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Peeling damage reduces the quality of fresh corn ear and affects the purchasing

decisions of consumers. Hyperspectral imaging technique has great potential

to be used for detection of peeling-damaged fresh corn. However,

conventional non-machine-learning methods are limited by unsatisfactory

detection accuracy, and machine-learning methods rely heavily on training

samples. To address this problem, the germinating sparse classification (GSC)

method is proposed to detect the peeling-damaged fresh corn. The

germinating strategy is developed to refine training samples, and to

dynamically adjust the number of atoms to improve the performance of

dictionary, furthermore, the threshold sparse recovery algorithm is proposed

to realize pixel level classification. The results demonstrated that the GSC

method had the best classification effect with the overall classification accuracy

of the training set was 98.33%, and that of the test set was 95.00%. The GSC

method also had the highest average pixel prediction accuracy of 84.51% for

the entire HSI regions and 91.94% for the damaged regions. This work

represents a new method for mechanical damage detection of fresh corn

using hyperspectral image (HSI).

KEYWORDS

fresh corn, hyperspectral image, dictionary learning, sparse representation,
damage detection
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1 Introduction

Fresh corn is favored by consumers for its excellent

nutritional value and edible quality (Saka et al., 2018).

Mechanical peeling is the main link in the processing of fresh

corn, and the collision, extrusion, and friction between the ear

and the high-speed rotating peeling roller can easily cause the

mechanical damage of varying degrees to the crisp and tender

kernels (Zhao et al., 2011). At present, most fresh corn

processing plants still use the manual method to select and

grade damaged ears. However, manual grading is a tedious and

inefficient work, and it is more difficult to observe with naked

eyes in the case of slight abrasion of seed coats (Wang, 2010).

Therefore, it is urgent to find a fast automatic detection

technology to detect the damage of fresh corn ear.

For detection of damaged corn ears, researchers identified

them based on RGB images (Fu et al., 2020), and constructed a

classification model using the color characteristics and texture

characteristics (Zhang F et al., 2015). The detection of damaged

corn based on traditional RGB images mainly utilizes the color

difference and spatial feature difference of the target, and the

classification results are seriously affected by the image

acquisition environment (Gao and Liu, 2016). HSI data is a

type of three-dimensional cube containing spatial pixel

information (two-dimensional) and spectral information (one-

dimensional) of an object (Torres et al., 2019). The wavelength

of each pixel covers the entire spectral range, and meanwhile, all

the data in each wavelength can form an image (Yin et al., 2017).

Hence, HSI can extract more feature information for more

complex spectral analysis and image processing, which cannot

be achieved by the traditional machine vision. With the

development of optical sensors and imaging technology, more

and more studies have reported the application of HSI in the

quality assessment and safety detection of various agricultural

products (Kandpal et al., 2015; Su et al., 2021; Nazir et al., 2022).

Among them, in the aspect of damage detection, HSI has been

successfully used for the detection of crack in fresh jujube (Yu

et al., 2014), scratch, scar, and spot in peach (Zhang B et al.,

2015), insect damage in soybeans (Huang et al., 2013), wheat

kernels damaged by Fusarium head blight (Lv et al., 2022), and

freeze-damage of corn seed (Zhang et al., 2019). As far as we

know, there is no report on the damage detection of fresh corn

ear based on HSI. Therefore, an investigation into the potential

of detecting the peeling-damaged regions of fresh corn with the

spectral range of 400 nm–1000 nm deserves special attention.

At present, methods of partial least squares discriminant

analysis (PLS-DA) (Ambrose et al., 2016), support vector

machine (SVM) (Wakholi et al., 2018), K-singular value

decomposition (K-SVD) (Fang et al., 2015), random forest

(RF) (Che et al., 2018), and artificial neural networks (ANNs)

(Zhang et al., 2021) are often used for HSI classification and have

achieved relatively good classification results. However, a study

of existing classification methods found that there are still some
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deficiencies in the current researches, which can be summarized

as follows: (1) Non-machine-learning methods are limited by

unsatisfactory detection accuracy. (2) Machine-learning

methods, especially deep learning methods, rely heavily on

training samples. However, there usually exist some

interference samples while building training datasets, which

significantly influence the accuracy of machine learning. (3)

The background contents are not fixed in different detecting

situations, containing various features, and are difficult to be

accurately classified. Moreover, it is more difficult to classify the

sound and damaged regions of fresh corn than other agricultural

products due to the large number of kernels on the ear, the

vertical and horizontal gaps between kernels, and the

interspersed corn whisker. Therefore, it is necessary to develop

a suitable algorithm for identifying the damage regions of

fresh corn.

Aiming at the shortcomings of current methods, the

germinating sparse classification (GSC) method was proposed

to detect the sound and peeling-damaged regions of fresh corn.

