Check for updates

OPEN ACCESS

EDITED BY Boris Rewald, University of Natural Resources and Life Sciences Vienna, Austria

REVIEWED BY Junpeng Mu, Mianyang Normal University, China

*CORRESPONDENCE Xiao Ying Gong Xgong@fjnu.edu.cn

SPECIALTY SECTION This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science

RECEIVED 06 September 2022 ACCEPTED 19 December 2022 PUBLISHED 12 January 2023

CITATION

Ma WT, Yu YZ, Wang X and Gong XY (2023) Estimation of intrinsic wateruse efficiency from δ^{13} C signature of C₃ leaves: Assumptions and uncertainty. *Front. Plant Sci.* 13:1037972. doi: 10.3389/fpls.2022.1037972

COPYRIGHT

© 2023 Ma, Yu, Wang and Gong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Estimation of intrinsic water-use efficiency from δ^{13} C signature of C₃ leaves: Assumptions and uncertainty

Wei Ting Ma¹, Yong Zhi Yu¹, Xuming Wang ^{1,2} and Xiao Ying Gong ^{1,2,3*}

¹Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, China, ²Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China, ³Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China

Carbon isotope composition (δ^{13} C) has been widely used to estimate the intrinsic water-use efficiency (iWUE) of plants in ecosystems around the world, providing an ultimate record of the functional response of plants to climate change. This approach relies on established relationships between leaf gas exchange and isotopic discrimination, which are reflected in different formulations of ¹³C-based iWUE models. In the current literature, most studies have utilized the simple, linear equation of photosynthetic discrimination to estimate iWUE. However, recent studies demonstrated that using this linear model for quantitative studies of iWUE could be problematic. Despite these advances, there is a scarcity of review papers that have comprehensively reviewed the theoretical basis, assumptions, and uncertainty of ¹³C-based iWUE models. Here, we 1) present the theoretical basis of ¹³C-based iWUE models: the classical model (iWUE_{sim}), the comprehensive model (iWUEcom), and the model incorporating mesophyll conductance (iWUE_{mes}); 2) discuss the limitations of the widely used iWUE_{sim} model; 3) and make suggestions on the application of the iWUE_{mes} model. Finally, we suggest that a mechanistic understanding of mesophyll conductance associated effects and post-photosynthetic fractionation are the bottlenecks for improving the ¹³C-based estimation of iWUE.

KEYWORDS

water-use efficiency, carbon isotope discrimination, mesophyll conductance, postphotosynthetic fractionation, climate change, photosynthesis

Introduction

During photosynthesis, plant stomata act as a control valve for the diffusion of CO₂ and water vapor, regulating the rates of water and carbon exchange between the biosphere and the atmosphere (de Boer et al., 2011; Adams et al., 2020; Walker et al., 2021). Intrinsic water-use efficiency (iWUE), defined as the ratio of net photosynthetic rate (A_n) to stomatal conductance for water vapor (g_{sw}) , plays a key role in quantifying carbon uptake and water loss at leaf to continental scales (Seibt et al., 2008; Keenan et al., 2013). The response of iWUE is fundamental to climate change research since small changes in iWUE can have profound impacts on global carbon and water cycles. Furthermore, iWUE can provide insights into the mechanisms of plant physiological responses to climate change and support the screening and breeding of climate-resilient crops (Farquhar and Richards, 1984; von Caemmerer et al., 2014; Gresset et al., 2014). Central to these research domains is the quantification of iWUE.

Stable carbon isotope discrimination (Δ) can be used as an integrated measure of iWUE in C₃ plants (Farquhar et al., 1989). Plants discriminate against ¹³C in favour of ¹²C during photosynthetic CO₂ assimilation in C₃ leaves, and the variation in carbon isotope composition (δ^{13} C) from source CO₂ to photosynthetic products (e.g., bulk leaf organic carbon or sugars) is termed as Δ , following Farquhar et al. (1982b); Farquhar et al. (1989):

$$\Delta = \frac{\delta^{13}C_{\rm a} - \delta^{13}C_{\rm p}}{1 + \delta^{13}C_{\rm p}} \qquad \qquad \text{Equation 1}$$

