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The widespread use of unmanned aerial vehicles (UAV) is significant for the

effective management of orchards in the context of precision agriculture. To

reduce the traditional mode of continuous spraying, variable target spraying

machines require detailed information about tree canopy. Although deep

learning methods have been widely used in the fields of identifying individual

trees, there are still phenomena of branches extending and shadows

preventing segmenting edges of tree canopy precisely. Hence, a

methodology (MPAPR R-CNN) for the high-precision segment method of

apple trees in high-density cultivation orchards by low-altitude visible light

images captured is proposed. Mask R-CNN with a path augmentation feature

pyramid network (PAFPN) and PointRend algorithm was used as the base

segmentation algorithm to output the precise boundaries of the apple tree

canopy, which addresses the over- and under-sampling issues encountered in

the pixel labeling tasks. The proposed method was tested on another miniature

map of the orchard. The average precision (AP) was selected to evaluate the

metric of the proposedmodel. The results showed that with the help of training

with the PAFPN and PointRend backbone head that AP_seg and AP_box score

improved by 8.96% and 8.37%, respectively. It can be concluded that our

algorithm could better capture features of the canopy edges, it could improve

the accuracy of the edges of canopy segmentation results.

KEYWORDS

deep learning, instance segmentation, orchard, canopy, convolutional neural
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1 Introduction

Technology and equipment for plant protection are crucial

for agricultural output (Ouyang et al., 2020). In apple farming,

spraying is one of the most important commonly applied canopy

management practices, it should be conducted during the stage

of apple growth aims to raise the quality of apples and obtain

higher yield. However, the low utilization rate of pesticides has

been an important factor in the development of China’s

application technology (Ru et al., 2015), the utilization rate of

pesticides in conventional application methods is only 30%,

which not only affects the effectiveness of pest control, but also

causes environmental pollution.

The integration of agricultural machinery and information

technology is a necessary tool for the development of modern

agriculture, which can improve the efficiency of agricultural

resources utilization and accelerate the process of agricultural

modernization (Chen et al., 2020). With the continuous

development of the precision agriculture, remote sensing

applications have diversified to include satellite, manned

airplanes or unmanned aerial vehicles (UAVs) (Mulla, 2013).

UAV images are more easily obtained and it implies lower

operational costs, less weather constraints (Rasmussen et al.,

2016). UAVs are used for the most autonomous and accurate

way to obtain tree’s information.

A considerable amount of research on orchard canopy

information focus on the identification and counting of

individual trees (Morales et al., 2018; Cheng et al., 2020; Qi

et al., 2021). In fact, due to geometric features of plant canopies

can offer relevant indicators, individual canopy-related features

interested farmers but the most accurate estimations for

canopies all mostly based on destructive and costly labour-

intensive manual measurements (Gower et al., 1999;

Jonckheere et al., 2004; Ma et al., 2017). To overcome these

disadvantages, UAV-based imagery in conjunction with

computer vision methodologies have become widely used on

the research of tree extraction (Nyamgeroh et al., 2018; Durfee et

al., 2019).

Brede et al. (2017) concluded that UAV-borne laser

scanning(ULS) has the potential to perform comparable to

Terrestrial Laser Scanning for estimating forest canopy height.

ULS combines the strengths of above and under canopy surveys,

the results showed that in easy forest stand conditions, the

performance of ULS point cloud is comparable with the

terrestrial solutions (Liang et al., 2019). The UAV-based

LiDAR data can be effectively used in canopy cover

estimation, individual tree segmentation-based method had the

highest accuracy in estimation of canopy cover (R2 = 0.92,

rRMSE = 3.5%) can provide references for sustainable

management (Wu et al., 2019). Laser scanning data of stem

curve was obtained by using UAV. Novel data processing

algorithms were applied for the point clouds to extract the
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stem curves and diameters at breast height (Hyyppa et al.,

2020). However, these methods using LiDAR represents an

important limitation for costly.

There exist other methods that use multispectral cameras to

descriptor such as canopy shape, crown contour and canopy

volume. In order to estimate tree height, Wu et al. (2020)

compared several methods. Height estimations of mango and

avocado trees were compared to canopy metrics obtained from

Airborne Laser Scanning (ALS) and UAV-based RGB and multi-

spectral photography. Chang et al. (2020) used UAV-based

multispectral pictures to compare the canopy shape and

vegetation indicators of range trees. The findings revealed a

strong correlation between tree height and canopy volume

measured from the ground and by UAV. Gallardo-Salazar

et al. (2020) analyzed included different vegetation indices

estimated with a high-resolution orthomosaic and obtained

total height and the crown diameter of individual trees, the

consistency of the the normalized-difference vegetation index

(NDVI) as the most recommended to evaluate productivity

results for its application in the field.

