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Identification and differential
analysis of noncoding
RNAs in response to
drought in Phyllostachys
aureosulcata f. spectabilis

Yang Yang, Yuanmeng Gao, Yiqian Li and Xueping Li*

International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland
Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing, China
The role of noncoding RNAs (ncRNAs) in plant resistance to abiotic stresses is

increasingly being discovered. Drought stress is one of themost common stresses

that affecting plant growth, and high intensity drought has a significant impact on

the normal growth of plants. In this study, a high-throughput sequencing was

performedon plant tissue samples of Phyllostachys aureosulcata f. spectabilisC. D.

Chu et C. S. Chao by drought treatment for 0, 2, 4 and 6 days. The sequencing

results were analysed bioinformatically. We detected 336,946 RNAs among all 12

samples, including 192,098 message RNAs (mRNAs), 142,761 long noncoding

RNAs (lncRNAs), 1,670 circular RNAs (circRNAs), and 417 microRNAs (miRNAs). We

detected 2,419 differentially expressed (DE) ncRNAs, including 213 DE circRNAs,

2,088 DE lncRNAs and 118 DE miRNAs. Then, we used Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) to functionally predict DE

ncRNAs. The results showed that most DE ncRNAs are involved in the response to

drought stress, mainly in biochemical reactions involved in some metabolites, as

well as in organelle activities. In addition, we validated two random circRNAs and

demonstrated their circularity. We also found a stable internal reference gene

available for Phyllostachys aureosulcata f. spectabilis and validated the accuracy of

this experiment by quantitative real-time polymerase chain reaction (qRT-PCR).

KEYWORDS

ncRNAs, drought stresses, GO enrichment, KEGG enrichment, miRNA decoys
Introduction

Phyllostachys aureosulcata f. spectabilis C. D. Chu et C. S. Chao (P. aureosulcata) is a

cultivated variant of Phyllostachys aureosulcata (Li et al., 2017). This kind of bamboo

characterized by golden yellow poles, naturally long turquoise stripes. P. aureosulcata can

stay green for all seasons, so it is especially suitable for cultivation under natural
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conditions in most areas (Zhang, 2014). According to the

reasons above, the plant has become a rare bamboo treasure

for landscaping and gardening worldwide. Especially after the

Beijing Olympic Games, P. aureosulcata has been loved by

people all over the world with its same name as the gold

medal of the 2008 Beijing Summer Olympics and large area

application in Olympic Park (Song et al., 2021b).

Drought is one of the environmental stresses that has the

greatest worldwide impact on agricultural production (Kumar

et al., 2018). In recent years, due to the drastic changes in global

climate, the drought stresses encountered by plants under

natural conditions have gradually increased in number and

magnitude. Severe drought stress can cause physical damage

and physiological or biochemical disorders, which in turn can

alter plant morphology (Hussain et al., 2018), and this can be

lethal to plants. Drought stress may also affect a range of

physiological and biochemical react ions, including

photosynthesis, chlorophyll synthesis, nutrient metabolism, ion

uptake and transfer, respiratory action, and carbohydrate

metabolism, inhibiting plant growth, and thus adversely

affecting plant growth and yield (Li et al., 2011; Patel et al., 2020).

The plant response to drought stress is a complex biological

process that involves a common dynamic change in metabolite

composition and gene expression (Urano et al., 2009). Drought

stress directly affects primarymetabolism and leads to changes in the

biosynthesis and transport of primary and secondary metabolites in

plants (Ramakrishna and Ravishankar, 2011; Ma et al., 2020). At the

gene expression level, plants have evolved various cascaded signalling

networks that are used to regulate drought-responsive genes to

produce various types of proteins, including transcription factors,

enzymes, molecular chaperones, and other functional proteins, and

ultimately achieve drought tolerance in plants (Hu and Xiong, 2014;

Kumar et al., 2017; Kumar et al., 2021). Drought-responsive genes

are involved in signalling cascades, transcriptional regulation, such as

transcription factors and protein kinases/phosphatases, and the

expression of functional proteins that protect cell membranes

(Nakashima et al., 2014; Jogawat et al., 2021).

Noncoding RNAs (ncRNAs) are ubiquitous in plants, although

for a long time, ncRNAs were viewed as pointless silent regions;

later on, an increasing number of studies demonstrated that

ncRNAs have a variety of regulatory effects (Bushati and Cohen,

2007; Bartel, 2009; Mercer et al., 2009). Identification and analysis

in 15 diverse flowering plant species showed that 44% of ncRNAs

have significant similarity to benchmark protein-coding or RNA

genes and therefore have a high probability of being part of

functional genes (Lloyd et al., 2018).

