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Unleashing the power within
short-read RNA-seq for plant
research: Beyond differential
expression analysis and
toward regulomics

Min Tu1*†, Jian Zeng2†, Juntao Zhang1, Guozhi Fan1

and Guangsen Song1*

1School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China,
2Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal
Resources in Northern Region, Shaoguan University, Shaoguan, Guangdong, China
RNA-seq has become a state-of-the-art technique for transcriptomic studies.

Advances in both RNA-seq techniques and the corresponding analysis tools

and pipelines have unprecedently shaped our understanding in almost every

aspects of plant sciences. Notably, the integration of huge amount of RNA-seq

with other omic data sets in the model plants and major crop species have

facilitated plant regulomics, while the RNA-seq analysis has still been primarily

used for differential expression analysis in many less-studied plant species. To

unleash the analytical power of RNA-seq in plant species, especially less-

studied species and biomass crops, we summarize recent achievements of

RNA-seq analysis in the major plant species and representative tools in the four

types of application: (1) transcriptome assembly, (2) construction of expression

atlas, (3) network analysis, and (4) structural alteration. We emphasize the

importance of expression atlas, coexpression networks and predictions of gene

regulatory relationships in moving plant transcriptomes toward regulomics, an

omic view of genome-wide transcription regulation. We highlight what can be

achieved in plant research with RNA-seq by introducing a list of representative

RNA-seq analysis tools and resources that are developed for certain minor

species or suitable for the analysis without species limitation. In summary, we

provide an updated digest on RNA-seq tools, resources and the diverse

applications for plant research, and our perspective on the power and

challenges of short-read RNA-seq analysis from a regulomic point view. A

full utilization of these fruitful RNA-seq resources will promote plant omic

research to a higher level, especially in those less studied species.

KEYWORDS

plant transcriptomics, RNA-seq data analysis, alternative splicing, alternative
polyadenylation, coexpression network, gene regulatory network, regulomics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1038109/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1038109/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1038109/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1038109/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1038109/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1038109&domain=pdf&date_stamp=2022-12-08
mailto:719378705@qq.com
mailto:12739@whpu.edu.cn
mailto:1697446119@qq.com
https://doi.org/10.3389/fpls.2022.1038109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1038109
https://www.frontiersin.org/journals/plant-science


Tu et al. 10.3389/fpls.2022.1038109
Introduction
RNA-seq and its-derived techniques have been

commercially available and routinely used by biological

scientists, largely owing to the rapidly increased outputs of

major sequencing platforms, improved sequencing accuracy

and ever reduced costs (Stark et al., 2019). RNA-seq has

shaped nearly every aspects of our understanding in plant

research, from plant development and phytohorome signaling

to plant metabolism and stress tolerance.

RNA-seq can be divided into the short-read (Nagalakshmi

et al., 2008) and long-read RNA-seq technologies (Sharon et al.,

2013). In short-read RNA-seq, Illumina sequencing platform has

been dominant, while other platforms, such as Thermo Scientific

platforms (e.g., Ion PGM and Ion S5) or the BGI Genomics

platforms (e.g., DNBSEQ), have been frequently used in certain

circumstances or been gaining attentions recently (Patterson

et al., 2019; Foox et al., 2021). A short-read RNA-seq library is

typically sequenced to a read depth of 10~30 million reads per

sample with a read length varied from 50 to 200 bp. By contrast,

a number of approaches (e.g., Pacific Bioscience, PacBio and

Oxford Nanopore, ONT) provide long, uninterrupted

sequencing of a single RNA or DNA molecules, constituting

the third generation of real-time fluorescence sequencing

paradigm (Sharon et al., 2013; Cartolano et al., 2016;

Oikonomopoulos et al., 2016). A typical long-read RNA-seq

produces 500,000 to 10 million reads per run with a read length

ranging from 1,000 to 50,000 bp depending on the technologies

and platforms (Stark et al., 2019). The long-read sequencing

platforms are particularly suited for de novo transcriptome

assembly and identification of novel transcripts and isoforms,

as these approaches overcome some intrinsic issues related to

short-read sequencing.

While the rise of the long-read RNA-seq, the short-read

RNA-seq still is dominating the current utilizations in plant

sciences and has provided the majority of the data sets deposited

in public sequencing databases. With the recent advancement of

tools developed for analyzing short-read sequencing data, the

RNA-seq technology can be used for various applications,

including but not limited to: (1) de novo assembly of

transcriptome with or without a reference genome; (2)

detection of new transcripts or correction of existing gene

structures based on RNA-seq evidence; (3) to obtaining the

expression profiles at gene or transcript levels and to construct

the expression atlas covering a range of conditions and tissue

types; (4) to identify alternative splicing and alternative 5’ or 3’

untranslated regions (5’UTR or 3’UTR, respectively); (5) to

construct gene co-expression networks (GCNs) and predict

gene regulatory relationships in a large scale (also known as

gene regulatory networks, GRN). Here, GCN stand for a

network that can be constructed from a large set of RNA-seq

data and includes multiple clusters or modules. The module
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represents a group of genes determined statistically with high

correlation in their expression profiles and usually associations

in their functions (reviewed in Gupta and Pereira, 2019).