The innovations of this method could be summarized as follows:

(1) The ‘seed germinating’ strategy is developed to refine training

samples, which reduces the influence of unqualified training

samples on dictionary learning. (2) For dictionary learning

process, the atoms that are incompetent to accurately represent

any training samples are removed during iterations, and the

number of atoms can be dynamically adjusted. The strategy

improves the performance of dictionary and reduces

computational complexity. (3) For sparse classification process,

the threshold algorithm with respect to the energy of sparse

representation residual is proposed to determine the pixels of

background. In addition, three commonly used classification

methods K-SVD, SVM, and back propagation (BP) neural

network were used to classify the sound, peeling-damaged, and

background pixels in fresh corn hyperspectral images (HSIs). The

classification results of the three methods were compared with

that of the proposed GSC method to verify the superiority of the

GSC method in the detection of fresh corn peeling damage.
2 Experimental materials and data

In this section, the fresh corn materials and equipment used

in this study are described. Next, the hyperspectral data

acquisition and preprocessing are introduced.
2.1 Fresh corn materials

The fresh corn variety used in this study was Jinxiangnuo,

which was widely cultivated in Northeast China. One hundred

and eighty fresh corn ears were hand-selected from the fresh

corn production line at Fumin Food Processing Plant in

Songyuan city, Jilin Province, China. The fresh corn ears were
frontiersin.org
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inspected by five trained workers and divided into sound and

peeling-damaged. The 180 fresh corn ears were composed of 90

sound ears and 90 peeling-damaged ears. The hyperspectral data

of randomly selected 60 sound ears and 60 peeling-damaged ears

formed the training set, and the hyperspectral data of the

remaining ears constituted the test set. The selected fresh

corns were sealed in airtight bags, then stored at the optimum

condition of 4°C to retain moisture. All fresh corn HSIs were

taken within two hours after peeling.
2.2 Hyperspectral image acquisition

Hyperspectral data of fresh corn ears were collected by using

a hand-held visible-NIR hyperspectral imaging system (Specim

IQ, Specim Ltd., Finland). The system integrated a hyperspectral

camera, scanning platform, image acquisition card, data

acquisition software, and data processing software. As

presented in Figure 1, the hyperspectral imaging system kept

the internal environment consistent during all the acquisition

processes to reduce the interference from the outside. The

imaging spectrograph covered a spectral range of 400 nm–

1000 nm. The resulting hyperspectral data cube had

dimensions of 512×512 pixels and 204 wavebands. The

lighting system consisted of two 150 W halogen tungsten

lamps (QVF133, Philips Lighting (Shanghai) Co., LTD.,

Shanghai, China) which were fixed on both sides of the test

platform at an angle of 45°. The hyperspectral imaging system

operated at an exposure time of 22 ms during data acquisition.

The distance between the lens and the fresh corns was 38 cm.
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2.3 Hyperspectral data preprocessing

HSIs need to be calibrated by using white and dark reference

images. The raw HSI was calibrated using equation (1):

Rc =
Ro − Rb

Rw − Rb
(1)

where, Rc is the calibrated HSI; Ro is the raw HSI; Rb is a dark

reference image obtained by completely blocking the lens with

an opaque cover; Rw is a white reference image of a pure Teflon

whiteboard (Spectralon, Labsphere Inc, North Sutton, NH,

USA) with 99% reflectivity, obtained under the same

environment as the raw HSI.

The RGB images corresponding to fresh corn HSIs were

collected, and the region of interest (ROI) of fresh corn were

labeled at pixel level by human judgment. The pixels

corresponding to the sound regions and damage regions on

the corn were denoted as the sound class and peeling-damaged

class, respectively. However, it was inevitable to generate some

impure training samples because of human mistakes or limited

labeling conditions, which would directly affect the discriminant

performance of the subsequent models and lead to a reduction of

the classification accuracy. In order to improve the purity of

training samples, all samples in training sets of the two

classes were refined. The detailed method is described in

subsection 3.2.2.

Modeling with all-waveband data not only takes a long time

to compute and occupies a large amount of memory, but also

degrades the performance due to the curse of dimensionality.

Therefore, the dimension of hyperspectral data was reduced
FIGURE 1

Schematic diagram of the hyperspectral imaging system for acquiring reflectance images of fresh corns.
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before using for training in this study. To determine the required

spectral wavebands, the dimensionality reduction test including

two steps was executed. By given the starting waveband and the

ending waveband, first, the average spectra of the refined

training samples of the sound class and peeling-damage class

were calculated, respectively. Second, the spectral angle was

obtained from the average spectra of the two classes of

training samples. The spectral angle is utilized to reflect the

difference between two classes of spectra. A larger spectral angle

indicates greater difference between the two classes of training

samples, and implying better performance for classification.

Through the results of test presented in Table 1, it can be

noted that the spectral angle of the two classes of training

samples obtained by using the first 70 wavebands

(corresponding wavelength range from 400 nm to 607 nm)

was the largest, implying that the first 70 bands may have better

potential to provide satisfactory classification performance.