When focusing on RGB images, a large number of studies of

tree phenotype in orchards can be found. Using image processing

techniques, Yıldız et al. (2020) determined the canopy area of

apple trees. Regression analysis employed both circular and

elliptical calculating techniques. Using a local-maxima-based

technique on UAV-derived Canopy Height Models (CHMs),

Mohan et al. (2017) assessed the applicability of low-altitude

visible light image and structurefrom-motion (SFM) algorithm).

To distinguish between overlapping tree crown projections, Ponce

et al. (2021) developed a novel method for crop tree identification

using image analysis techniques, doing away with the usage of

vegetation indices and machine learning-based approaches. The

aforementioned methods, however, are likely to have a low fidelity

for interlaced orchards. Cheng et al. (2020) provided a

segmentation approach for mingled fruit tree canopies with

irregular forms that makes use of a Gaussian Mixture Model

and XGBoost to accurately recover the individual apple and

cherry trees from mingled canopies.

In recent years, the performance of the CNN network in

detecting complicated phenomena has been excellent due to the

accessibility of massive datasets and the ongoing advancement of

GPU processing power. A growing variety of artificial

intelligence algorithms have been used in horticulture research

and remote sensing for agriculture (Kamilaris and Prenafeta-

Boldú, 2018; Zhou et al., 2020; Yang and Xu, 2021; Qi et al.,

2022). Mo et al. (2021) proposed a deep learning-based instance

segmentation method YOLACT of litchi trees. The boundary

and location information of the canopy have been obtained by

using the Digital Orthophoto Map (DOM). A Convolutional

Neural Network (CNN) based on the Deeplab v3+ architecture

was used to detect full-grown isolated Mauritia flexuosa palms,

and has achieved better performance than those of other CNN
frontiersin.org
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networks used for performance comparison (Morales et al.,

2018). Lou et al., (2022) used thrss widely object detection

methods such as the Faster region-based CNN (Faster R-

CNN) (Ren et al., 2015), You Only Look Once version 3

(YOLOv3) (Redmon et al., 2018), and single shot detection

(SSD) (Liu et al., 2016) to identify tree crowns and their

widths in two loblolly pine plantations, respectively.

Due to unsystematic tree branches overlapping and

shadows, the accuracy of the deep learning-based image

segmentation algorithms needs to be improved. In

horticultural computer vision, however, it has always been

challenging to detect the boundary of tree canopies.

In this regard, we offer an innovative technique for precisely

segmenting the borders of apple trees using aerial photos taken

with RGB cameras placed on UAVs. This approach aims to

address the issue of incorrect segmentation of tree canopies in

dense orchards with complex backgrounds, including branches

and shadows. Firstly, RGB images were processed in DJI Terra

software to yield a Digital Orthophoto Map (DOM), then DOM

was sliced into smaller images for training the deep learning

model. Second, the feature of canopy instances was extracted

using the PAFPN (Liu et al., 2018) as backbone neck and

PointRend (Kirillov et al., 2020) as a new backbone head

based on the instance segmentation of the Mask R-CNN
Frontiers in Plant Science 03
(He et al., 2017) framework. Our method is called MPAPR R-

CNN. This segmentation is eventually combined into a

miniature orchard map, with each little picture containing the

canopy’s pixel count by segmentation network. The whole

system was put to the test in an apple orchard, and the

comparison experiment findings showed how well it works for

identifying apple tree canopy.
2 Materials and methods

2.1 Study area

As shown in Figures 1A, B, the study was conducted during

the summers of 2022 at the JingXiang Orchard in Weihai City,

Shandong Province, China. The location is characterized by a

temperate monsoon climate, with average annual precipitation

of 400–600 mm and an average effective temperature during the

study period (July–August) of 28°C. The local climate is perfect

for the cultivation of apples.

The orchards under study are high-density planting patterns

with a 3.5-meter route between rows and a tree spacing of 0.8

meters. It should be emphasized that the planting and

management model adheres to the region’s suggested
A B

C

D

E F

FIGURE 1

Test location of image capture. (A, B) The location of the experimental orchard. (C-E) Digital orthophoto maps for training and (F) for testing in
canopy detection.
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production techniques. 'Four location DOMs containing apple

orchards of different ages were used for canopy identification in

this paper, where C, D and E of Figure 1 were used as training for

the model, while Map F was used as a test map for the model

training results.
2.2 Unmanned aerial vehicle
image collection

Apple trees were captured with the DJI Phantom 4

Multispectral (P4, SZ DJI Technology Co., Ltd., Shenzhen,

Guangdong, China). The P4 is employed because it can be

programmed to fly independently, and the collected visible

images can be processed to generate orthophoto images, or

other drones equipped with low-cost RGB visible light can be

used. For multispectral imaging, this UAV was outfitted with

one RGB sensor and five monochrome sensors, which have six 1/

2.9-inch CMOS, including one color sensor for visible imaging

and five monochrome sensors for multispectral imaging.