Notably, many genes within the same module do not represent

the direct targets of their upstream regulators. Thus, to further

disentangle the direct regulator-targets pairs from the indirectly

regulated or co-expressed genes, prediction of GRNs is another

important task in RNA-seq data analysis. Identification of GRNs

can be achieved by harnessing the following resources: (1)

identifying transcription factors (TFs) from co-expressed

modules; (2) identifying a group of co-expressed genes with

the statistically enriched cis-regulatory elements from a certain

family of TF; (3) leveraging the information of direct TF targets

by using existing results from chromatin immunoprecipitation

sequencing (ChIP-seq) or DNA affinity purification sequencing

(DAP-seq) experiments (O’Malley et al., 2016; Galli et al., 2020);

(4) applying the well-established algorithms for GRN inference.

While the many utilizations of RNA-seq, the differential gene

expression (DGE) is still the most often used analysis in many

plant researches, especially those carried on in crop species.

Here, we highlight typical examples of the tools and

applications that have been used in the model plants

(Arabidopsis and rice) and other major crops (e.g., tomato,

wheat, maize and soybean) (Table 1). These applications

demonstrate the power and comprehensiveness of short-read,

bulk RNA-seq analyses. Meanwhile, it is worth noting that

DGE has long been the primary analysis in the RNA-seq

studies of other less-studied plant species. In fact, many

species, especially those minor crops, biomass crops or

orphan crops, are key to provide sustainable agriculture and

to reach global food and energy security. Particularly, major

biomass crops, such as sorghum, sugarcane, Miscanthus, and

switchgrass, have large yield of biomass and stress tolerance

(Mullet et al., 2014; Boyles et al., 2019), justifying the

significance for researching on gene expression and

regu l a t i on as soc i a t ed wi th b iomas s compos i t i on

and production.

The limited utilization of RNA-seq in the minor plant

species has been partly due to: (1) the limited genomic

resources; (2) lacking bioinformatic tools that are user friendly,

with a graphical user interface, or well adapted to the omics data

of various species. In this context, we summarize a variety of

bioinformatic tools covering the diverse applications of bulk

RNA-seq analysis to facilitate the full use of short-read RNA-seq

data, and to help unleash the power of bulk RNA-seq in studies

of plants, especially in the minor and under-utilized crops

(Table 1; Figure 1). Notably, there have been several excellent

reviews regarding the development of RNA-seq technologies,

comprehensive summary of RNA-seq tools and calculation of

GCNs and GRNs in plant sciences (Van Verk et al., 2013;

Conesa et al., 2016; Proost and Mutwil, 2016; Gaudinier and

Brady, 2016; Sahraeian et al., 2017; Saelens et al., 2018; Haque

et al., 2018; Stark et al., 2019; Gupta and Pereira, 2019). We aim
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TABLE 1 Summary of the representative resources and tools for analyzing the short-read RNA-seq data in plants.

Name Reference URL Implementation Classification1

Plant Reactome Nathani et al., 2017 & Nathani
et al., 2020

http://plantreactome.gramene.org Web Page Annotation

Strawberry Liu and Dickerson, 2017 https://github.com/ruolin/strawberry Stand Alone Annotation

iDEP Ge et al., 2018 http://ge-lab.org/idep/ R Package Annotation

TransFlow Seoane et al., 2018 https://github.com/seoanezonjic/TransFlow. Stand Alone Annotation

MorphDB Zwaenepoel et al., 2018 http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/
index/.

Web Page Annotation

PISO Feng et al., 2019 http://cbi.hzau.edu.cn/piso/. Web Page Annotation

MapMan 4/Mercator4 Schwacke et al., 2019 https://www.plabipd.de/portal/legacy-mercator4 Web Page Annotation

PlantCircBase Chu et al.,2018 http://ibi.zju.edu.cn/plantcircbase/ Web Page Annotation &
Expr.

Gramene Tello-Ruiz et al., 2018 http://www.gramene.org Web Page Annotation &
Expr.

LeGOO Carrere et al., 2020 https://www.legoo.org Web Page Annotation &
Expr.

ZEAMAP Gui et al., 2020 http://www.zeamap.com Web Page Annotation &
Expr.

BarleyNet Lee et al., 2020 http://www.inetbio.org/barleynet Web Page Annotation &
Expr.

SAT-Assembler Zhang et al., 2014 https://sourceforge.net/projects/sat-assembler/ Stand Alone Assembler

BinPacker Liu et al., 2016 http://sourceforge.net/projects/transcriptomeassembly/files/
BinPacker_1.0.tar.gz/download

Stand Alone Assembler

Rascaf Song et al., 2016 https://github.com/mourisl/Rascaf. Stand Alone Assembler

IGB Freese et al., 2016 http://bioviz.org/igb. Web Page Browser

eFP-Seq Browser Sullivan et al., 2019 https://bar.utoronto.ca/eFP-Seq_Browser/ Web Page Browser

RNAprof Tran et al., 2016 http://rna.igmors.u-psud.fr/Software/rnaprof.php Stand Alone AS/APA

