left out of model training and predicted by

the other 17. This method produced a predicted value between

0-1 for each of the ~66k nonsynonymous, segregating mutations

used in this study (Figure 3).
4.4 Phenotypic & genotypic data

Phenotypic and genotypic data for 1048 cassava clones were

downloaded from cassavabase.org representing two populations

of breeding lines. The first population is from a breeding

program at International Institute of Tropical Agriculture

(IITA) in Nigeria, while the second is from a breeding

program at National Crops Resources Research Institute

National Crops Resources Research Institute (NaCRRI) in

Uganda, representing breeding material for West and East

Africa, respectively. Genotypes for the associated clones were

downloaded from the “East Africa Clones Dart-GBS 2020”

genotyping protocol on cassavabase.org containing 23,431

variants. Plant phenotypes for fresh root yield and dry matter

percentage were downloaded from cassavabase.org and prepared

according to previously described methods (https://wolfemd.

github.io/GenomicSelectionManual/index.html).

We then performed genotype imputation using the cassava

haplotype map using Beagle5 (Browning et al., 2018), with an

Ne=100, resulting in ~26M variants. These variants were then

filtered down to two genome-wide marker sets, one being a
frontiersin.org
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thinned sample of ~135k genome-wide SNPs, and the other

being all non-synonymous sites segregating in both populations

resulting in ~66k genome-wide variants. The input marker

genotypes, the imputed sample, and the imputed non-

synonymous sites will be used in genomic prediction analyses.
4.5 Causative variation simulation

We used quantitative trait loci (QTL) simulation, replicated

50 times, to model the potential benefits of knowing causative

variants in genomic prediction. This simulation begins by

sampling QTL across the 66K variant sites from a binomial

distribution with the probability of being a QTL varied across

possible values of 10-1, 10-2, 10-3, and 10-4. The effect sizes for

these QTL were then sampled from a gamma distribution using

the rgamma function in R, with the shape parameter=1, with the

ancestral allele set as having a positive effect. Lastly a dominance

effect for each QTL was sampled from normal distribution

“rnorm(mean = 2,sd=0.3)”, restricting to dominance<=2

(Supplementary Figure S1). Phenotypes were then generated

for the 1048 cassava clones. Residuals were then simulated such

that the trait had a heritability of approximately 0.3.

We performed cross-population and 10-Fold within-

population predictions using the simulated data, with and

without QTL information incorporated into the prediction

model. Genomic prediction was performed by using GBLUP

methods fit using ASReml, with additive and dominance

effects modeled as separate kernels. For all models

described, residuals are represented by e and modeled as

random with e~N(0, I s 2
e ).

For prediction using simulated phenotypes, we compared

three different models. The first model represents our baseline

prediction:

y  =  1m +  ZAa +  ZDd  + e

Where y is the simulated phenotype, m is the phenotype

mean, a is the vector of additive genetic effects, ZAis the

incidence matrix, and a~N(0,GA s 2
a ), GA is an additive

genomic relationship matrix produced using the VanRaden

(VanRaden, 2008) method, and s 2
a is the additive genetic

variance.

GA =
 MM ′

on
i   2pi* 1 − pið Þð Þ

Where M is the centered genotype matrix (where genotypes

are stored as dosages of 0,1, and 2 referring to being homozygous

for reference allele, heterozygous, and homozygous for the

alternate allele, respectively) and pi is and allele frequency at

the ith locus. ZD and d are analogous to the additive method,

with the exception that a dominance genomic relationship

matrix is produced using the Nishio and Satoh (Nishio and
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Satoh, 2014) method.

GD =
 DD ′

on
i  (2pi* 1 − pið Þ)2

Where the entries of D are given as − 2p2i for the

homozygous reference allele, 2pi*(1-pi) for the heterozygote,

and 2(1-pi)
2 for the homozygous alternate allele.