Individual sensors have 2.08 million effective pixels (2.12

million total pixels). Figure 2 depicts the takeoff of a drone for

data collection.

The purpose of this paper is to solve the problem of UAV

canopy image segmentation in complex backgrounds, and we

selected the area where weeds are most abundant for UAV flight.

To minimize any shadow effects, the flight was conducted during

sunny or cloudy weather conditions at high noon, with very light

winds, between approximately 11:30 am and 12:30 pm. The DJI

GO Pro software was used to set up the flight for autonomous

management. The pictures have an 80% mean forward overlap
Frontiers in Plant Science 04
and a 70% mean side overlap. The aircraft was maintained at a

cruise speed of 2 m/s an altitude of 15 m above ground and

during the flight. The aircraft maintained a cruise speed of 2 m/s

during flight at 15m and 20m altitude, while the ground sample

distance (GSD) was 0.79cm/pixel and 1.06cm/pixel, respectively.
2.3 Canopy segmentation framework

We first summarize the whole process of the proposed

framework for detecting orchard canopy and then discuss in

detail each phase of the model. As shown in Figure 3, the

framework consists of three major parts: (1) image dataset

construction and preprocessing; (2) training and inference and

(3) image stitching.

2.3.1 Image preprocessing and
dataset construction

In this part, DJI Terra software was used to convert the UAV

canopy images into DOM. Since the resolution of DOM is too

large, the images need to be cropped to meet the appropriate size

required for computer operation, then we use Labelme software

for annotation, and then perform image enhancement to

generate the image dataset of orchard canopy for defect and

segmentation model training and testing.

2.3.2 Training and testing of datasets
In this section, we proposed to design our framework based

on Mask R-CNN. In order to fit the tree canopy detection and

segmentation task, as in Figure 4, we introduced the PAFPN and

PointRend into the original architecture. The proposed model
FIGURE 2

The DJI P4 Multispectral.
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can obtain enhanced features with both rich context information

and edge information, leading to better performance of canopy

detection and segmentation results. In addition, considering the

shape characteristics of canopy in cropped image, we modifed

the aspect ratios of anchor boxes in the RPN network. Specific

network design will be described in the later section.

2.3.3 Image stitching
After the deep learning model had been trained and the test

photos had been post-identified, this segmentation is eventually

combined into a miniature orchard map using Adobe Photoshop

CC 2019 software. With each little picture containing the

canopy ’s pixel count by segmentation network, the

orthophotography can be used to provide application

recommendations to variable application machinery.
Frontiers in Plant Science 05
2.4 Canopy segmentation method

2.4.1 Image preprocessing and
dataset construction

Using DJI Terra software, over 500 photos taken by the P4

UAV of the experimental regions every fl ight were

photogrammetrically processed to create the RGB DOM.

Through the training of a large amount of data, the model

based on deep learning can achieve great prediction results for

complex classification and detection tasks.

DOM resolution is too huge for processing, especially for

deep-learning-based methods, thus the high-resolution picture

was chopped using the Adobe Photoshop CC 2019 software

slicing tool, and the DOM was ultimately divided into 500 little

pixel images of 450*600. To boost the variety of the canopy
FIGURE 4

Canopy segmentation model base on Mask R-CNN. * indicates that the height and width of the convolution kernel matrix are multiplied.
FIGURE 3

Canopy segmentation framework.
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photos for the deep learning network, techniques including noise

addition, random blurring, panning, vertical mirroring, and

diagonal flipping were applied. A final dataset of 2000

enhanced canopy images were produced as a consequence of

the data augmentation strategies, which also expedited the

dataset’s creation, improved the resilience and generalization

of the model training, and decreased the likelihood of overfitting.

Finally, we divided the training and validation sets for 2000

images in the ratio of 8:2.

2.4.2 Architecture of mask R-CNN
Mask R-CNN is a classical image segmentation algorithm

that detects target objects in an image and marks the outline of

the object region, extracting the relevant pixels for area

calculation. Faster R-CNN for target recognition and a Fully

Convolutional Network (FCN) for semantic segmentation are

combined to create Mask R-CNN. The Faster Convolutional

Network (FCN) is utilized for mask prediction, boundary

regression, and classification based on the target discovered by

the Faster R-CNN. These include a feature extraction layer using

ResNet/ResNeXt as the convolutional backbone, a region

suggestion network (RPN), bilinear interpolation (ROIAlign),

and fully connected FC and FCN.

The selected region of interest (RoI), after mapping to the

feature map, is further pixel-corrected by the ROIAlign layer.