Apatrap Ye et al., 2018 https://apatrap.sourceforge.io. Stand Alone AS/APA

Name Citation URL Implementation Classification

priUTR Tu and Li, 2020 https://github.com/mint1234/3UTR- Stand Alone AS/APA

3D RNA-Seq Guo et al., 2021 https://ics.hutton.ac.uk/3drnaseq R Package AS/APA

TEtranscripts Jin et al., 2015 http://hammelllab.labsites.cshl.edu/software Stand Alone Expression

expVIP Borrill et al., 2016 www.wheat-expression.com Web Page Expression

OryzaExpress Kudo et al., 2017 http://plantomics.mind.meiji.ac.jp/OryzaExpress/ Web Page Expression

BAR Waese and Provart, 2016 http://bar.utoronto.ca Web Page Expression

DPMIND Fei et al.2018 http://202.195.246.60/DPMIND/ Web Page Expression

PEATmoss Fernandez-Pizo et al., 2020 https://peatmoss.online.uni-marburg.de Web Page Expression

ASmir Wang et al., 2019 http://forestry.fafu.edu.cn/bioinfor/db/ASmiR Web Page Expression

Soybean Expression
Atlas

Machado et al.,2020 http://venanciogroup.uenf.br/resources/ Web Page Expression

Grape-RNA Wang et al., 2020 http://www.grapeworld.cn/gt/2 Web Page Expression

CORNET Van Bel and Coppens, 2017 http://bioinformatics.psb.ugent.be/cornet/ Web Page Expr. & Coexp.

NaDH Brockmoller et al., 2017 http://nadh.ice.mpg.de/ Web Page Expr. & Coexp.

NorWood Jokipii-Lukkari et al., 2017 http://norwood.congenie.org Web Page Expr. & Coexp.

AspWood Sundell et al., 2017 http://aspwood.popgenie.org Web Page Expr. & Coexp.

RED Xia et al., 2017 http://expression.ic4r.org Web Page Expr. & Coexp.

EXPath Zheng et al.2017 http://expathtool.itps.ncku.edu.tw/ Web Page Expr. & Coexp.

TomExpress Zouine et al., 2017 http://tomexpress.toulouse.inra.fr Web Page Expr. & Coexp.

Maize eFP Brower Hoopes et al., 2019 bar.utoronto.ca/efp_maize Web Page Expr. & Coexp.

ATTED Obayashi et al., 2018 http://atted.jp Web Page Expr. & Coexp.

MCENet Tian et al., 2018 http://bioinformatics.cau.edu.cn/MCENet/ Web Page Expr. & Coexp.

(Continued)
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at neither comprehensively cataloguing the RNA-seq analysis

tools for plant research, nor summarizing the achievements that

RNA-seq have been reached in plant research. We emphasize

that recent advancements in RNA-seq analysis tools allow to

fully unleash the power of short-read, bulk RNA-seq in many

plant species like biomass crops, to provide deep insights into

gene regulation at multiple levels and to go toward regulomics,

an analogous term to other omics that portraits transcription

control in a genome-wide manner (Werner, 2003; Werner,

2004). Particularly, regulomics refers to the omic-scale study

of gene expression regulation happened at transcriptional or

post-transcriptional levels (Werner, 2004), such as the regulation
Frontiers in Plant Science 04
between transcription factors/coregulators and their targets and

the interaction between non-coding RNAs (e.g., miRNAs anf

lncRNAs) and mRNAs.
The applications of the short-read,
bulk RNA-seq in plant sciences

The short-read RNA-seq technique includes several core

steps, from RNA extraction, cDNA synthesis, adapter ligation,

PCR amplification, to the sequencing of library and data

analysis. Four key stages are required for the RNA-seq data
TABLE 1 Continued

Name Reference URL Implementation Classification1

AppleMDO Da et al., 2019 http://bioinformatics.cau.edu.cn/AppleMDO/ Web Page Expr. & Coexp.

Name Citation URL Implementation Classification

Melonet-DB Yano et al., 2018 http://melonet-db.agbi.tsukuba.ac.jp/ Web Page Expr. & Coexp. &
Anno.

TPIA Xia et al., 2019 http://tpia.teaplant.org Web Page Expr. & Coexp. &
Anno.

Plant Regulomics Ran et al., 2020 http://bioinfo.sibs.ac.cn/plant-regulomics. Web Page Expr. & Coexp. &
Anno.

CSI Penfold et al., 2015a & Penfold
et al., 2015b

http://go.warwick.ac.uk/systemsbiology/software. Stand Alone Network
construction

RSAT-Plants Contreras-Moreira et al., 2016 http://plants.rsat.eu Web Page Network
construction

tcgsaseq Agniel and Hejblum, 2017 https://cran.r-project.org/web/packages/tcgsaseq. R Package Network
construction

SeqEnrich Becker et al., 2017 http://www.belmontelab.com Stand Alone Network
construction

ExRANGES Desai et al., 2017 http://github.com/DohertyLab/ExRANGES R Package Network
construction

LSTrAP Proost et al., 2017 https://github.molgen.mpg.de/proost/LSTrAP Stand Alone Network
construction

RSAT Nguyen et al., 2018 http://www.rsat.eu/ Stand Alone Network
construction

NetMiner Yu et al., 2018 https://github.com/czllab/NetMiner. Stand Alone Network
construction

ExpressWeb Savelli et al., 2019 http://polebio.lrsv.upstlse.fr/ExpressWeb/ R Package Network
construction

HTRgene Ahn et al., 2019 http://biohealth.snu.ac.kr/software/HTRgene. R Package Network
construction