where atmospheric $\delta^{13}C_a$ is approximately -7~-8‰ during the 20th century. Δ can also be estimated from $\delta^{13}C$ of CO_2 entering (δ_{in} and C_{in}) and leaving (δ_{out} and C_{out}) the cuvette during gas exchange, termed as online $^{12}C/^{13}C$ discrimination (Evans et al., 1986):

$$\Delta_{\rm online} = \frac{\xi(\delta_{\rm out} - \delta_{\rm in})}{1 + \delta_{\rm out} - \xi(\delta_{\rm out} - \delta_{\rm in})} \qquad \qquad {\rm Equation} \ 2$$

where $\xi = C_{in}/(C_{in}-C_{out})$. In this way, Δ can be measured nondestructively to probe real-time responses of photosynthesis at high temporal resolution. Changes in photosynthetic parameters $(A_n \text{ and } g_s)$ are captured in Δ_{online} and the isotopic signatures are further imprinted on plant tissues during biosynthesis. As such, biomass-based Δ reflects physiological status of plants throughout the growth period of plant tissues (Cernusak et al., 2013; Soh et al., 2019). Different from classical approaches such as gas exchange or growth analysis, biomass-based Δ can be applied retrospectively, providing a useful record of iWUE at large spatial and temporal scales (Frank et al., 2015; Adams et al., 2020; Gong et al., 2022).

Inferring iWUE from isotopic records relies on theoretical models. In the current literature, most studies have utilized the simple, linear equation of photosynthetic discrimination to estimate iWUE. However, it can be problematic to interpret

iWUE using this linear model which ignores effects other than diffusion through stomata and carboxylation. For instance, Seibt et al. (2008) suggested that the uncertainty in iWUE-13C models was related to the simplification of mesophyll conductance (g_m) . g_m represents the conductance to CO2 diffusion from the intercellular space to the carboxylation site in chloroplasts, a key limiting factor of photosynthesis in addition to stomatal conductance and biochemical capacity (Tholen et al., 2012; Stangl et al., 2019). However, recent advances in δ^{13} C-based iWUE estimation have not been systematically reviewed. The main objective of this mini review is to concisely summarize the theoretical basis and uncertainties of δ^{13} C-based iWUE models. We (i) present different formulations of Δ and the associated assumptions, (ii) present Δ -based iWUE models derived from those formulations: the classical model (iWUEsim), the comprehensive model (iWUE_{com}), the model incorporating g_m (iWUE_{mes}), (iii) discuss the limitations of the widely used iWUEsim model; and make suggestions on the application of the iWUE_{mes} model.

Comprehensive model of photosynthetic ¹³C discrimination and simplifications

A comprehensive description of ¹³C discrimination (Δ_{com}) during C₃ photosynthesis was given by Farquhar et al. (1982b) and extended to include ternary effects of transpiration on CO₂ assimilation by Farquhar and Cernusak (2012):

$$\Delta_{\text{com}} = \frac{1}{1-t} \left(a_{ac} \frac{C_a - C_i}{C_a} \right)$$
$$+ \frac{1+t}{1-t} \left(a_m \frac{C_i - C_c}{C_a} + b \frac{C_c}{C_a} - \frac{\alpha_b}{\alpha_e} e \frac{R_d}{V_c} \frac{C_c}{C_a} - \frac{\alpha_b}{\alpha_f} f \frac{\Gamma^*}{C_a} \right)$$
Equation 3

and

 $t = \frac{(1 + a_{ac})E}{2g_{ac}}$ Equation 4

$$a_{ac} = \frac{a_b(C_a - C_s) + a_s(C_s - C_i)}{C_a - C_i}$$
 Equation 5

where a_b (2.9‰) and a_s (4.4‰) are fractionations associated with the diffusion of CO₂ through leaf boundary layer and in the air, respectively. a_m (1.8‰) is the fractionation associated with the dissolution and diffusion of CO₂ in mesophyll (see Table S1 for the list of parameters). C_a , C_s , C_i and C_c represent the mole fraction of CO₂ in air, at leaf surface, in the intercellular spaces and chloroplast, respectively (Figure 1). Δ_{com} can be separated into a series of fractionation components of leaf boundary layer conductance