The resultant feature map is delivered to a region proposal

network (RPN) to create positive and negative samples. Because

the picture enhancement in this investigation did not involve a

90-degree rotation to increase the dataset, the orientation of the

canopy photographs in this study all stretched along the vertical

direction. The initial model was enhanced by balancing the

distribution of various picture forms and constructing anchor

points with three distinct scales of 0.3, 0.5, and 1 in aspect ratio

to increase the identification and segmentation accuracy of

the canopy.
Frontiers in Plant Science 06
2.4.3 Feature extraction network
To achieve more effective detection, ResNeXt is regarded as

the backbone network for feature extraction of the input image.

ResNeXt is built on ResNet modular structure and incorporates

the high recognition performance of split‐transform‐merge in

Inception. The right side of Figure 5 shows the structure of each

basic unit.

In Figure 5, ResNeXt uses multiple convolution modules to

perform feature extraction from bottom-up, and group

convolution uses the same topology on different input channel

paths. By using cardinality as a super parameter, it’s able to

achieve a more efficient network. For a 256-dimensional input

with cardinality of 32, the network encodes 256 channels into 4

channels, and the features are extracted in 32 different

embedding spaces by 32 different groups consisting of

continuous 1 × 1 conv, 3 × 3 conv, and 1 × 1 conv.

2.4.4 Feature fusion network
In multilayer convolutional neural networks, features at shallow

layers are usually more representative of edge morphology, which is

crucial for accurate pixel classification and instance segmentation

(Kong et al., 2016), and it is precisely the determination of instance

edges that is most important for segmentation of crown images.

Specially, we adopt a path augmentation feature pyramid network

(PAFPN) to enhance the feature hierarchy with rich low-level

features by adding a bottom-up path augmentation module and a

feature fusion operation module.

The part of Neck in Figure 6 shows the PAFPN module in

details. Each cube represents a corresponding feature tensor. In

the original ResNeXt-FPN backbone network, features are

extracted from the final convolutional layer of conv1–conv5

parts of ResNeXt101, which are called C1, C2, C3, C4 and C5 in

this paper. Based on the bottom-up network architecture, the

feature extraction layers compute hierarchical feature maps.

Feature maps generated by FPN are represented by P2, P3, P4, P5.
FIGURE 5

Backbone Network-ResNeXt. * indicates that the height and width of the convolution kernel matrix are multiplied.
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The feature maps of the added bottom-up path

augmentation module are represented as N2, N3, N4 and N5

corresponding to P2 to P5. The concrete operations for bottom-

up path augmentation module are illustrated in Figure 6. Firstly,

Ni/2 is obtained by a 3 × 3 convolutional layers with stride 2 to

down-sampled, where the size of Ni/2 is reduced by a factor of

two. Then the down-sampled feature map is concatenated with

Pi+1. At last, the fused feature map goes through another 3 × 3

convolutional layer to generate new feature map Ni+1. Then,

feature fusion operations are carried out to incorporate higher

level feature maps to the lower-level ones for contextual

feature fusion.

2.4.5 Optimized boundary feature based on
PointRend technique

As objects have irregular boundaries, most segment methods

can classify pixels inside the object accurately but pay less

attention to the accuracy drop caused by upsampling on the

edge of the object increases the loss of prediction. Image

segmentation tasks of original Mask R-CNN focus on regular

grids to classify each pixel in the image has an obvious drawback

of shivering or over-smoothed edges of segmentation, which

makes the boundary of the mask unsatisfactorily and greatly

undermines the accuracy of canopies edge segment.

As a result, to address this issue, we employed a high-quality

PointRend module to recover clear and sharp mask edges. This

module can adaptively choose a non-uniform set of points by a

subdivision strategy to densely sample and label the boundary

pixels while minimizing the indistinct segmentation results.

Point selection, point-wise feature extraction, and point head

make up the three primary components of PointRend.
Frontiers in Plant Science 07
The point selection module chooses suitable sampling points

flexibly and adaptively to predict to avoid excessively computed

pixels, and focuses on the points located near object boundaries.

After the target segmentation model output feature map as

the initialization output map of the PointRend model, the

strategy of point selection is to render the output image in a

coarse-to-fine manner. The first prediction is the coarsest and is

performed on the point of a regular grid. As shown in Figure 7,

in each iteration, the points on a regular grid from the low spatial

resolution feature map will be predicted coarsest first. The

output result is sampled up by bilinear interpolation to achieve

the denser feature prediction map. Then on the high-resolution

segmentation map, where the N most uncertain points are

concentrated in the edges, the confidence interval is [0,1] close

to 0.5. Points are selected by Equation (1). Once N points are

selected, point-wise feature extraction is performed. These N

points are the points that are finally filtered out for re-

confirmation. And so on, iterating step by step to obtain the

final segmentation map with the target resolution.

n*i = argmin
ni

p nið Þ − 0:5j j (1)

where p(ni) is the probability for point ni belonging to the

binary mask; n*i is the selected point.