Compare
Transcriptome Analysis

Lee et al., 2019 https://github.com/LiLabAtVT/CompareTranscriptome.git). R Package Network
construction

JASPAR Fornes et al., 2020 http://jaspar.genereg.net Web Page Network
construction

GENIE3 Harrington et al., 2020 https://github.com/Uauy-Lab/GENIE3_scripts/ Stand Alone Network
construction

LSTrAP-Cloud Tan et al., 2020 https://github.com/tqiaowen/LSTrAP-Cloud Stand Alone Network
construction

RSAT Ksouri et al., 2021 https://github.com/RSAT-doc/motif_discovery_clusters Web Page Network
construction
1. The RNA-seq resources and tools are classified by their functions, including annotation, expression atlas (expression, or abbreviated as ‘Expr.’), co-expression analysis (abbreviated as
‘Coexp.’), alternative splicing and alternative polyadenylation (abbreviated as ‘AS/APA’), and network construction (tools for calculating coexpression networks or gene regulatory
networks). These resources and tools are first sorted by classification and then by publication years.
frontiersin.org

http://bioinformatics.cau.edu.cn/AppleMDO/
http://melonet-db.agbi.tsukuba.ac.jp/
http://tpia.teaplant.org
http://bioinfo.sibs.ac.cn/plant-regulomics
http://go.warwick.ac.uk/systemsbiology/software
http://plants.rsat.eu
https://cran.r-project.org/web/packages/tcgsaseq
http://www.belmontelab.com
http://github.com/DohertyLab/ExRANGES
https://github.molgen.mpg.de/proost/LSTrAP
http://www.rsat.eu/
https://github.com/czllab/NetMiner
http://polebio.lrsv.upstlse.fr/ExpressWeb/
http://biohealth.snu.ac.kr/software/HTRgene
https://github.com/LiLabAtVT/CompareTranscriptome.git
http://jaspar.genereg.net
https://github.com/Uauy-Lab/GENIE3_scripts/
https://github.com/tqiaowen/LSTrAP-Cloud
https://github.com/RSAT-doc/motif_discovery_clusters
https://doi.org/10.3389/fpls.2022.1038109
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tu et al. 10.3389/fpls.2022.1038109
analysis: (1) The first stage takes the raw sequencing reads to

quality control and maps the quality-controlled reads to the

transcriptome, which can be obtained from a reference genome

or be assembled from transcriptomic data; (2) The second stage

quantifies the number of reads mapped to each gene or

transcript, producing an expression matrix; (3) The third stage

modifies the expression matrix by normalization between

samples, accounting for technical differences, and removing

lowly expressed genes/transcripts; (4) The last stage calculates

differentially expressed genes or transcripts by statistical models.

Particularly, the number of computational tools for analyzing

RNA-seq data has been increased dramatically in the recent

decade (Stark et al., 2019). As such, substantial influences can be

generated on the biological conclusions drawn from the RNA-

seq data due to several aspects: differences in the computational

approaches used, software parameters or statistical models

selected and distinct combinations of the tools in a pipeline

(Conesa et al., 2016). The optimal set of computational
Frontiers in Plant Science 05
approaches for RNA-seq depends on the experimental setup,

the biological questions being addressed and other factors, and is

beyond the scope of our mini-review (Conesa et al., 2016;

Sahraeian et al., 2017). However, several sets of RNA-seq tools

are well recognized, representing the classic pipelines (Trapnell

et al., 2012; Grabherr et al., 2012; Pertea et al., 2017). These

includes five main components: (1) the splice-aware aligners

(e.g., TopHat, STAR, HISAT and HISAT 2; Kim et al., 2019) to

map RNA-seq reads to the reference genome; (2) the tools for

reads extraction [e.g., HTSeq (Anders et al., 2014) and

featureCount (Liao et al., 2014)]; (3) the tools for transcript

construction (e.g., CuffLinks, StringTie) (Trapnell et al., 2012;

Pertea et al., 2017); (4) the tools for estimates gene/transcript

abundance [e.g., CuffDiff2, Ballgown and RSEM (Li and Dewey,

2011)]; and (5) the tools to identify differentially expressed genes

or transcripts based on statistical analyses (such as edgeR

(Robinson et al., 2010), DESeq2 (Love et al., 2014), Ballgown

and CuffDiff2). The majority of the applications and
FIGURE 1

The power of short-read, bulk RNA-seq can be unleashed by integrating the following resources and tools related to RNA-seq analysis: (1) Full-
length transcriptome can be achieved by full-length cDNA sequencing, PacBio Iso-seq or the Oxford Nanopore sequencing technologies, and
these full-length transcriptomes can help to better annotate gene structures and serve as the basis for expression profiling at the transcript-
level. (2) For many less-studied plant species, multiple functional annotation resources can be applied to provide a comprehensive annotation,
facilitating biological interpretation of sets of DEG or gene networks. (3) Through application of the tools introduced here and in previous
reviews, high-quality GCNs and GRNs can be made to prioritize hub genes or key regulators involved in the certain biological process
or phenotypes.
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computational tools summarized in the follow are compatible

with these classic RNA-seq pipelines.
RNA-seq data enhance transcriptome
assembly

The number of plant species with at least one reference

genome have multiplied dramatically over the past few years,

with 798 land plant species having genome assemblies (as of Jan.