There are many types of ncRNAs, the main ones are

microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular

RNAs (circRNAs), which usually interact with each other and

commonly regulate the expression of target genes (Song et al.,

2021a). ncRNAs have multiple functions. For example, ncRNAs

are key regulators in several developmental processes such as leaf

morphogenesis, vegetative phase change, flowering time and
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response to environmental cues, and the ncRNAs regulate the

expression of abiotic stresses, such as drought, salt and high

temperature, in plants facing different biotic stresses, salt, high

temperature and other abiotic stresses, participation in plant

immunity, and regulation in response to macronutrient stress in

plants (Millar, 2020; Tahir Ul Qamar et al., 2020; Jin et al., 2021;

Li et al., 2021).

In Bambusoideae, studies on ncRNAs have also made some

progress. For example, they regulate the nutrients necessary for

growth, influence the development of tissue and organs, and

respond to abiotic stresses (Wang et al., 2016; Cheng et al., 2020;

Wang et al., 2021), but no systematic studies about ncRNAs have

been carried out in P. aureosulcata. Therefore, in this study, we

systematically counted all types of ncRNAs in P. aureosulcata

from the most common abiotic impact factor in growth: drought

stress, focusing on ncRNAs involved in the stress response to

drought stress, and performed KEGG/GO enrichment analysis.

A stable reference gene was screened for P. aureosulcata and

then verified by real-time quantitative PCR (qRT-PCR) using

circRNAs as the point of penetration.
Materials and methods

Plant materials

Phyllostachys aureosulcata f. spectabilis C. D. Chu et C. S.

Chao (P. aureosulcata) were grown in Dinghuo town, Yangzhou

city, Jiangsu Province, China (119°38′10″E, 32°29′15″N). The
average annual temperature is 14.8-15.3°C, and the light time is

approximately 1896-2182 h per year. In addition, the annual

precipitation can reach 1,048 mm, which is suitable for P.

aureosulcata to grow. After digging the bamboo out of the soil,

they were transplanted into planting pots (40 cm × 50 cm). After

the seedlings were lowered, potted seedlings with good growth

conditions were selected and treated with natural drought stress

and divided into 4 groups with 3 replicates in each group. The

drought treatment gradient was 0 days, 2 days, 4 days and 6 days.

Leaves were collected from the same part of different plants,

frozen with liquid nitrogen and saved at -80°C until further use.

The soil water content is as follows: 0 day of drought treatment:

36.83%, 2 days of drought treatment: 29.22%, 4 days of drought

treatment: 25.37%, 6 days of drought treatment: 22.15%.
RNA extraction, cDNA library
construction and RNA sequencing

After dehydration with liquid nitrogen, the plant tissues

were ground into powder, and total RNA was extracted using

CLB, CTAB, and the RN40-EASYspin Plant RNA Rapid

Extraction Kit from Aidlab Biotechnologies Co., Ltd., Beijing,

China. Then, a Nanodrop 2000 (Thermo Fisher Scientific,
frontiersin.org
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Waltham, MA, USA) was used for concentration testing, and an

Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) and

LabChip GX Touch Nucleic Acid Analyser (PerkinElmer,

Waltham, MA, USA) were used for integrity testing.

For cDNA library construction, a Ribo-off rRNA Depletion

Kit (Plant) N409-02 was used. First, rRNA was removed from

total RNA with rRNA probes and ferrite beads. Second, the

interruption mixture was added to the library system reserved

in step one to interrupt the rRNA-depleted RNA. Third, we

synthesized the first strand of cDNA, synthesized the second

chain according to the first chain and purified it. Fourth, end-

point repair and dA-tailing of the above products were performed.

Finally, reverse transcription was used to synthesize cDNA,

followed by PCR amplification, polyacrylamide gel

electrophoresis (PAGE) to separate the target DNA fragments,

and cut gel recovery to obtain the cDNA library. While

constructing the circRNA-seq libraries, add a step that removes

the linear RNA with RNase R before the last step.

The quality of the constructed cDNA libraries was checked

by the Qsep-400 method. The libraries that met the

requirements were sequenced using Illumina NovaSeq 6000.