The second model includes additive and dominance QTL

relationship matrices formed in identical manner to theGA&Gd

matrices, but only utilizing the known QTL sites in the genomic

relationship matrices:

y =  1m + ZAQTLaQTL +  ZDQTLdQTL + e

The final model includes weighted QTL matrices based on

their effect size:

y =  1m + ZAWaw +  ZDWdw + e

Here the weighted matrices are formed using modified

methods of the previously cited methods. The weighted

additive matrix given by:

GAW =
 MWM ′

on
i   2pi* 1 − pið Þ*wið Þ

Where M is the scaled genotype matrix. W is a diagonal

matrix with wi along the diagonal, wi and pi are the weight and

frequency for the ith locus, respectively.

The weighted dominance matrix is modified in a similar

fashion to the additive matrix:

GDW =
 DWD ′

on
i  (2pi* 1 − pið Þ�wi)

2

Where the entries of D are given as − 2p2i for the

homozygous reference allele, 2pi*(1-pi) for the heterozygote,

and 2(1-pi)
2 for the homozygous alternate allele.
4.6 Genomic prediction models in
empirical data

The genomic prediction models used for real breeding

program phenotypes follow a similar pattern to our simulated

scenario, with a few notable differences.

First, our ground truth for the phenotype of each clone was

the best linear unbiased estimate (BLUE) using a model like

those previously used in cassava plot level traits (Wolfe et al.,

2017) and those suggested for use with African cassava breeding

data (https://wolfemd.github.io/GenomicSelectionManual/

index.html):

y =  Xb +  Zblock repð Þb  + Zrep trialð Þt  + e

where y is the vector of the phenotype, b included a vector of

fixed effects for the population mean, the location–year
frontiersin.org

https://wolfemd.github.io/GenomicSelectionManual/index.html
https://wolfemd.github.io/GenomicSelectionManual/index.html
https://doi.org/10.3389/fpls.2022.1041925
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Long et al. 10.3389/fpls.2022.1041925
combination, the number of plants harvested per plot, and

germplasm ID with design matrix X. Replications were nested

in trials, treated as random, and represented by the design matrix

Zrep(trial) and the effects vector t~N(0,I s 2
t ). Blocks were nested

in replications, treated as random, and represented by the design

matrix Zblock(rep) and the effects vector b~N(0,I s 2
b ).

Having a ground truth phenotype, we then compared

multiple different genomic prediction models to measure the

potential benefits to including the deleterious annotations. Each

model followed a similar form:

y = Xb +  Zblock repð Þb  + Zrep trialð Þt  +  ZAa +  ZDd + e

This generic model mirrors the previous one, with the

exception that germplasm ID is no longer treated as fixed but

is instead ZA and ZDare design matrices indicating observations

of germplasm IDs for the vectors of additive and dominance

effects a and d, modeled as previously described in the simulated

scenario. The six models we compared involve substituting

different markers and methods of constructing genomic

relationship matrices for ZA and ZD, as well as adding fixed

effects for derived homozygous and heterozygous load. The six

models include:
Fron
• Marker_G where the 23,431 variants are used to produce

the genomic relationship matrices.

• Imputed_G where ~135k imputed genome-wide

segregating sites are used to produce the genomic

relationship matrices.

• Nonsyn where 66k imputed, segregating, nonsynonymous

mutation sites are used to produce the genomic

relationship matrices.

• Nonsyn + Load which is identical to Nonsyn with the

exception of including the derived load as fixed effects in

the prediction

• Weighted_Nonsyn uses the same sites as Nonsyn,

however the genomic relationship matrices are created

using the weighted method described previously, with

the deleterious weights for each SNP.

• Weighted_Nonsyn + Load which is identical to the

Weighted_Nonsyn with the exception of including the

derived load as fixed effects in the prediction
Each model was evaluated by performing the cross-population

and within-population predictions as previously described and

using the correlation between predicted phenotype and the BLUE

as the prediction accuracy (Figures 6, 7). Prediction accuracy was

also calculated as the number of the top 25 performing clones

predicted as being among the top 25 performing clones

(Supplementary Figures S6, S7).