2021) (Marks et al., 2021). While these genomic resources

greatly ease the RNA-seq analysis, still the complexity in plant

genomes and transcriptomes presents major challenges in RNA-

seq analysis. Many plant species feature large genomes (for

example, the median sizes of currently sequenced monocots

and eudicots respectively are more than 500 Mb) or complex

auto- or allo- polyploid genomes with some hybridization and

introgressions (Zhang et al., 2018; Zhao et al., 2021; Sun et al.,

2022). Many genomes are expanded by repetitive sequences

(such as transposons), making it difficult to achieve complete

and accurate annotation of multi-exonic genes. Besides,

alternative splicing (AS) and alternative polyadenylation

(APA) further enhance transcriptome complexity. In addition,

gene families commonly seen in the plant genomes are shaped

by whole genome duplication, segmental duplication and

tandem duplication. The members within a gene family or the

homo-/homoeo-logous alleles (in polyploid) usually share high

sequence similarity between each other, thus posing ad-ditional

challenges in accurate quantification of the expression levels by

using RNA-seq data.

To overcome these challenges, two strategies have been

evolved when a reference genome is available: (1) to assembly

transcripts first and then to quantify expression; (2) to

simultaneously construct transcripts and to quantify

expression. For the genome-guided transcriptome analysis,

multiple pipelines have been established that differ in the

algorithms used and the speed and computational resources

required, including the classic TopHat-Cufflink-Cuffdiff pipeline

(Trapnell et al., 2012) and HISAT-StringTie-Ballgown pipeline

(Pertea et al., 2017), as well as the new “Strawberry” tool (Liu and

Dickerson, 2017). By contrast, when a reference genome and

gene annotations do not exist, a transcriptome needs to be firstly

de novo assembled to facilitate expression quantification.

However, de novo assembly based on short-read RNA-seq data

usually leads to fractured and incomplete view of transcriptome,

complicating downstream analysis (Malik et al., 2018). Several

tools for de novo assembling full-length transcripts have become

popular with different algorithms and features, such as Trinity

(Haas et al., 2013), Oasis (Schulz et al., 2012), Trans-AbySS

(Robertson et al., 2010), SOAPdenovo-Trans (Xie et al., 2014),

Corset (Garber et al., 2011) and BinPacker (Liu et al., 2016).

More recently, Grouper provides a complete pipeline for

processing de novo transcriptomic analysis by using a new
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method for clustering assembled contigs (Malik et al., 2018).

TransFlow provides a versatile workflow to enhance de novo

transcriptome analyses and to annotate transcript structures

more accurately by combining short-read and long-read

sequencing data (Seoane et al., 2018).
RNA-seq data empower the construction
of expression atlas

Rapid accumulation of immense sets of RNA-seq data allows

the establishment of expression atlantes. An expression atlas

collects a large number of RNA-seq data from a certain species

and re-analyzes these data using standardized, open-source

pipelines to remove potential batch effects and any influences

caused by other factors, such as different research groups,

sequencing platforms and experiments (Papatheodorou et al.,

2018). Establishing expression atlas has been proved very

valuable in model organisms to promote not only omics

studies but more importantly our understanding in gene

functions, as clues to gene function can often be inferred by

examining when and where a gene is expressed in the organism

(Alberts et al., 2002). In model plants and major crops, such

expression atlantes have served as key resources to the research

community. For example, the information hub of Arabidopsis

(TAIR; Berardini et al., 2015) and maize (MaizeGDB; Lawrence

et al., 2008) have implemented with the expression atlas for each

species. Maize expression atlas websites have been updated or

built separately by multiple groups to integrate more RNA-seq

data, other omics data sets or visualizations (Sekhon et al., 2013;

Stelpflug et al., 2015; Tian et al., 2018; Hoopes et al., 2019; Gui

et al., 2020). Similarly, the rice expression atlas has been updated

from microarray to RNA-seq data sets and established by several

groups respectively (Sato et al., 2013; Kudo et al., 2017; Xia et al.,

2017). Recently, the expression atlantes have also been built for

other important crops, such as tomato (TomExpress, Zouine

et al., 2017), soybean (Machado et al., 2020), wheat (Borrill et al.,

2016), barley (BarleyNet, Lee et al., 2020) and sorghum (Makita

et al., 2015). The trend of building RNA-seq-based expression

atlas has been spread to many less-studied plant species, for

example, Picea abies (the Norwood database, Jokipii-Lukkari

et al., 2017), Populus tremula (the Aspwood database, Sundell

et al., 2017), chickpea (Kudapa et al., 2018), Physcomitrella Paten

(Perroud et al., 2018; Fernandez-Pizo et al., 2020), tabacco

(NaDH- Brockmoller et al., 2017), water melon (Melonet-DB -

Yano et al., 2018), apple (AppleMDO- Da et al., 2019), tea (TPIA

- Xia et al., 2019), grape (Wang et al., 2020), and Medicago

truncatula (LeGOO- Carrere et al., 2020).