The sequencing platform was an Illumina NovaSeq 6000

platform (San Diego, CA, USA), and the sequencing reagent

was a NovaSeq 6000 S4 Reagent Kit (San Diego, CA, USA).

To identify the lncRNAs, three computational approaches

including CPC2/CNCI/Pfam/CPAT were combined to sort non-

protein coding RNA candidates from putative protein-coding

RNAs in the unknown transcripts. Putative protein-coding

RNAs were filtered out using a minimum length and exon

number threshold. Transcripts with lengths more than 200 nt

and have more than two exons been selected as lncRNA

candidates (Li et al., 2015). To identify circRNAs, use CIRI

software to compare with the reference gene sequences, generate

SAM files, and scan PCC signals (paired chiastic clipping signals)

from the SAM files for the CIGAR values analyzed in the SAM

files. The CIGAR values in the junction read are characterized by

xS/HyM or xMyS/H (Gao et al., 2015). Besides, to identify the

sRNA. Raw reads of fastq format were firstly processed through

in-house perl scripts. In this step, clean reads were obtained by

removing reads containing adapter, reads containing ploy-N and

low-quality reads from raw data. And reads were trimmed and

cleaned by removing the sequences smaller than 18 nt or longer

than 30 nt (Friedländer et al., 2012; Zhang et al., 2015).
Selection of internal reference genes and
validation of circRNAs in P. aureosulcata

Moso bamboo (Phyllostachys edulis) is the most closely

related and well-studied bamboo species of P. aureosulcata, so

11 candidate genes were selected for use as reference genes in

moso bamboo (Fan et al., 2013; Qi et al., 2013; Wu et al., 2018).

The conserved sequences were downloaded from the National
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Center for Biotechnology Information (NCBI) database (http://

www.ncbi.nlm.nih.gov), and then Primer Premier 5 software

was used to design primers for cloning (Supplementary Table 2).

The annealing temperature of each primer was approximately

62°C, and the length was approximately 20-26 bp. Additionally,

the length of each amplification product was between 100 bp and

180 bp. Respectively plucking the P. aureosulcata roots, stems,

shoots, and leaves from different drought treatments in the Plant

materials section (natural drought for 0 d, 2 d, 4 d, and 6 d), each

tissue sample was obtained from at least three plants under good

growth conditions. Different RNA was extracted by the TRIzol

method (Total RNA Extraction Kit, TianMo Biotech, Tianjin,

China), and 1 ng of each RNA was reverse transcribed to obtain

cDNA for relative expression analysis of target genes by qRT-

PCR. The total RNA was taken and directly reverse transcribed

using PrimeScript RT Master Mix (Takara, Beijing, China) to

obtain gDNA. Then, the total RNA was delinearized using

Ribonuclease R (RNase R) and reverse transcribed using

PrimeScript RT Master Mix to obtain cDNA with the linear

RNA removed. A Nanodrop 2000 (Thermo Fisher Scientific)

was used to check the RNA quality to ensure that the A260/A280

ratio of the RNA samples was between 1.9 and 2.1.

PCR amplification was carried out using cDNA as a

template. The PCR products were visualized by agarose gel

electrophoresis, and genes with clear and unique bands

without primer-dimer formation were selected and confirmed

by Sanger sequencing. After confirming that the sequences were

correct, qRT-PCR was performed using 2×SYBR qPCR

MasterMix (Real-Times Biotechnology, Beijing, China) on a

Roche LightCycler 480 fluorescence quantification instrument

(Basel, Switzerland). The qRT-PCR procedure was as follows:

95°C for 1 min, followed by 40 cycles of 95°C for 15 s and 60°C

for 60 s. After obtaining the data, the results were imported into

NormFinder software for statistical analysis, and the gene

expression stability value (S value) was calculated (Andersen

et al., 2004). The gene with the smallest S value was obtained as

the most suitable internal reference gene for P. aureosulcata

under the present experimental conditions.

The circRNAs were randomly selected, and the convergent

and divergent primers were designed using Primer Premier 5.

Then, cDNA and gDNA were used as templates with two sets of

primers (Supplementary Table 2). The PCR products were also

visualized by agarose gel electrophoresis and confirmed by Sanger

sequencing. Using the system and apparatus above, qRT-PCR was

performed with the selected PP2A as the reference gene, and the

relative expression of circRNAs was calculated using the 2-DDCt

method (Livak and Schmittgen, 2001).
Differential expression analysis

The DESeq R package (1.10.1) was used for differential

expression analysis. DESeq provides statistical routines for
frontiersin.org
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determining differential expression in digital gene expression

data using a model based on the negative binomial distribution.