The spectra after 70 wavebands (corresponding wavelength

range from 608 nm to1000 nm) were mainly infrared and near-

infrared, which was not helpful to the damage identification of

fresh corn and even interfered with the classification results.

Moreover, the complexity of our algorithm was low, and

processing 70 wavebands would not significantly increase the

running speed. The selected 70 wavebands were universal to

both the training sample and the test target. Therefore, the first

70 wavebands were selected and applied to the four

classification methods.
3 Experimental methods

In recent years, there has been increasing interest in sparse

representation of signals. Sparse representation is widely used in

the computer vision and pattern recognition in various fields,

including image denoising (Sun et al., 2014), image classification

(Zheng et al., 2020), face recognition (Liu et al., 2019), disease

recognition (Feng and Zhou, 2016), and target tracking (Ma and

Xu, 2021), etc. In these applications, the sparse representation

method often leads to the most advanced performance.
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Therefore, this study aimed to develop a classification method

based on sparse representation for fresh corn peeling damage.

This section briefly reviews the theoretical background of the

HSI classification based on sparse representation, and then

introduces the detailed processes of the GSC method proposed

in this paper.
3.1 Related work

In the sparse representation classification (SRC), pixels in

the same class are assumed to approximately lie in the same low-

dimensional subspace. Suppose there are C distinct classes in

HSI, and the c-th class has Mc training samples. M =oC
c=1Mc is

the total number of training samples. A spatial pixel in HSI can

be approximately represented as x=[x1,x2,⋯,xN]∈RN×1 , whereN

is the number of wavebands. The subdictionary Dc∈RN×Mc is

constructed by directly extracting the pixels of the c-th class in

original HSI. All subdictionaries for C classes can be obtained,

and all these subdictionaries constitute the final dictionary D=
[d1,d2,⋯,dc,⋯,dC]∈RN×M . The SRC assumes that the pixel x of a
particular class can be represented as a sparse linear combination

of a dictionary D. Then x can be sparsely represented as x = Da
or approximate x≈Da , satisfying

‖ x−Da 2 ≤ ek (2)

where a∈RM×1 contains the representation coefficients for the

pixel x and e is the residual.

The sparse coefficient vector â can be obtained by solving

the following optimization problem:

ba = argmin
a

x−Dak k2    s : t : ak k0≤ K0 (3)

where ∥·∥0 represents the l0-norm of the vector a which counts

the number of nonzero entries in the vector and K0 is the upper

bound of the sparse level which is equal to the number of

nonzero rows in â . The solution with the fewest number of

nonzero coefficients is certainly an appealing representation.

However, equation (3) is NP-hard (Li et al., 2017), which can be

approximately solved by matching pursuit algorithms. Once â is

obtained, the class of the pixel x is determined as the one with

the minimal reconstruction residual (Fang et al., 2017),

class(x) = arg min
c=1,⋯,C

rc(x) = arg min
c=1,⋯,C

‖ x−Dâ c ‖2 (4)

where â c is the sparse coefficient subset of â belonging to c-

th class.
3.2 Proposed method

3.2.1 Algorithm framework
The proposed method contains three processes: sample

refining, dictionary learning, and sparse classification. The
TABLE 1 Spectral angles of average spectra of refining samples of
two classes in terms of different used bands.

Starting
waveband

Ending
waveband

Number of used
wavebands

Spectral
angle

1 204 204 0.103

1 150 150 0.133

1 90 90 0.198

1 70 70 0.231

21 90 70 0.164

41 110 70 0.042

1 50 50 0.221
The bold number represents the maximum value of the spectral angles.
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graphical representation of the overall process of the proposed

GSC algorithm is shown in in Figure 2.

3.2.2 Sample refining
The sample refining process is used to remove the

unqualified training samples (Gong et al., 2019; Lv et al.,

2019). For each class, the strategy is manually selecting a set of

qualified training samples first, which are referred to as sample

seeds in this study. These seeds are then employed as the baseline

to be compared with each training sample. If a training sample

has insufficient correlation with all seeds, the sample is

considered not to belong to this class, and therefore, it will be

removed from the training samples. The detailed process is

summarized in Algorithm 1. In this algorithm, the correlation

between a seed and a training sample is evaluated based on the 2-

norm, expressed as ∥ z j − vc,i ∥22 = ∥ z j ∥22, where zj–vc,i is the

residual between the seed vci and the training sample zj. The
ratio ∥ z j − vc,i ∥22 = ∥ z j ∥22 is larger than the threshold gmeans zj
has insufficient correlation to vc,i. The above evaluation of zj is
repeated for all seeds. If qmin ≥ g, i.e., zj has insufficient

correlation to all seeds, the training sample zj will be removed.