For training, the point selection strategy is a random

sampling-based selection strategy. First, kN candidate points

(k>1) are randomly sampled from the feature map to address the

uncertain regions while keeping a uniform distribution. Then

kN points are sorted while estimating the uncertainty. The most

uncertain bN points are selected, where b ∈ [0,1]. These points

are concentrated in the most uncertain area, such as road
FIGURE 6

Bottom-up path augmentation. * indicates that the height and width of the convolution kernel matrix are multiplied.
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boundaries. Last, the surplus (1−b) N points are distributed from

a uniform distribution.

The coarse prediction and fine-grained features are

combined to create the point-wise feature of the selected

points extraction module. Regarding fine-grained features,

bilinear interpolation is used to extract the finely detailed

segmentations from each point chosen from the sort in the

feature map to display the fine segmentation details. These

segmentations are then stored in feature vectors, which

contain fine-grained features.

Fine-grained features may contain only relatively low-level

information and do not obtain specific region information, but

the coarse predicted feature can provide a more general and

globalized context, with a 2-dimensional vector for class-2

prediction at each point in the region.

The pointed head is a simple Multi-layer Perceptron (MLP)

used to represent prediction labels based on point-wise features,

which can share weights across all points. Moreover, because the

MLP predicts a segmentation label for each point, it can be

trained by the segmentation loss of a specific task. Note that

when the backbone head is replaced with PointRend, the loss of

the segment network is increased by loss point, but this does not

affect the final segmentation accuracy.

2.4.6 Loss function
The loss function of the Mask R-CNN with PointRend has

four components, the classification loss of the bounding box, the

position regression loss of the bounding box, and the loss of the

mask. The loss function L for each sample ROI in the network is

L = Lbox + Lcls + Lmask + Lpoint (2)

There are three components: Lbox is the classification

calculation loss, Lcls is the position regression loss of the

bounding box and Lmask is the mask calculation loss. The

bounding box loss function, the classification calculation loss,

and the mask calculation loss are shown as follows:
Frontiers in Plant Science 08
Lbox t*i , ti
� �

= smoothL1 t*i − ti
� �

(3)

smoothL1 xð Þ = 0:5x2 xj j < 1ð Þ
xj j − 0:5 xj j⩾ 1ð Þ

(
(4)

where ti=(tx,ty,tw,th) , t*i = (t*x , t*y , ty, t*w) 。

Lcls p*i , pi
� �

= − log p*i pi + 1 − p*i
� �

1 − pið Þ
h i

(5)

where pi represents the probability anchor is predicted to be

positive samples, p*i represents the foreground true probability

of the anchor point, i.e. a value of 1 when in the foreground and

0 when in the background anchor samples.

Lmask s*i , si
� �

= − s*i log sið Þ + 1 − s*i
� �

log 1 − sið Þ
� �

(6)

where, si represents the probability mask is predicted to be

the irightvalue the s*i is the label value of the mask.

Lpoint s*i , si
� �

= seg _ loss  +  points _ loss (7)

where seg_loss represents the cross-entropy loss of the

overall pixel point, points_loss represents the cross-entropy

loss of the uncertain point.
2.5 Algorithm platform

The model training platform is a laptop with Ubuntu 18.04

operating system. The deep learning model in this paper is the

Detectron2 framework based on PyTorch, while CUDA 11.1 is

used to accelerate the training process. Table 1 describes the

specific environment configuration.

Mask R-CNN employs the alternating optimization training

technique. Stochastic Gradient Descent (SGD), a quick and

efficient gradient descent technique for convolutional neural

networks, is used as the training optimization approach. The
FIGURE 7

The strategy of the point selected.
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maximum number of training iterations is 25000, the number of

samples (batch size) used in each trainer is 1, the number of

samples in a batch of training samples (one epoch) is 128, and

the learning rate decay multiplier (gamma) is 0.2, the learning

rate decay is performed after 10000 and 20000 iterations, the

number of warm-up iterations is 1000, momentum is 0.9, and

weight decay coefficient is 0.001.
2.6 Evaluation indicators

To validate the performance of the model, Mean Average

Precision (mAP ) is used as a metric to evaluate the accuracy of

the training model. mAP is an algorithm performance metric

used to predict target locations and categories, and refers to the

average of the Average Precision (AP ) of multiple categories, and

a higher mAP value indicates a better model is better. In image

segmentation, a curve can be plotted for each category based on

the accuracy P (Precision) and recall R (Recall), and the Average

Precision AP is the area under that curve. Multiple metrics are

calculated as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =
Z 1

0
P Rð ÞdR (10)

where TP denotes the number of samples correctly

predicted as positive, FP denotes the number of samples in

which negative samples are predicted as positive, FN denotes

the number of samples in which positive samples are predicted

as negative, and k denotes the number of categories; P refers to

the accuracy rate, which is the proportion of correctly detected

samples to all samples actually detected; and R refers to the

recall rate, which is the proportion of the number of correctly

detected samples to the number of samples that should

be detected.
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3 Results

To better validate the performance of the optimized

segmentation model, comparative experiments were conducted

to demonstrate the detection and segmentation capabilities of

the model under different configurations.
3.1 Different anchor and backbone

Since the target of detection in this paper is the tree canopy,

combined with the canopy growth and the slender

characteristics of the collected image data set along the top

and bottom directions, the aspect ratio of anchor was adjusted to

{1:1, 1:2, 1:3} to suit the canopy detection.