Notably, two types of the integrative websites are particularly

valuable in facilitating comparative functional genomics and

molecular breeding. (1) The expression atlas website includes a

number of useful functions, from the visualization, comparison
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and functional enrichment of the omics data to comprehensive

annotations of genes or gene families and useful functions such

as primer design, BLAST and ortholog identification. (2) The

RNA-seq data are further utilized to construct co-expression

modules and integrated with other types of omics data, for

example epigenomic data sets. In addition, major plant genomics

websites (for instance, the Phytozome (Goodstein et al., 2011)

Ensembl Plants (Bolster et al., 2017), and Gramene (Tello-Ruiz

et al., 2018)) serve as the central data hub to link numerous plant

genomes to those of the model species, which are well

characterized and annotated. These iconic plant genomic hubs

lay a solid foundation for transferring and comparing the omic

information from model plants to less-studied species.
RNA-seq data capture large-scale co-
expression networks

One major cornerstone of the data-driven biological

interpretation of large-scale RNA-seq data is to transform

expression data into networks and modules. Among the

network representation methods, co-expression network is the

one that has been widely applied and successful in many species

(Farber and Lusis, 2008). In a co-expression network, genes are

connected by edges that quantify the similarity between gene

expression patterns, and the genes expressed similarly are

grouped together forming a co-expression module. Co-

expression network can be calculated by different approaches,

from correlation-based methods like Pearson Correlation

Coefficiency (PCC) (D’haeseleer et al., 2000) and weighted

gene co-expression network analysis (WGCNA) (Langfelder

and Horvath, 2008; Langfelder and Horvath, 2012), to linear

modelling (Vasilevski et al., 2012) and mutual information

methods (Daub et al., 2004). Through the “guilt-by-

association” principle, genes in a co-expression module

poss ib ly indicate s imilar funct ions and modes of

transcriptional regulation (Wolfe et al., 2005), or similar

cellular compartments of the protein products (Ryngajllo

et al., 2011).

Over the past decade, high-quality co-expression networks

and their hosting data hubs have served as a valuable resource to

facilitate the gene functional studies in model plant species and

many major crops, including Arabidopsis (Van Bel et al., 2017;

Obayashi et al., 2018), rice (Xia et al., 2017), maize (Miao et al.,

2017; Tian et al., 2018; Hoopes et al., 2019), and tomato (Zouine

et al., 2017). More recently, co-expression networks have been

built in other plant species (Kudapa et al., 2018), including some

forest species with biomass purposes (Jokipii-Lukkari et al.,

2017; Sundell et al., 2017), demonstrating the power of

network representation in providing molecular functional

insights into biomass production. Nonetheless, the biologists

who work on less-studied plant species might neither have the

bioinformatic skills nor afford the computational resources that
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are required to integrate large-scale RNA-seq data sets and to

construct high-quality networks. Thus, user-friendly online or

offline tools have been developed to lower the bar for co-

expression-based analysis, such as the Kallisto-based LSTrAP

pipeline (Proost et al., 2017), the LSTrAP-Cloud (Tan et al.,

2020) and the ExpressWeb (Savelli et al., 2019). Besides,

computational methods have been reported to improve the

quality of co-expression network identification (NetMiner, Yu

et al., 2018; PCC-HRR Liesecke et al., 2018). These tools aim

toward paving the way to perform co-expression analysis in

plant species without limitations.

Leveraging these resources related to network analysis can

enhance our understanding in biomass production in different

plant species. On one hand, several expression atlas or co-

expression resources contains a number of samples from the

grass species (i.e., rice, wheat and maize) across stem elongation,

thus making possible to identify co-expressed modules

associated with stem growth or straw biomass accumulation

(Borrill et al., 2016; Kudo et al., 2017; Hoopes et al., 2019;

Obayashi et al., 2018). On the other hand, valuable web

resources (the AspWood and NorWood database for Populus

tremula and Picea abies, respectively) demonstrate the power for

generating insights into wood formation and cell wall

biosynthesis (Jokipii-Lukkari et al., 2017; Sundell et al., 2017).

Moreover, AspWood exemplifies comparative analysis between

the coexpression networks from two species, highlighting that

conserved coexpression patterns are detected for many processes

during wood formation (e.g., cambial growth, secondary cell wall

deposition and xylem maturation). In addition, many of the cell

wall metabolic regulators identified by coexpression analysis still

maintain relatively conserved functions in biomass

accumulation in other grasses, such as sorghum (Hennet et al.,

2020). To facilitate such comparative analysis between model

and non-model species, ATTED and Plant Regulomics have laid

foundation for cross-study and cross-species comparisons and

retrieving upstream regulators of certain genes of interest

(Obayashi et al., 2018; Ran et al., 2020).

While the efforts made in co-expression analyses, three types

of challenges remain in: (1) analysis of time-course expression

data, (2) inference of gene regulatory networks (GRNs) from the

co-expression data, and (3) comparison of co-expression

modules between plant species.

First, clustering or co-expression analysis particularly for

time-course data emphasizes on capturing the nonstationary

time dependence in the data, for which multivariate clustering

algorithms or nonlinear regression modelling methods usually

perform better than the traditional clustering approaches (Heard

et al., 2005). Thus, computational tools such as Smoothing spline

clustering (SSClust) (Ma et al., 2006) or tcgsaSeq (Agniel and

Hejblum, 2017) have been developed to identify gene clusters

from time-course expression data.