The algorithm is executed for the peeling-damaged class and

sound class to obtain training samples Z1∈Rnp×h1 and

Z2∈Rnp×h2 , respectively, where h1 and h2 denote the number

of training samples of two classes, respectively.
Fron
Input: Original training samples Z∈Rnp×η , V
= [z1,z2,⋯,zη], threshold g
Initialize:Sample seeds V ∈ Rnp×ρ, V=[ν1, ν2,

⋯,νρ] ;

1. For each training sample zj do
2.qmin = min

i
( ∥ z j − nc,i ∥

2
2 = ∥ z j ∥

2
2 ),   i = 1, 2,⋯, r;

3. If θmin ≥ γ

4. Remove zj from the training samples;

Output: Refined training samples Z
ALGORITHM 1

Sampling refining process of the GSC.

3.2.3 Dictionary learning
Next, the dictionary learning process is executed to obtain the

sparse dictionaries of peeling-damaged class and sound class,
tiers in Plant Science 05
respectively. The process is summarized as Algorithm 2. Given

the training samples Z, The first step is to initialize the dictionary

D∈Rnp×q , where q represents the number of atoms(column) of

D. In this study the dictionary is initialized to be the Gaussian

random matrix. The training process is an iterative process with

themaximum number of iterative cycles of tmax. For each iterative

cycle, the sparse coefficients sj is computed based on the l0-

optimization problem, sj = argmin
s

∥ zj − Ds ∥2     s : t : ∥ s ∥0 ≤ k,

which can be solved by algorithms such as the orthogonal

matching pursuit (OMP) (Wang et al., 2012). The step of

sparse coefficients computation is called sparse coding. By

completing the sparse coding step, the matrix S = [s1, s2, ⋯, sz]
is obtained. Then, for each atom di, we inspect whether the atom
has been used in the sparse coding step. If an atom was not used,

it will be removed from the dictionary, shown as lines 7–8 in

Algorithm 2. The other atoms are then updated by using the

strategy of the K-SVD. The Algorithm 2 is executed for both two

classes, respectively, and two dictionaries D1∈Rnp×q1 and

D2∈Rnp×q2 , where q1 and q2 denote the number of atoms of

two dictionaries, respectively. It should be pointed out that the

background, i.e., the pixels that do not belong to peeling-damaged

class or sound class, usually contains various features. Thus, it is

difficult to obtain a dictionary that can represent all features

accurately. Based on this consideration, the background class is

not involved in the dictionary learning process, but the

classification among the background class and other two classes

can be still realized, which is described as follows.
Input: Training samples Z∈Rnp×ξ , sparse

level k, maximum number of iterative cycles

tmax, initial overcomplete level β

Initialize: t=0, q=βnp, D=[d1,d2,⋯ ,

dq], D∈Rnp×q ;

1. While t ≤ tmax do
2. t = t + 1;

3. S=[s1,s2,⋯,sξ]=O, S∈Rq×ξ ;

4. For j = 1 to ζ do

5. Solve sj = argmin
s

∥  z j − Ds ∥2     s : t : ∥ s ∥0 ≤ k;

6. For each atom di do

7. If S (i,:) contains only zero entries

8. Remove di from the dictionary;

9. Else Update di by using the K-SVD
FIGURE 2

The graphical representation of the overall process of the proposed GSC algorithm.
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Fron
strategy;

10. Update q;

Output:Dictionary D
ALGORITHM 2

Dictionary learning process of the GSC.

3.2.4 Sparse classification
The obtained dictionaries are used for pixel level

classification of HSIs. The algorithm is summarized in

Algorithm 3. The matrix Y denotes the classification result of

the HSI X, and it is initialized by the zero matrix (all entries of Y
are zero). The classification process is realized by classifying each

spatial pixel. Given an arbitrary spatial pixel, the spectral data is

extracted from X, expressed as x = X(i, j, : ). Then, the sparse

recovery problems with respect to x and two dictionaries D1 and

D2 are solved to obtain the sparse coefficients s1 and s2,
respectively, shown as steps 3 and 5 in Algorithm 3. Similar

to the sparse coding process in Algorithm 2, the sparse recovery

problem can be solved by using the OMP algorithm or other l0-

optimization algorithms. The residuals of sparse recovery results

are computed, denoted as rc = x – Dcsc, c = 1, 2. The 2-norm of

residuals are computed, denoted as e1 and e2, respectively. Then,

the classification of the pixel is determined by the judgement

given by steps 7 and 8 of Algorithm 3. If the smaller one of e1
and e2 is larger than threshold e, it means the spectral data x
cannot be accurately represented by neither D1 nor D2. Hence,

the pixel is considered to belong to neither peeling-damaged

class nor sound class, and it is determined to belong to the

background class (denoted as value-0 in Y). If the smaller one of

e1 and e2 is not larger than threshold e, the pixel is determined to

belong to the class that satisfies argmin
c
fecg. The steps 2–8 are

repeated for each spatial pixel, and finally the classification result

Y∈Rns1×ns2 is obtained.
Input: HSI X ∈ Rns1�ns2�np, dictionaries D1, D2

sparse level k, threshold ε

Initialize: Y = O ∈ Rns1�ns2;