For all simulated scenarios and for empirical within

population cross-validations, 95% confidence intervals were

calculated. 10-fold cross validation predictions were
tiers in Plant Science 10
replicated 30 times, and confidence intervals (CI) were

calculated using R:

CI =  
SD

sqrt nð Þ *   qt p = 0:05=2,   df = n − 1ð Þ, lower : tail = Fð Þ

Where n= # folds * # replications and SD=standard

deviation. A true confidence interval assumes observations are

independent, which is not true for replications of cross-fold

validation, however this gives an estimate for variability in cross-

validation prediction accuracies.
4.7 Data availability

Genotype and Phenotype data used in this study is available

at cassavabase.org. Euphorbiaceae sequence reads and

assemblies generated in this study will be available under

bioprojects PRJNA608937 on the Sequence Read Archives and

PRJEB55682 on the European Nucleotide Archive, respectively.

Code used to process data and produce assemblies, simulations,

genomic predictions as well as deleterious weights and mutation

results are available at https://bitbucket.org/bucklerlab/cassava_

load_and_gp.

Data availability statement

Euphorbiaceae sequence reads and assemblies generated in

this study will be available under bioprojects PRJNA608937 on

the Sequence Read Archives (SRA) and PRJEB55682 on the

European Nucleotide Archive (ENA), respectively.
Author contributions

EL - Collected samples, performed analysis, and did majority

of manuscript writing. MR - Managed and organized germplasm

collection and genome sequencing. EB - Mentor and oversaw

experiments for measuring evolutionary conservation and

deleterious mutations, reviewed and edited manuscript. KR -

Mentor and oversaw experiments for genomic prediction and

deleterious mutations impact on traits, reviewed and edited

manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This work is supported by workforce development

fellowship Project: NYC-149949, Award: 2021-67034-34970

from the USDA National Institute of Food and Agriculture as

well as start-up funds from the Robbins lab at Cornell.

Additionally, this study is made possible by the funding and
frontiersin.org

https://bitbucket.org/bucklerlab/cassava_load_and_gp
https://bitbucket.org/bucklerlab/cassava_load_and_gp
https://doi.org/10.3389/fpls.2022.1041925
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Long et al. 10.3389/fpls.2022.1041925
support of the USDA-ARS and the NextGen Cassava project,

through the Bill & Melinda Gates Foundation (Grant INV-

007637 http://www.gatesfoundation.org) and Commonwealth &

Development Office (FCDO).
Acknowledgments

We would like to acknowledge the many germplasm sources

that contributed tissue for sequencing (Supplementary Table 1)

including: the Denver Botanic Garden, Germplasm Resources

Information Network, the Missouri Botanic Garden, the

Montgomery Botanic Garden, the National Botanic Garden,

the National Tropical Botanic Garden, The New York Botanic

Garden, and the US Botanic Garden. Their support was essential

in sampling the vast number of species used in this study. We

would also like to thank IITA and NaCRRI for contribution of

data that we used to cassavabase. In particular, we thank Peter

Kulakow, Ismail Rabbi, and Prasad Peteti who were project leads

at IITA and Robert Kawuki, a project leader at NaCRRI, and

Chiedozie Egesi, overall project manager of the NextGen

Cassava Project.
Frontiers in Plant Science 11
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fpls.2022.1041925/full#supplementary-material
References
Agrawal, A. F., and Whitlock, M. C. (2012). Mutation load: The fitness of
individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol.
Evol. Syst. 43, 115–135. doi: 10.1146/annurev-ecolsys-110411-160257

Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M., and Church, G. M. (2019).
Unified rational protein engineering with sequence-based deep representation
learning. Nat. Methods 16 (12), 1315–1322. doi: 10.1038/s41592-019-0598-1

Bachem, C. W. B., van Eck, H. J., and de Vries, M. E. (2019). Understanding
genetic load in potato for hybrid diploid breeding. Mol. Plant 12, 896–898.
doi: 10.1016/J.MOLP.2019.05.015

Bosse, M., Megens, H. J., Derks, M. F. L., de Cara, Á. M. R., and Groenen, M. A.
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