The resulting P values were adjusted using Benjamini and

Hochberg’s approach for controlling the false discovery rate.

Genes with an adjusted P value <0.01 and absolute value of

log2(fold change) >1 found by DESeq were considered

differentially expressed.
Functional prediction of DE RNAs

Gene Ontology (GO) enrichment analysis of the

differentially expressed genes (DEGs) was implemented by the

topGO R package. In addition, we used KEGG Orthology Based

Annotation System (KOBAS) software to test the statistical

enrichment of differentially expressed genes in KEGG

pathways. Benjamini and Hochberg’s methods were used to

adjust P values. In the detection of DE circRNAs, fold change

greater than or equal to 2 and P values less than 0.05 were

selected as screening criteria. The mRNA-miRNA-circRNA-

lncRNA network was generated by Cytoscape (v3.7.2)

(Shannon et al., 2003) and target gene prediction with

TargetFinder software (Bo and Wang, 2005).
Results

Identification and characterization

To identify and associate ncRNAs with drought in P.

aureosulcata, samples were taken from P. aureosulcata at 0

(P1), 2 (P2), 4 (P3) and 6 (P4) days of drought treatment, and

RNA-Seq libraries were constructed, which were subjected to

sequencing using the Illumina HiSeq 2500 platform. A total of

230.90 Gb of clean data was obtained from 12 samples, the

percentage of Q30 bases in each sample was not less than

93.89%, and the guanine and cytosine (GC) content was

approximately 44.58% (Supplementary Table 1).

Using the FASTQ data obtained from high-throughput

sequencing, several RNAs were predicted and identified

separately, and the quantities of several ncRNAs were counted

in combination with known RNAs. The results are shown in

Figure 1A. We detected 336,946 RNAs among all 12 samples,

including 192,098 mRNAs, 142,761 lncRNAs, 1,670 circRNAs,

and 417 miRNAs. Then, we used 3 different software programs

to analyse different kinds of ncRNAs to obtain more details.

CircRNAs were predicted using circRNA identifier (CIRI) (Gao

et al., 2015), and the distribution statistics of the length of

predicted circRNAs were carried out. As shown in Figure 1B,

most of the circRNAs were between 200-800 bp in length. The

type statistics of circRNAs performed in Figure 1C also showed

that most of the circRNAs were classified as exon circRNAs.
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Then, using HISAT2 (Li et al., 2015) to predict lncRNAs. The

predicted lncRNAs were distributed with length and class

statistics, as shown in Figures 1D, E. Most of the lncRNAs

were between 400-800 bp in length and were classified as exon

lncRNAs. Finally, using miRDeep2 software, adjusting and

changing its parameters and scoring system to make it suitable

for the prediction of plant miRNAs (Friedländer et al., 2012;

Zhang et al., 2015). As shown in Figure 1F, most of the miRNAs

were 21 or 24 bp in length.
Differentially expressed ncRNAs under
drought treatment

A total of 2,419 differentially expressed ncRNAs were

detected under different gradients of drought treatment.

Among them, a total of 213 DE circRNAs were detected.

There were also 2,088 DE lncRNAs. The total number of DE

miRNAs with differential epistatic responses was 118 (Figure 2).

The clustering analysis of differentially expressed lncRNAs,

circRNAs and miRNAs was performed, and the results are

shown in Figure 2.
Reference gene selection and
quantitative real-time polymerase
chain reaction

Among the 11 candidate reference genes, 6 candidate genes

were measured by qRT-PCR products of agarose gel

electrophoresis and showed a single specific band with the

same size of the target fragment and no primer dimer below

the band. The six selected reference genes were Phosphoprotein

Phosphatase 2A (PP2A), Actin2-1 (ACT2-1), Elongation Factor

1 Alpha (EF1a), Ubiquitin (UBQ), Actin-1 (ACT1), and Clathrin
Adaptor Complexes Medium Subunit (CAC) (Figure 3A). Their

primers were amplified with high efficiency and met the criteria

of qRT-PCR experiments for gene expression stability analysis.