1. For each spatial pixel (i, j) do

2. x = X(i, j, : );
3. Solve s1 = argmin

s
∥ x − D1s ∥2     s : t : ∥ s ∥0 ≤ k;

4. Compute r1 = x – D1s1, e1 = ∥r1∥2;
5. Solve s2 = argmin

s
∥ x − D2s ∥2     s : t : ∥ s ∥0 ≤ k;

6. Compute r2 = x – D2s2, e2 = ∥r2∥2;
7. If min (e1, e2) ≤ e
8. Y(i, j) = argmin

c
fecg  ;

Output:Classification result Y
ALGORITHM 3

Sparse classification process of the GSC.
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3.2.5 Evaluation index
The classification result of the HSI was obtained by pixel

level classification. Considering that some outliers might reduce

the accuracy of the algorithm, the block level calculation method

was adopted to process the original classification result and

eliminate the influence of outliers in this paper. In the block level

method, first of all, every 2×2 pixels in the prediction

classification results were divided into small blocks; and then

the class with the largest number of pixels in the small block was

statistically obtained; finally, all pixels in this small block were

divided into this class. The evaluation indexes were the overall

classification accuracy and the pixel prediction accuracy. The

overall classification accuracy is the percentage of the correctly

classified sound fresh corn and damaged fresh corn in the

training set and test set. The pixel prediction accuracy of the

entire HSI region can be calculated by dividing the number of

the correctly predicted pixels in the classification result by the

total number of the pixels in the test image. The pixel prediction

accuracies of the damaged region can be calculated by dividing

the number of correctly predicted pixels in the damaged region

by the total number of such pixels in the ground-truth.
4 Experimental results and analysis

The experiment results and discussion are introduced in this

section. Firstly, the refined training samples are presented, and

the characteristics of reflectance spectra of fresh corn are

analyzed. Then, the key parameters of the proposed GSC

method are determined through experiments. Finally, the

classification results of fresh corn HSIs are described. All

experiments were carried out using the Matlab 2021a software.
4.1 Refined samples and
spectral characteristic

There were 146893 and 190242 training samples for sound

class and peeling-damaged class of fresh corn, respectively. After

the sample refining process, 39085 and 116427 impure training

samples were removed, and then 107808 and 73815 refined

training samples were left in sound class and peeling-damaged

class, respectively. The same refined training samples were used

in the GSC, K-SVD, SVM, and BP classification methods.

Figure 3 shows the original training samples and the refined

training samples of the sound class and peeling-damaged class of

fresh corn. As shown in Figure 3, some obviously unqualified

training samples in the sound and peeling-damaged classes had

been removed after sample refining. In addition, it could be seen

that the spectral reflection intensity decreased first and then

increased. The relative intensity of the peeling-damaged fresh
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corn was lower than that of the sound one, and it was because

the damaged pigment and collapsed tissue of fresh corn could

cause a reduced light reflection (Gao et al., 2019).
4.2 Experimental parameter selection

In order to obtain better classification performance, some

key parameters of the proposed GSC methods needed to be

determined, such as the sparse level k, maximum number of

iterative cycles tmax, and threshold e. The optimal parameters

were determined by experiments, k ranged in {1, 2, 3, 4, 5}, tmax

ranged in {3, 6, 10, 15, 20}, and e ranged in {0.02, 0.04, 0.06, 0.08,

0.10}. If the parameter values were selected appropriately, the

pixel prediction accuracies were high. Therefore, different

parameter values were tested repeatedly on 12 HSIs of peeling-

damaged fresh corn selected from the test set to determine the

appropriate values of k, tmax, and e. The following parameter

combinations were selected during the test: the sparsity level was

2, maximum number of iterative cycles was 15, and threshold

was 0.08. Two parameters were fixed in each group of tests to

explore the appropriate parameter values for maximizing the

pixel prediction accuracies of the GSCmethod. The average pixel

prediction accuracies under different parameters are displayed in

Figure 4. Aiming for the highest average pixel prediction

accuracies, the optimal parameter values of the proposed GSC

method were finally set as k=2, tmax=10, and e =0.06 based on the
experimental results shown in Figure 4. Taking one HSI as an

example, the classification maps under different parameters are

shown in Figure 5. The yellow pixels in classification maps

represented the sound corn, the white pixels represented the

peeling-damaged corn, and the black pixels represented

the background.
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4.3 Classification results analysis

In this subsection, the GSC method and other three

commonly used K-SVD, SVM, and BP methods were used to

conduct the overall classification of fresh corn HSIs in the

training set and test set, and finally determined that the fresh

corn belonged to sound or damaged ear. Besides, all test fresh

corn HSIs in the test set were precisely classified, and each pixel

in the image was classified at the pixel level. Finally, the pixel was

ascertained to belong to sound kernel, damaged kernel, or

background classes. The overall classification accuracy and

average pixel prediction accuracy of the four methods were

obtained and compared.