The ResNeXt network is implemented by simply cascading

layers of the same structure and implementing a split-transform-

merge strategy at each level of the network. Based on the ResNet

network structure, a new dimension called “cardinality” is

proposed. For canopy detection, we need to verify whether the

improvements in the ResNeXt network improve the detection

and segmentation accuracy. To test the impact of the improved

anchor frame ratio and feature extraction network, we designed

a set of comparison experiments. We use the standard metrics

average precision (AP, AP50, AP75) to evaluate our results. The

results are shown in Table 2.

Table 2 shows that the improved anchor ratio and ResNeXt

both affect the accuracy of the segmentation. Since the canopy

distributed along the up-down direction is not rotated by 90

degrees in the data enhancement operation, the detection task of

the canopy dataset is better facilitated when the RPN network

uses a more elongated anchor frame for the generation of the

region suggestion frame. In addition, performing a set of

transformations using low-dimensional embeddings by

constructing bases in the base block, split-transform-merge

strategy can make the deep learning model learn more

features. Therefore, improved anchors and ResNeXt were used

as part of the Mask R-CNN model for feature extraction and as

the base network for subsection 3.2.
3.2 Best model configuration

The key differences between our suggested canopy detection

and segmentation method and the original Mask R-CNN

architecture are two. In order to get feature maps with rich

low-level information, we first applied a PAFPN module to the

original Mask R-CNN. The second is that we utilized Pointrend

to enhance the accuracy of edge segmentation results. Based on

Mask R-CNN with better anchor and ResNeXt, we create four

distinct network frameworks to extract features in order to test
TABLE 1 Image processing unit host hardware and software
environment.

Name Version

CPU Intel(R) Core(TM)i7-11800H

GPU NVIDIA Geforce RTX 3050(4GB)

Operating System Ubuntu 18.04

Computing Architecture CUDA 11.1

Deep learning Framework PyTorch1.5.0

Anaconda Anaconda3(Python3.7.2)
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the impact of the new PAFPN and PointRend module, which are

represented by RX-FPN (Mask R-CNN+ResNeXt+FPN), RX-

PAFPN (Mask R-CNN+ResNeXt+PAFPN), PR-RX-FPN (Mask

R-CNN+PointRend+ResNeXt+FPN) and our method(Mask R-

CNN+PointRend+ResNeXt+PAFPN), respectively. Our method

is called MPAPR R-CNN. Four group experiments are used to

detect and segment orchard canopy images in this part.

Figure 8 compares the loss functions of the four instance

segmentation models used in the experimental training phase. In

Figure 8A, in comparison to RX-FPN and PR-PAFPN, PR-RX-

FPN and MPAPR R-CNN have higher total loss due to the

training loss function of PointRend contains point loss.
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However, it is still obvious in Figure 8A that the RX-PAFPN

with enhanced feature pyramid network has lower loss in RX-

FPN and RX-PAFPN without combining PointRend, and

similarly, in PR-RX-FPN and MPAPR R-CNN with

combining PointRend, the PAFPN module with MPAPR R-

CNN model also has lower loss, which indicates that both

PAFPNs effectively improve the original FPN network. This

can also be seen in Figures 8C, D, where PAFPN has a significant

effect on the model improvement, firstly, the loss_mask_point is

reduced, and secondly, the point accuracy is higher. This further

shows the improvement e ff ec t o f PAFPN on the

PointRend model.
TABLE 2 The detect results of different Anchor and Backbone.

Backbone Network ImprovedAnchor ratio ResNeXt AP_seg AP_box

AP AP50 AP75 AP AP50 AP75

Mask R-CNN-FPN 57.24 79.51 79.87 65.14 78.93 77.42

✔ 58.34 79.89 81.32 65.93 80.29 79.18

✔ 58.96 81.26 81.41 66.71 82.56 80.39
frontier
✔ indicates that on the basis of the backbone network, add the corresponding module at ✔. The first line is Mask R-CNN-FPN, the second line is Mask R-CNN-FPN+Improved Anchor
ratio, and the third line is Mask R-CNN-FPN+ Improved Anchor ratio+ResNeXt.
D

A B

C

FIGURE 8

Loss and accuracy curves of several different instance segmentation algorithms in training stages. (A) Total loss curves. (B) Mask loss curves. (C)
Mask point loss curves. (D) Point accuracy curves.
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For the most important loss_mask of crown segmentation,

Figure 8B shows that both PR-RX-FPN and MPAPR R-CNN

with PointRend module have lower mask loss values than RX-

FPN and RX-PAFPN without PointRend module. It indicates

that the addition of the PointRend module has a more significant

optimization effect on reducing the mask loss of the FPN and

PAFPN networks. However, the lowest Loss_mask is the

MPAPR R-CNN model with both PAFPN and PointRend.