For the six selected reference genes, qRT-PCR analysis was

performed with cDNAs under different drought treatments (0

days, 2 days, 4 days and 6 days) and cDNAs from different plant

organs (roots, stems, leaves and shoots) as templates. The results

were imported into NormFinder software for statistical analysis

(Andersen et al., 2004), and the gene expression stability values

(S values) were calculated (Table 1). The gene with the smallest S

value under both situations was obtained as PP2A, and PP2A

was identified as the most suitable internal reference gene for P.

aureosulcata under the present experimental conditions.

In addition, to verify the reliability of the gene expression

profile, we randomly selected four DE circRNAs for expression

analysis (Figure 3). qRT-PCR results showed expression patterns

consistent with the RNA-seq results.
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Validation of circRNAs

To verify the accuracy of our identified circRNAs, we

randomly selected two circRNAs using PCR and Sanger

sequencing to validate them and successfully confirmed their

circularity. Unlike linear RNAs, circRNAs are a loop, so two sets

of primers (convergent and divergent) and two templates

(genomic DNA [gDNA] and complementary DNA [cDNA])

were used to verify it (Figure 4A). The normal convergent

primers can obtain amplification bands in both gDNA and
Frontiers in Plant Science 05
cDNA, while the reverse divergent primers can only obtain

amplification bands in cDNA (Figure 4).
Functional prediction of DE ncRNAs by
Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes

To further understand the functions and characteristics of

DE ncRNAs, enrichment analyses of all DE ncRNAs, DE
A B

D

E F

C

FIGURE 1

Characterization of RNAs. (A) The number of each type of RNA in all samples. (B) The length distribution of circRNAs. (C) The type and
percentage of circRNAs in each sample. (D) The type and percentage of lncRNAs in each sample. (E) The length distribution of lncRNAs. (F) The
length distribution of miRNAs in each sample. Drought treatment with three biological repetitions each: 0 day (P11, P12, P13), 2 days of drought
treatment (P21, P22, P23), 4 days of drought treatment (P31, P32, P33) and 6 days of drought treatment (P41, P42, P43).
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A

B

D E

F G

C

FIGURE 2

Differential expression analysis of ncRNAs in response to drought stress treatment. Drought treatment with three biological repetitions each: 0 day
(P11, P12, P13), 2 days of drought treatment (P21, P22, P23), 4 days of drought treatment (P31, P32, P33) and 6 days of drought treatment (P41, P42,
P43). (A) The regulation of different kinds of DERNA between each treatment. (B) Venn diagram of DE circRNAs at six group of treatment.
(C) Heatmap of expression of all DE circRNAs in all samples, the horizontal coordinates in the diagram represent the sample names and the
clustering results of the samples, the vertical coordinates represent the differential genes and the clustering results of the genes. Different columns
in the graph represent different samples, and different rows represent different genes. The color represents the expression level of the gene in the
sample log10(FPKM+0.000001). (D) Venn diagram of DE circRNAs at six group of treatment. (E) Heatmap of expression of all DE lncRNAs in all
samples. (F) Venn diagram of DE miRNAs at six group of treatment. (G) Heatmap of expression of all DE miRNAs in all samples.
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circRNAs, DE lncRNAs, and DE miRNAs were performed using

the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) databases (Figures 5, 6 and Supplementary

Tables 3, 4).

According to the results of GO enrichment analysis, the

host genes were involved in three categories: biological process

(BP), cellular component (CC), and molecular function (MF).

In the BP section, most host genes were enriched in metabolic

process (GO: 0008152), cellular process (GO: 0044763), single

organism process (GO: 0006465) and biological regulation

(GO: 0065007). In the CC category, most host genes were

enriched in cell (GO: 0005623), cell part (GO: 0044464),

organelle (GO: 0043226) and membrane (GO: 0016020). In

addition, in the MF category, most host genes were enriched in

binding (GO: 0005488), catalytic activity (GO: 0003824),

transporter activity (GO: 0005215) and nucleic acid binding

transcription factor activity (GO: 0003700).
Frontiers in Plant Science 07
For the KEGG enrichment analysis, the most closely related