4.3.1 Results on overall classification accuracy
The overall classification accuracy results of the fresh corn

HSIs in the training set and test set using four classification

methods are listed in Table 2. It can be seen that the proposed

GSC method performed best in distinguishing sound and

damaged fresh corn ears. For the training set, the

identification accuracy of sound and damaged fresh corn by

GSC method was 98.33%, with 2 damaged fresh corns misjudged

as sound fresh corns. For the test set of the GSC method, the

identification accuracy of sound and damaged fresh corn by was

95.00%, with 1 sound fresh corn misjudged as damaged fresh

corn and 2 damaged fresh corns misjudged as sound fresh corns.

Dysplastic corn kernels on fresh corn were often identified as

damaged class, resulting in the sound fresh corn might be

misjudged as the damaged fresh corn. In addition, the

damaged fresh corn was misjudged as the sound fresh corn

because the chemical and physical information on the surface

tissue did not change significantly when the seed coat of fresh

corn was slightly damaged. At this time, the spectral curves of
FIGURE 3

Original training samples and refined training samples of the sound class and peeling-damaged class of fresh corn under the first 70 wavebands:
(A) original training samples of sound class; (B) refined training samples of sound class; (C) original training samples of peeling-damaged class;
(D) refined training samples of peeling-damaged class.
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the damaged fresh corn were similar to that of the normal fresh

corn. Qiao et al., (2021) drew the same conclusion in the

nondestructive detection of decayed blueberry.

4.3.2 Results on average pixel
prediction accuracy

Four classification methods were applied to classify the test

fresh corn HSIs in the test set for precise pixel classification, and

the average pixel prediction accuracies of 60 test images are shown

in Figure 6. For the pixel classification results of the entire HSI

region, the proposed GSC method had the highest average pixel

prediction accuracy of 84.51%, followed by the BP neural network

method which reached 76.23%. The average pixel prediction

accuracy of the GSC method was 41.39%, 21.04%, and 10.86%

higher than that of K-SVD, SVM, and BP methods, respectively.

For the pixel classification results of the damaged region, the

proposed GSC method had the highest average pixel prediction

accuracy of 91.94%, followed by the BP, K-SVD and SVM

methods with 77.31%, 61.50%, and 44.39%, respectively. The

average pixel prediction accuracy of the GSC method was at

least 18.92% higher than that of other methods. The average pixel

prediction accuracy of the entire HSI region of four methods

including the GSC method did not reach above 85%, but this did

not affect the practical application of the GSC method. This is

because the accurate identification of the damaged region of fresh

corn in the practical application process is the key to realize the
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automatic detection and grading of peeled fresh corns. However,

the average pixel prediction accuracy of the GSC method for the

damaged region was higher than 90%, which satisfied the

practical application.

4.3.3 Analysis of classification results on
typical scenes

Three typical fresh corn HSIs were selected from the test set

for detailed study, and denoted as Scene 1, Scene 2, and Scene 3,

respectively. The classification results by using four methods of

the selected three scenes are presented in Figures 7–9. Each

method had two classification result images. One was the

original classification result image based on pixel-level

classification, the other was the classification result image

processed by the 2×2 block-level method. In the following

analysis, the pixel prediction accuracy of each method was

considered to be the larger value of the two classification

results. The RGB images corresponding to fresh corn HSIs

(‘Objective’) and the corresponding ground-truths with

manual labeling (‘label’) were given as the reference images of

classification results in Figures 7–9.

(1) Classification results on Scene 1

There was a seriously damaged fresh corn ear in Scene 1, in

which the seed coats of most kernels had disappeared and the

liquid endosperm was exposed. Table 3 shows the pixel

prediction accuracy of Scene 1. Among the four methods, the
B

C

A

FIGURE 4

Average pixel prediction accuracies under different parameter levels. (A) sparsity level k; (B) iterative cycles tmax; (C) threshold ϵ.
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GSC method had the highest pixel prediction accuracy of

78.77%, while the SVM method had the lowest pixel

prediction accuracy of 54.41%. The prediction accuracy values

of Scene 1 using K-SVD, SVM, and BP methods were all lower

than the average values given in Figure 6. The possible reason is

that the pure Teflon whiteboard as background class was

wrongly classified as damaged kernel class by the three
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methods. As shown in Figure 7, the GSC and K-SVD methods

could identify the complete contour of the objective fresh corn,

while the SVM and BP methods incorrectly classified most of the

background pixels into sound kernel class. The pixel prediction

accuracy of the GSC method for the damaged regions of fresh

corn in Scene 1 was 92.89%. The GSC method could recognize

almost all damaged kernels, while the SVM and BP methods
TABLE 2 Overall classification accuracies of HSIs in the training/test set using four methods under the selected optimal first 70 wavebands.