The AP findings for each of the four networks are displayed

in Table 3. MPAPR R-CNN outperforms competing methods in

terms of AP-seg and AP-box score, which supports its efficacy in

identifying canopy images. We can see from Table 3 that the

suggested PAFPN and PointRend algorithm considerably alters

the AP score of test outcomes. The AP seg and AP box scores of

the RX-PAFPN are increased by 3.18% (from 59.64% to 62.82%)

and 1.85% (from 67.61% to 69.46%), respectively, while the value

of the AP 50 grows more considerably, improved by 6.28% (from

81.8% to 88.08%) and 6.16% (from 84.4% to 90.56%). The

outcomes demonstrate that the PAFPN algorithm may

successfully prevent information loss of low-level features and

improve the original’s capacity to extract features.

Meanwhile, as for the PointRend, the AP_seg and AP_box

score of PR-RX-FPN is significantly improved by 7.71% (from

59.64% to 67.35%) and 7.52% (from 67.61% to 75.13%). The

result demonstrates that the PointRend has more influence than

PAFPN. This is because a uses both coarse and fine prediction of

points and fuses the two features, which is more effective for

canopy edges detection. Combined with PAFPN and PoitRend,

MPAPR R-CNN obtained the most excellent canopy detection

and segmentation results with AP_seg and AP_box score

improved by 8.96% (from 59.64% to 68.6%) and 8.37% (from

67.61% to 75.98%), respectively. Therefore, MPAPR R-CNN is

more effective for canopy detection task.

Examples of the results of several methods for canopy

detection are shown in Figure 9. The good boundary

segmentation performance of MPAPR R-CNN is shown in the

figure by the yellow marker box. As can be shown, for the input

image (Figure 9A), our approach (Figure 9C) outperforms Mask

R-CNN paired with ResNeXt and FPN (Figure 9B) in terms of

both canopy identification and segmentation. For instance,
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Mask R-CNN missed some edge information and incorrectly

identifies the shadow of the tree as the canopy areas, but MPAPR

R-CNN’s findings for detecting the canopy are more accurate.

Unlike Mask R-CNN, which has a rather rough segmentation

contour, MPAPR R-CNN ’s segmentation contour is

more defined.
3.3 Image stitching

After the deep learning model had been trained and the test

photos had been post-identified and segmented, a high-

resolution DOM map was created using Adobe Photoshop CC

2019 software. Figures 10 shows the visual outcomes of the

models. Small slices of pictures on the stitched DOM may all

be inferred with accurate geo-coordinate positions, since the RGB

visible camera communicates position coordinates with the UAV

during image acquisition. This has ramifications for the creation

of changeable application prescription maps later on.

By increasing mAP by 2.19%, our innovative segmentation

method significantly improved segmentation accuracy. In the

canopy detection of a mass of branches and notably for tree

margins, the pixel-level target was accurately recognized.

Therefore, our suggested network’s efficiency has been shown.
4 Discussion

4.1 Effect of shadows and surface
vegetation on canopy edge detection is
effectively solved

Most orchard canopy studies at this stage have focused on

identifying the canopy of a single tree, but some researchers have

also looked at methods to recognize and precisely count tree

crowns with significant overlap rates. While there are many

research references for techniques of geometric computation and

image processing, the aforementioned two approaches are

restricted to the relatively constant biological form of tree

crowns and the straightforward backdrop of UAV image
TABLE 3 Comparison of AP results for four different methods.

Network PAFPN PointRend AP_seg AP_box

AP AP50 AP75 AP AP50 AP75

RX-FPN 59.64 81.8 79.16 67.61 84.4 81.14

RX-PAFPN ✔ 62.82 88.08 82.71 69.46 90.56 82.78

PR-RX-FPN ✔ 67.35 88.6 84.88 75.13 90.87 87.95

MPAPR R-CNN ✔ ✔ 68.6 90.78 85.31 75.98 91.19 89.15
frontier
✔ indicates that on the basis of the base network, add the corresponding module at✔. The first line is the base network (RX-FPN). The second line is the base network+PAFPN, abbreviated
as RX-PAFPN. The third line is the base network+PointRend, abbreviated as PR-RX-FPN. The fourth line is the base network+PAFPN+PointRend, abbreviated as MPAPR R-CNN.
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gathering. The geometric measuring method based on the form

of the tree canopy is not reliable because the canopy shape may

fluctuate significantly with the continual expansion of the tree

canopy. In contrast, the instance segmentation approach might

produce high performance by identifying the tree canopy’s pixels

and segmenting each canopy separately with more flexibility and

resilience, or inference in a unified manner. The accuracy of

threshold segmentation techniques used in traditional image

processing can be significantly impacted by weeds on

the ground.