metabolic pathways of the host genes of all DE ncRNAs were

glycolysis/gluconeogenesis (ko00010), endocytosis (ko04144),

Carotenoid biosynthesis (ko00906), Terpenoid backbone

biosynthesis (ko00900), Phosphonate and phosphinate

metabolism (ko00440). Besides, the results showed that the

most closely related metabolic pathways of the host genes of

DE circRNAs under drought treatment were fatty acid

biosynthesis (ko00061), fatty acid metabolism (ko01212),

peroxisome (ko04146), fatty acid degradation (ko00071) and

RNA transport (ko03013). In addition, the most closely related

metabolic pathways of the host gene of DE lncRNAs are

phenylpropanoid biosynthesis (ko00940), DNA replication

(ko03030), starch and sucrose metabolism (ko00500), pentose

and glucuronate interconversions (ko00040) and plant hormone

signal transduction (ko04075). Meanwhile, the most closely

related metabolic pathways of the host genes of DE miRNAs
A

B

D E

C

FIGURE 3

Reference gene selection and qRT-PCR validation of four DE circRNAs (A) PCR amplification of 11 reference genes. (B-E) Relative expression of four
selected DE circRNAs measured by RT-qPCR. For RT-qPCR, three replicates were performed. Asterisks on bars indicate significant differences
between different stages using a t-test. Error bars represent the standard error of the mean. Drought treatment: 0 day (P1), 2 days of drought
treatment (P2), 4 days of drought treatment (P3) and 6 days of drought treatment (P4). * p < 0.05, indicates a significant difference. ** p < 0.01,
indicates a profoundly significant difference. *** p < 0.001, indicates a profoundly significant difference.
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are steroid biosynthesis (ko00905), biosynthesis of various

secondary metabolites-Part 2 (ko00998), inositol phosphate

metabolism (ko00562), flavonoid biosynthesis (ko00941) and

photosynthesis-antenna proteins (ko00196).
Functional prediction of DE ncRNAs
based on the mRNA-miRNA-circRNA-
lncRNA network

To further explore the functions of DE ncRNAs, we first

predicted DE circRNAs and DE lncRNAs as miRNA decoys and

mRNAs as miRNA targets (Supplementary Tables 6–8). Then,

based on the potential relationship between these RNAs, three

mRNA-miRNA-circRNA-lncRNA regulatory networks were

constructed by screening the differentially expressed mRNAs
Frontiers in Plant Science 08
(Figure 7). The reciprocal relationship networks of P1 treatment

with drought treatment P2 (Supplementary Figure 1), P3

(Supplementary Figure 1) and P4 (Figure 7). Meanwhile, the

mRNAs involved in the above three mRNA-miRNA-circRNA-

lncRNA regulatory networks were annotated and analysed. We

found that these mRNAs were mainly annotated to the following

GO entries:

Molecular Function: DNA binding (GO: 0003677), nucleic

acid binding (GO: 0003676), zinc ion binding (GO: 0008270),

RNA binding (GO: 0003723), RNA-directed DNA polymerase

activity (GO: 0003964), aspartic-type endopeptidase activity

(GO: 0004190), transporter activity (GO: 0005215),

phenylalanine ammonia-lyase activity (GO: 0045548). Cellular

Component: Nucleus (GO: 0005634), Plastid (GO: 0009536),

Integral component of membrane (GO: 0016021), Membrane

(GO: 0016020), Biological Process: regulation of transcription,

DNA-templated (GO: 0006355), Mitochondrion (GO: 0005739),

Cytoplasm (GO: 0005737). Biological Process: DNA integration

(GO: 0015074), Regulation of transcription, DNA-templated

(GO: 0006355), Auxin-activated signalling pathway (GO:

0009734), RNA-dependent DNA biosynthetic process (GO:

0006278), DNA recombination (GO: 0006310), proteolysis

(GO: 0006508), L-phenylalanine catabolic process (GO:

0006559), Cinnamic acid biosynthetic process (GO: 0009800).

Based on the above two chapters, the KEGG/GO enrichment

analysis showed that non-coding RNAs are mainly involved in

the following biological processes: 1, metabolism of primary/

secondary metabolites. This is the class with the highest number

of enriched ncRNAs and involving GO/KEGG entries. By

regulating the synthesis and metabolism of some metabolites
A B

FIGURE 4

Validation of circRNAs by PCR and Sanger sequencing. (A) Schematic representation of the validation of circRNA1: hic_scaffold_22:10652336|
10653429. circRNA1 is formed after the circularization of 4 exons in the PH02Gene45872 gene. (B) Schematic representation of the validation
of circRNA2: hic_scaffold_8:14927508|14929885. circRNA2 is formed after the circularization of 2 exons in the PH02Gene31681 gene. PCR
amplification was performed after designing two sets of primers (convergent and divergent) for these two genes; clear bands could be observed
in the products by agarose gel electrophoresis (AGE), and the amplified products could be sequenced to obtain the complete sequences at the
first and last junctions.
TABLE 1 Ranking order of reference genes determined by
NormFinder under drought treatments.