Classification method Training set (120) Test set (60)

Sound (60) Damaged (60) Accuracy (%) Sound (30) Damaged (30) Accuracy (%)

GSC 60 58 98.33 29 28 95.00

K-SVD 54 49 85.83 26 23 81.67

SVM 53 52 87.50 24 26 83.33

BP 54 57 92.50 26 28 90.00
The bold numbers represent the maximum values of the overall classification accuracy of the four classification methods.
FIGURE 5

Classification maps under different parameter levels.
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FIGURE 6

Average pixel prediction accuracies of the HSIs in the test set using four methods based on the given ground-truths.
B

A

FIGURE 7

Classification results on a single seriously damaged fresh corn in Scene 1. (A) Pixel-level; (B) 2×2 block-level.
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B

A

FIGURE 8

Classification results on one sound and one seriously damaged fresh corns in Scene 2. (A) Pixel-level; (B) 2×2 block-level.
B

A

FIGURE 9

Classification results on one sound fresh corn and one damaged fresh corn with slight abrasion of seed coats in Scene 3. (A) Pixel-level; (B)
2×2 block-level.
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could only recognize a part of damaged kernels. However, the K-

SVD method misclassified most of damaged kernels into

background class.

(2) Classification results on Scene 2

There were two fresh corn ears in Scene 2. One was a sound

ear and the other was a seriously damaged ear. Table 4 shows the

pixel prediction accuracy of Scene 2. Among the four methods,

the GSC method had the highest pixel prediction accuracy of

85.15%, while the K-SVD method had the lowest pixel

prediction accuracy of 45.66%. As shown in Figure 8, first, the

GSC method could detect the complete contours of the two fresh

corns and background, this indicated that the GSC method had

the potential of detecting multiple fresh corns; second, it could

identify almost all the damaged kernels in the damaged fresh

corn; and third, it could completely recognize all the sound

kernels in the sound fresh corn, in addition to identifying the

gaps between kernels as background. The BP method could also

identify the regions of fresh corns and background, but it could

only identify a part of damaged kernels. The SVMmethod could

not detect the edges of fresh corns, and they wrongly classified

the background between two fresh corns into sound kernel class.

The K-SVD method could identify the complete region of

background, but it misclassified almost all damaged kernels

into background class.

(3) Classification results on Scene 3

There were two fresh corn ears in Scene 3. One was a sound

ear and the other was a damaged ear with slight abrasion of seed

coats. Table 5 shows the pixel prediction accuracy of Scene 3.

Among the four methods, the GSC method had the highest pixel

prediction accuracy of 87.68%, while the K-SVD method had the

lowest pixel prediction accuracy of 65.85%. As shown in Figure 9,

the GSC methods could accurately and completely detect fresh
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corns and background with clear edges, but it wrongly identified

dysplastic corn kernels on the sound ear as damaged class. The K-

SVD and BP methods could also effectively distinguish the fresh

corn region and background region, but there were more pixels

misclassified at the edge of fresh corn. Similar to the situation in

Scene 2, the K-SVD method still misclassified the damaged

kernels into background class, and the SVM method still

misclassified the background between two fresh corns into

sound kernel class. The SVM and BP methods could only

identify a few damaged kernels.
4.4 Discussion

4.4.1 Discussion on using HSI detection instead
of traditional RGB image

It should be noted that the HSI was chose for damage

identification of fresh corn instead of the traditional RGB images

in this paper, mainly for the following reasons. Traditional RGB

image classification method mainly relies on two points. (1)

Differences in colors. However, there are many varieties of fresh

corn, and the colors of seed coats are diverse, such as yellow, white,

purple, and even multiple colors on an ear. Moreover, the color of

white seed coat is the same as that of inner endosperm, so the

classification accuracy based on the color differences is not high.

Therefore, it is not feasible to accurately identify fresh corn peeling-

damage by color differences. (2) Differences in spatial

characteristics. However, the shape of the damage regions caused

bymechanical peeling is random, whichmay be triangular, circular,

or irregular. Therefore, there are no fixed spatial geometric

characteristics, and it is not feasible to accurately identify fresh

corn peeling-damage using spatial geometric characteristics.

4.4.2 Discussion on dimensionality
reduction method

The dimensionality reduction method is to reduce the

computation amount and improve the classification accuracy.

For example, principal component analysis (PCA), a commonly

used feature reduction method, takes training data and test data

as a whole to extract the principal components. The results

obtained in this case are good for both the training data and the

test data. Therefore, the dimensionality reduction data are used

for training to obtain the principal components, which are used
TABLE 3 Pixel prediction accuracies of the four methods based on
the given ground-truth of Scene 1.