MPAPR R-CNN can address this issue. Firstly, we changed

the original ratio of anchor frames in the RPN network. The

canopy in dataset distributed along the up-down direction due to

images were not rotated by 90 degrees in the data enhancement

operation, the detection task of the canopy dataset better

facilitated when the RPN network uses a more elongated

anchor frame, such as {1:1, 1:2, 1:3}, for the generation of the

region suggestion frame. In addition, performing a set of

transformations using low-dimensional embeddings by

constructing bases in the base block, split-transform-merge

strategy can make the deep learning model learn more

features, which has been effective for the problem of color

interference between the surface vegetation and the canopy.
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The most important thing is there are two main distinctions

between the original Mask R-CNN architecture and our

proposed canopy detection and segmentation approach. This

is so that the RPN can generate more precise candidate boxes,

which is made possible by the PAFPN module’s ability to help

the backbone network gather features with rich low-level

information. Furthermore, the PointRend module ’s

combination of coarse- and fine-grained features enhanced the

segmentation accuracy of ground and canopy edges that have a

comparable color palette.

As shown in Figure 11, we visualized the process of

PointRend module in canopy image inference. During the

Inference process, each region is rendered by iterative coarse-

to-fine. In each iteration, PointRend upsamples the previous

segmentation result using bilinear differences, and then selects N

uncertain points from this result. This was equivalent to

purposefully selecting the N points that are difficult to

segment, then extracting the feature vectors, and classifying

them by MLP to get the new segmentation result, then up-

sampling by a factor of 2, extracting the uncertain points, and

then point prediction by MLP, and repeating this step until the

prediction is completed. PointRend optimized the task of

accurately recovering object edges during upsampling.
A

B

C

FIGURE 9

Some examples of canopy images of interferences. (A) Input of the detected raw image. (B) Mask loss curves. (C) Mask point loss curves.Yellow
rectangular boxes indicate details with significantly different test results.
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FIGURE 10

The visual results of stitching image.
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Therefore, MPAPR R-CNN effectively segmented under the

influence of shadows and surface vegetation and improved the

recognition accuracy of canopy edges.
4.2 Effectiveness, limitations of UAV in
orchard detectron and future
work directions

The instance segmentation method enhanced by Pointrend

in apple tree orchard situations was initially put out in this work.

Two researchers painstakingly annotated RGB photos of the tree

canopy for at least three days to create the data sets required to

train deep learning models. The labeling of individual branches

requires careful identification because of the severe branch

crosses that result from dense planting patterns. Additionally,

the canopy shadow cast by the sun on aerial photographs when it

is not directly overhead presents a difficult labeling challenge.

Inadequate illumination or a little swing of the drone during the

photo-taking process can further degrade the picture quality of

the final orthophoto image, in addition to the effects of

cloudiness or wind on the UAV. More crucially, the new
Frontiers in Plant Science 14
research on precision management in orchards has shown

considerable promise for UAV gathering of photos with

excellent flying efficiency. Compared with UAVs equipped

with expensive multispectral or hyperspectral cameras for

canopy identification methods, carrying visible light cameras is

cost-effective and promising for large area applications.

We propose to focus on two topics of improvement in the

upcoming work plan. First, a study may be done using the multi-

spectral photos that the DJI P4 UAV captured. Multi-spectral

research on canopy segmentation and individual differences in

the tree canopy may be analyzed based on the chlorophyll

difference between the tree canopy and ground weeds. The

second is the study and development of quick and effective

orchard spraying tools based on low-altitude data fromUAVs on

orchard distribution and canopy differences, combined with

ground spraying and UAV plant protection technologies.
5 Conclusions

In this paper, a novel orchard canopy detection and

segmentation method based on the Mask R-CNN was
ED

A

B C

FIGURE 11

Example of inference image subdivision step. (A) The raw image used to visualize the inference process. (B) Course prediction. (C-E) Subdivision
step 1-3, the bilinear differential upsampling is performed successively at a rate of 2x.
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presented. By applying the PAFPN module and the PointRend

into the original Mask R-CNN framework, combined with the

improved anchor and ResNeXt, our well-trained model can

automatically detect and segment canopy in orchard with high

accuracy. It can be concluded that our algorithm could better

capture features of the canopy edges, it could improve the

accuracy of the edges of canopy segmentation results, which

addressed the over- and under-sampling issues encountered in

the pixel labeling tasks. It can be concluded that our algorithm

could better capture features of the canopy edges, it could

improve the accuracy of the edges of canopy segmentation

results. Our future work will be to extend MPAPR R-CNN to

many other UAV image applications.
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