Second, new computational approaches have also been

available to predict gene regulatory cascade from large-scale
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RNA-seq data, e.g. the nonparametric Bayesian and Markov

clustering methods (Penfold et al., 2015a; Penfold et al., 2015b;

Desai et al., 2017; Yu et al., 2019). Successful examples have been

shown in crops, i.e. Harrington et al. (2020) report the GRNs in

wheat built with the GENIE3 software. Another group develops

the tool HTRgene to specifically extract stress-responsive

regulatory network, highlighting the value of GRNs in

underpinning particular biological questions (Ahn et al., 2019).

Another key to infer GRNs is to identify overrepresented known

cis-regulatory motifs in the gene promoters that are possibly

functional in the regulation of gene expression. Computational

search of cis-motifs in the promoter region can be readily

conducted by using online websites, such as PlantCARE

(Lescot et al., 2002), PlantPAN (Chow et al., 2019), or Jaspar

(Fornes et al., 2020). Recently, identification of the

overrepresented cis-motifs has been achieved by the

Regulatory Sequence Analysis Tools (RSAT; Nguyen et al.,

2018; Ksouri et al., 2021) and its plant-adopted version RSAT-

plant (Contreras-Moreira et al., 2016; Ksouri et al., 2021). Lately,

resources for visualization and efficient deployment of gene

regulatory omics data (ChIP-seq, for instance) have been also

available at ChIP-Hub (Fu et al., 2022) and Connec-TF (Brooks

et al., 2021), making possible for transferring the TF-target

regulatory relationship from the model plants to non-

model species.

Last, for the comparison of coexpression networks

between species, successful examples have been reported in

Brassicaceae (Becker et al., 2017). ATTED-II (Obayashi et al.,

2018) is a database hosting 16 co-expression platforms from

nine species, allowing the comparison of co-expression

modules between the species. In particular, as the resources

and tools to move RNA-seq analysis toward regulomics have

become mature, the Plant Regulomics database has been built,

hosting a huge volume of transcriptomic and epigenomic data

sets for six representative species (i.e., Arabidopsis, rice,

maize, soybean, tomato and wheat) and enabling the query

of upstream regulators of genes (Ran et al., 2020). The Plant

Regulomics database sets a nice example for future RNA-seq-

centered web interface and analysis direction for other

plant species.
RNA-seq data identify alternative splicing
and alternative polyadenylation

While the expression atlas and co-expression analysis are

based mainly on gene expression levels, RNA-seq data can also

capture structural changes in the transcripts, presenting another

layer of regulatory information with biological significance. Two

major structural alterations are frequently detected in the

transcriptome: (1) Alternative splicing (AS), a phenomenon in

which particular exons of a gene may be included or excluded

from the processed messenger RNA (mRNA), leading to
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multiple proteins encoded from a single gene; (2) Alternative

polyadenylation (APA), a phenomenon in which a transcript is

processed to produce multiple isoforms differing in their

untranslated regions (UTRs), in most of the cases, 3’UTRs.

Both AS and APA greatly increase the complexity of

transcriptome or the repertoire of proteins, and are involved

in the molecular, physiological and developmental pathways

(Seo et al., 2013; Srivastava et al., 2018). In human, Arabidopsis

and maize, respectively, ~95%, 61% and 57% of multi-exonic

genes are alternatively spliced, respectively (Pan et al., 2008;

Reddy et al., 2013; Wang et al., 2016). In parallel, over 80% and

75% of the genes in human and Arabidopsis respectively can

produce multiple mRNA isoforms through APA (Mayr, 2016;

Guo et al., 2016). The 3’UTR regions harbor cis-acting elements,

which regulate various mRNA properties, including RNA

stability, transportation, subcellular movement and translation

efficiency (Srivastava et al., 2018).

Currently, computational methods for identifying

differential AS have been achieved with different quantification

schemas, such as those using count-based models (i.e., DEXSeq

(Anders et al. , 2012), DSGseq (Wang et al. , 2013),

SpliceCompass (Aschoff et al., 2013), rMATS (Shen et al.,

2012), rDiff (Drewe et al., 2013) and RNAprof (Tran et al.,

2016)), and those modelling isoform ratios (i.e., Cufflinks and

DiffSplice) (Hu et al., 2013). Notably, some new genome

assemblies of plants might not have the standard gene

annotations as those of human or mouse, and not be readily

compatible with some AS quantification tools or need

considerable bioinformatic customizations. This issue presents

somewhat a technical bar to identify and quantify AS in any

plant species, even though identification of differential AS events

can be done in major plant species with rMATS and CuffDiff

(Liu et al., 2014). Also, new tools for identify intron retention, a

particular type of AS frequently seen in plants, has been reported

(Mao et al., 2017), enriching the toolbox for AS analysis.