Ranking order of stability under different
conditions

Gene Name
Different treatments Different tissues

PP2A 1 (0.08) 1(1.24)

UBQ 2 (0.12) 2 (1.9)

EF1a 3 (0.13) 3 (2.31)

CAC 4 (0.15) 5 (3.13)

ACT2-1 5 (0.15) 6 (3.16)

ACT1 6 (0.17) 4 (3.02)
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closely related to the daily life activities of plants and key

compounds in key biological cycles (e.g., saccharides, alcohols,

proteins, lipids, etc.) to counteract the effects of external

environmental water changes. 2, Organelle activity. By

regulating the activity of organelles such as peroxisome,

plastid, and mitochondrion, the strength of relevant

biochemical reactions in plants is mobilized to increase/

decrease, thus enhancing the resistance of plants to external

water changes. 3, hormones. By regulating plant hormone signal

transduction to make changes in plant physiological and

biochemical metabolism, thus improving drought resistance

and reducing plant damage. 4, Increase drought resistance by

regulating RNA and DNA synthesis/recombination/translation,

etc. 5, Regulate the ions in the tissues. By regulating the activity

of cell membrane, as well as regulating the state of ions such as

Zn2+ and Ca2+ in the cell, and regulating the osmotic pressure in

the tissues to resist external water changes.
Discussion

As global warming increases, environmental temperatures

are gradually rising, which greatly increases the probability and

duration of drought. As a common greenery bamboo, P.

aureosulcata is planted mostly in urban environments and

grows naturally, which further deepens the impact of drought

stress on it. Meanwhile, the role of ncRNAs has been gaining

attention in recent decades, from inconsequential transcriptional

“noise” to “a new continent in the RNA world”. ncRNAs are

mainly classified into long noncoding RNAs (lncRNAs), which

are longer than 200 nt, and small noncoding RNAs (sRNAs),

which are smaller than 200 nt (Gelaw and Sanan-Mishra, 2021).
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Many experimental reports have shown that ncRNAs and their

target genes play important roles in plant development,

environmental responses, and biotic and abiotic stress

responses (Ohtani, 2017).

With the advancement of high-throughput sequencing

technology, many new ncRNA transcripts have been identified

in different species (Di et al., 2014; Wang et al., 2015; Deng et al.,

2018; Yuan et al., 2018). Bioinformatics analysis has proven to be

an important tool for exploring differences in plant responses to

drought stress and has been applied to several species, including

Arabidopsis (Qin et al., 2017), rice (Mutum et al., 2016), maize

(Zhang et al., 2014), tomato (Zhong et al., 2013), sorghum

(Fracasso et al., 2016), and coffee (Mofatto et al., 2016), and

many drought-related DE ncRNAs have been identified. These

studies revealed the complexity of the regulation between

drought stress and ncRNAs and revealed that ncRNAs play

important roles in many important biological processes.

Therefore, understanding the regulatory mechanisms of

ncRNAs in response to drought will provide a molecular basis

for plant resistance studies. However, genomic identification and

characterization of known and novel ncRNAs under drought

stress of P. aureosulcata are still lacking. Therefore, in this

research, we conducted an overall statistical analysis,

identification and analysis of all species of DE ncRNAs in P.

aureosulcata under drought treatment and focused on analysing

circRNAs in addition to counting conventional lncRNAs and

miRNAs. A total of 2,419 differentially expressed ncRNAs were

detected under different gradients of drought treatment,

including 213 DE circRNAs, 2,088 DE lncRNAs and 118 DE

miRNAs. Among these DE ncRNAs, the number of upregulated

versus downregulated DE ncRNAs was largely maintained at 1:1,

which is consistent with previous studies. The DE ncRNAs
A B

FIGURE 5

GO and KEGG enrichment analyses of the host genes of all DE RNAs. (A) GO enrichment analysis of the host genes of all DE ncRNAs. The
horizontal coordinate is the GO classification, the left side of the vertical coordinate is the percentage of the number of genes enriched in that
GO term, and the right side is the number of genes. (B) KEGG enrichment analysis of the host genes of all DE ncRNAs. Each circle in Figure 5
represents a KEGG pathway, the vertical coordinate indicates the top 20 pathway names, and the horizontal coordinate is the enrichment
factor, which represents the ratio of the proportion of differential genes annotated to a pathway (gene ratio) to the proportion of all genes
annotated to that pathway (background ratio). The colour of the circle represents the q value, which is the P value after correction for multiple
hypothesis testing, and the size of the circle indicates the number of genes enriched in the pathway.
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identified in this study originated from exons, introns, and