Prediction accuracy (%) Classification method

GSC K-SVD SVM BP

Pixel-level 78.20 57.85 54.41 59.38

Block-level 78.77 56.55 52.19 61.14
The bold numbers represent the maximum values of the pixel prediction accuracy of the
four classification methods.
TABLE 4 Pixel prediction accuracies of the four methods based on
the given ground-truth of Scene 2.

Prediction accuracy (%) Classification method

GSC K-SVD SVM BP

Pixel-level 84.83 45.66 73.17 79. 39

Block-level 85.15 42.14 74.99 77.10
The bold numbers represent the maximum values of the pixel prediction accuracy of the
four classification methods.
TABLE 5 Pixel prediction accuracies of the four methods based on
the given ground-truth of Scene 3.

Prediction accuracy (%) Classification method

GSC K-SVD SVM BP

Pixel-level 86.87 65.85 73.91 81.42

Block-level 87.68 62.07 73.64 82.14
frontiersi
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to classify the test data and get better classification effect. For the

problem addressed in this study, the test data needed to deal with

cannot be obtained in advance while executing the training

process, and therefore, the PCA results obtained by using

training data may be not suitable for test data.

4.4.3 Discussion on comparison with
existing methods

It could be seen from the experimental results that the

developed GSC method had an absolute advantage in

hyperspectral detection of fresh corn damage when background

contents were containing multiple features. This can be explained

at a theoretical level. As shown in Figure 7, the GSCmethod could

correctly classify the pure Teflon whiteboard, large gaps between

kernels, and marks on fresh corns made by a marking pen into

the background class, while the other three methods had poor

extraction effect for the background. This is because the GSC

method determines background pixels by the threshold algorithm

with respect to the energy of sparse representation residual during

the sparse classification process. Even if the background contents

are not fixed in different detecting situations, the classification

effect will not be affected. It is worth mentioning that it is always a

challenge to detect the slight abrasion of seed coats. By comparing

the classification results in Figures 8, 9, it can be seen that the

recognition effect of the fresh corn with slight abrasion of seed

coats is obviously inferior to that of the seriously damaged fresh

corn, and there was still a gap between the detection result of the

abrasion region and the ground-truth. However, compared with

other classification methods, the GSC method had the best
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recognition effect on the abrasion region with the pixel

prediction accuracy of 81.13%, while the other three methods

almost fail in the abrasion detection. This proves the absolute

superiority of our proposed method. One possibility is that the

reflectance spectra of slightly bruised seed coats are closer to

sound seed coats, thus increasing the difficulty of classification.

Another possibility is that it is difficult to recognize slightly

bruised kernels with naked eyes, resulting that the ground-

truths (‘label’) of the RGB images by manually labeling may be

not completely accurate.

4.4.4 Discussion on the practical applications
During fresh corn processing, online detection of mechanical

damage of fresh corn based on the GSC algorithm can be realized

by using the imaging spectrograph. The peeled fresh corns are

transferred to the sorting equipment by a conveyor covered with

corn trays, and then vacuum packed. In order to improve the

quality of fresh corn, damage detection is carried out before

sorting. The lighting system and imaging spectrograph are

mounted in a custom-made box above the conveyor. The speed

of the conveyor is adjusted according to the spatial resolution and

the integration time of the imaging spectrograph. The

hyperspectral data on the front of the fresh corn are collected

when the fresh corn is transported to the bottom of the imaging

spectrograph. Then, the corn trays rotate and drive the fresh

corns to rotate 180° to collect the hyperspectral data on the

opposite side of the fresh corn. The damage detection of the

whole fresh corn ear can be realized. Schematic diagram of

the practical applications is shown in Figure 10.
FIGURE 10

Schematic diagram of the practical applications.
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5 Conclusions

In this paper, the feasibility of using hyperspectral imaging

technique to detect the fresh corn peeling damage was studied.

The GSC method was proposed to classify the pixels of sound

kernel, peeling-damaged kernel, and background. For this

purpose, each process of the GSC method was introduced,

including sample refining, dictionary learning, and sparse

classification. The classification results of fresh corn HSIs with

serious damage and slight abrasion of seed coats were also

presented. Although complete extraction of damage regions in

fresh corn ear with slight abrasion of seed coats was still a

challenge, the experimental results demonstrated that the GSC

method had the highest accuracy regardless of the damage

degrees of test images. Experimental results verified the

feasibility of the GSC method. The overall classification

accuracy of the training set was 98.33%, and that of the test

set was 95.00%. It also had the highest average pixel prediction

accuracy of 84.51% for the entire HSI regions and 91.94% for the

damaged regions, which were significantly higher than

compared methods, including the K-SVD, SVM, and BP

methods. The peeling-damaged regions of fresh corn could be

directly observed by the classification results based on pixel-level

classification. This study made up for the gap in the detection

method of fresh corn peeling damage. The datasets used for

hyperspectral fresh corn damage detection study was built. In

general, the results confirmed the feasibility of hyperspectral

imaging technique in detecting the fresh corn peeling-damage in

laboratory environment.
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