For alternative polyadenylation, user-friendly tools

compatible with the genomes of non-model plant species are

relatively limited, whereas major efforts have been made to

capture 3’UTRs by specific experimental protocols, such as

PAT-seq (Harrison et al., 2015), 3’READs (Hoque et al., 2013),

and mTAIL-seq (Lim et al., 2016). Only a handful of tools have

been reported to identify 3’UTR variations and to calculate

differential 3’UTRs using short-read RNA-seq data from

plants. The priUTR pipeline detects differential 3’UTR events

from Cufflink-derived, genome-guided transcriptome

assemblies, discovering the link between 3’UTR and m6A

epitranscriptomic modification (Tu and Li, 2020). APAtrap is

one of the tools providing flexible and highly efficient APA

detection for plant RNA-seq data (Ye et al., 2018). In addition,

RNAprof detect both AS and APA events in plant RNA-seq data

sets (Tran et al., 2016), while 3D RNA-seq provides three-way

differential analysis: differential expression (DE), differential

alternative splicing (DAS) and differential transcript usage
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(DTU) of RNA-seq data (Guo et al., 2021). These recent

methods promise the identification of differential AS and APA

events as a regular analysis of plant RNA-seq data.
Discussion and concluding remarks

Many of the short-read, bulk RNA-seq data accumulated today

from less-studied plants may be under utilized. Thus, making full

use of these data by integrating RNA-seq tools presents an exciting

yet challenging prospect. Still, improvements can be made in the

following aspects: (1) to integrate with the long-read RNA-seq data;

(2) to develop tools or optimize the current pipelines to adapt to

complex plant genomes.

PacBio isoform sequencing (Iso-seq) has been the main choice

for identifying full-length transcripts. Besides, high-quality full-

length isoform sequencing has greatly expanded our

understanding in genome annotation, isoform phasing, detection

of fusion transcript and alternative splicing and alternative

polyadenylation (APA). For example, automated annotation

pipelines have been developed to combine the advantages of

different annotation methods, including ab initio and protein

evidence-based prediction and long-read sequencing data (Cook

et al., 2018; Tardaguila et al., 2018). However, limited by the

medium throughput, Iso-seq-based transcript quantification is far

from affordable, especially for the project with a tight budget or a

large number of samples. Thus, combining the Iso-seq-derived

transcriptome and short-read RNA-seq represents an affordable

strategy to both accurately capture a large number of transcripts and

to quantify them (Figure 1). On another hand, ONT technology has

demonstrated its potential in detection of poly(A) tail length and

RNA modifications. Therefore, combination of ONT RNA-seq

technologies and short-read RNA-seq results will enable novel

insights into epitranscriptomic regulation. It is worth to note that

while full-length transcriptomes based on the long-read sequencing

technologies are apparently advantageous over the short-read RNA-

seq in identification of alternative splicing and polyadenylation,

tools analyzing short-read sequencing data for these purposes (such

as rMATS, rDiff, RNAProf, APAtrap and priUTR) still have their

particular niches because short-read RNA-seq are still dominant in

the less-studied plant species and are cost affordably for most of the

labs, even in high sequencing depth.

In addition, expression quantification may be complicated

by other difficulties associated with plant genomes. Polyploid,

including both allopolyploid and autopolyploid, are widespread

in land plants. Polyploid species are frequent in biomass crops,

such as the allopolyploid Miscanthus species (Mitros et al., 2020)

and autopolyploid sugarcane species (Zhang et al., 2018). High

levels of sequence similarity between the homo-/homoeologous

alleles or gene members pose many challenges to the alignment

of short reads and subsequent expression quantification. Thus,

tools for the RNA-seq analysis of polyploid species or the

pipelines tuned for such expression quantification are
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necessary (Kuo et al., 2018; Paya-Milans et al., 2018), as

polyploid species have begun to be assembled recently.

Notably, short-read RNA-seq also has major merits in other

plant-related research areas, especially single-cell/single nuclear

RNA-seq and meta-transcriptome analysis, owing to the

compatibility and cost affordability. Short-read RNA-seq

facilitates meta-transcriptome characterization, profiling gene

expression in a microbial community and providing a snapshot

for functional exploration (Turner et al., 2013; Salazar et al.,

2019). In particular, deep RNA-seq can be used to profile the

gene expression from both the host and pathogens to obtain

insights into plant-microbial interactions (Rudd et al., 2015).

More recently, short-read RNA-seq has been pushed to single-

cell resolution due to a series of technological advancements,

including robotics, microfluidics and hydrogel droplets (Zhang

et al., 2019). In a few years, efforts in single-cell RNA-seq (scRNA-

seq) or single-nuclei RNA-seq (snRNA-seq) have expanded from

model plants (Arabidopsis, tomato and rice) to non-model species

(e.g., maize and poplar), from organ development and cell

differentiation to wood formation (Gutzat et al., 2020; Xu et al.,

2020; Li et al., 2021; Kajala et al., 2021; Chen et al., 2021a; Wang

et al., 2021; Bezrutczyk et al., 2021; Liu et al., 2022). Undoubtedly,

single-cell transcriptomics are leading the fore frontier of plant

single-cell biology and playing an ever-increasing role in plant

research and breeding. Excellent reviews and public database on

plant scRNA-seq datasets are available (Shaw et al., 2021; Chen

et al., 2021b; Shahan et al., 2021). Due to the differences in several

aspects of the wet- and dry-lab parts between the single-cell and

bulk RNA-seq experiments, the merits of short-read RNA-seq in

single-cell plant biology is beyond the scope of this review and can

be found elsewhere (Shaw et al., 2021).

In summary, our work discusses a representative collection of

RNA-seq analysis tools covering gene annotation, construction of

expression atlas, gene regulation and alternative splicing. We

emphasize that the integration of these tools will unleash the

power within RNA-seq analysis, uncover the gene regulatory

complexity for many less-studied plant species, and, ultimately,

promote the functional genomics of these species.
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