intergenic regions, with most DE ncRNAs, especially DE

circRNAs, originating from a single exon, which may be

related to the current mechanism of circRNA formation in

plants: exon skipping events (Conn et al., 2017). In addition,

the expression of many circRNAs was extremely low, a feature

that may be an essential feature common to circRNAs in plants

(Zhang et al., 2020).

In many plant species, ncRNAs have been found to be

involved in regulating the expression of their host genes,

regulating the physiological and biochemical activities of the
Frontiers in Plant Science 10
plant, and thus regulating the growth life of the plant. In the face

of drought, ncRNAs perform different functions to regulate the

state of the plant itself. For example, in Arabidopsis thaliana,

drought-induced lncRNA (DRIR) was confirmed as a novel

positive regulator of the plant response to drought and salt

stresses (Qin et al., 2017), and miR165/166 use abscisic acid

(ABA) signalling to modify plant xylem morphology under

conditions of environmental stress (Ramachandran et al.,

2018). In cassava, lncRNAs were confirmed to play crucial

roles in MT-mediated drought stress responses (Ding et al.,

2019). In maize, DRIR represses ZmNAC111 expression and
A B

D

E F

C

FIGURE 6

GO and KEGG enrichment analyses of the host genes of DE RNAs separately. (A) GO enrichment analysis of the host genes of DE circRNAs. The
horizontal coordinate is the GO classification, the left side of the vertical coordinate is the percentage of the number of genes enriched in that
GO term, and the right side is the number of genes. (B) KEGG enrichment analysis of the host genes of DE circRNAs. Each circle in Figure 6
represents a KEGG pathway, the vertical coordinate indicates the top 20 pathway names, and the horizontal coordinate is the enrichment
factor, which represents the ratio of the proportion of differential genes annotated to a pathway (gene ratio) to the proportion of all genes
annotated to that pathway (background ratio). The colour of the circle represents the q value, which is the P value after correction for multiple
hypothesis testing, and the size of the circle indicates the number of genes enriched in the pathway. (C) GO enrichment analysis of the host
genes of DE lncRNAs. (D) KEGG enrichment analysis of the host genes of DE circRNAs. (E) GO enrichment analysis of the host genes of DE
miRNAs. (F) KEGG enrichment analysis of the host genes of DE miRNAs.
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enhances drought tolerance through RNA-directed DNA

methylation (Pang et al., 2019), and several microRNAs can

regulate phosphate uptake and affect the growth of primary roots

in response to nutrient deficiencies in response to water-deficit

stress (Seeve et al., 2019). Therefore, in this study, GO

enrichment analysis and KEGG enrichment analysis were

performed on host genes of DERNAs to investigate the

function of DERNAs in the drought response. GO analysis

showed that the host genes were enriched mainly in metabolic

process (GO: 0008152), cellular process (GO: 0044763), cell

(GO: 0005623), binding (GO: 0005488), and catalytic activity

(GO: 0003824). KEGG analysis showed that the most closely

related metabolic pathways of the host genes of DERNAs under

drought treatment were fatty acid biosynthesis (ko00061), fatty

acid metabolism (ko01212), peroxisome (ko04146), fatty acid

degradation (ko00071), phenylpropanoid biosynthesis

(ko00940), DNA replication (ko03030), starch and sucrose

metabo l i sm (ko00500 ) , pen tose and g lucurona t e

interconversions (ko00040), plant hormone signal transduction

(ko04075), steroid biosynthesis (ko00905) and biosynthesis of

various secondary metabolites-Part 2 (ko00998). These

pathways are clearly related to the synthesis and degradation

of primary and secondary metabolites and involve synergistic

interactions between multiple organelles and hormonal
Frontiers in Plant Science 11
signalling. Therefore, we hypothesized that these ncRNAs

regulate the functions of various organelles and regulate the

levels of various hormones, leading to changes in the metabolism

of multiple metabolites and thus resisting the lack of water

within the environment.
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