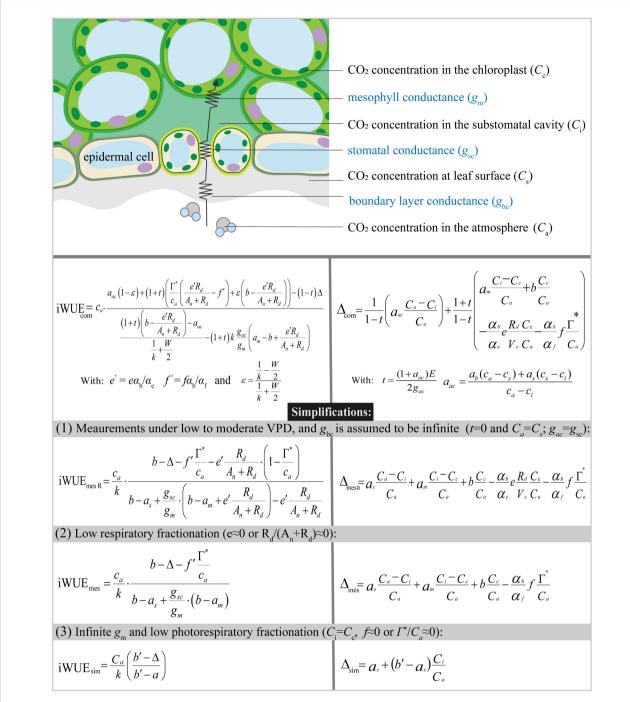


FIGURE 1

Diagram of the CO₂ diffusion pathway in C₃ leaves and different formulations of iWUE (iWUE_{com}, iWUE_{mes}, iWUE_{mes}, and iWUE_{sim}) derived from the Farquhar et al. model for photosynthetic 13 C discrimination.

 (Δ_{gbc}) , stomatal conductance (Δ_{gsc}) , mesophyll conductance (Δ_{gm}) , Rubisco (ribulose-1,5-bisphosphate carboxylase/ oxygenase) carboxylation (Δ_b) , day respiration (Δ_e) , and photorespiration (Δ_f) . Note that *t* is included to account for the ternary effects of transpiration rate (*E*) on photosynthetic discrimination (Farquhar and Cernusak, 2012). Usually, the effect of *t* is small and can be omitted under low or moderate vapor pressure deficit (VPD) (Farquhar and Cernusak, 2012; Evans and Caemmerer, 2013). If Δ_{gbc} is also omitted ($C_a=C_s$ and $g_{ac}=g_{sc}$), the Δ_{com} model is simplified as:

$$\Delta_{\text{mes R}} = a_s \frac{C_a - C_i}{C_a} + a_m \frac{C_i - C_c}{C_a} + b \frac{C_c}{C_a}$$
$$- \frac{\alpha_b}{\alpha_e} e \frac{R_d}{V_c} \frac{C_c}{C_a} - \frac{\alpha_b}{\alpha_f} f \frac{\Gamma^*}{C_a} \qquad \text{Equation 6}$$

where the subscript "mes R" indicates that the expression takes mesophyll conductance, day respiration and photorespiration into account.

 $\Delta_{\rm e}$, the respiratory contribution to discrimination is mainly determined by respiratory fractionation (e), and $R_d/(An+R_d)$. Δ_e has rarely been accurately quantified largely due to the difficulty of estimating R_d (Tcherkez et al., 2017; Gong et al., 2018). Moreover, fractionation of day respiration has rarely been reported, and e estimated from respiration in the dark varies between 0 and -6‰ (Ghashghaie et al., 2003; Tcherkez et al., 2010). Under natural conditions, Δ_e is usually small and negligible (Seibt et al., 2008; Ubierna and Farquhar, 2014). Notably, a significant apparent respiratory fractionation may occur when the CO2 source used for combined gas exchange and isotopic measurements has a $\delta^{13}C$ differed from that of the ambient air (Gillon and Griffiths, 1997; Gong et al., 2015). Under such conditions, *e* should be corrected to account for the isotopic disequilibria between photosynthetic and respiratory fluxes (Wingate et al., 2007; Gong et al., 2015). Assuming $\Delta_e=0$, Equation 6 can be simplified as:

$$\Delta_{\rm mes} = a_s \frac{C_a - C_i}{C_a} + a_m \frac{C_i - C_c}{C_a} + b \frac{C_c}{C_a} - \frac{\alpha_b}{\alpha_f} f \frac{\Gamma^*}{C_a} \quad \text{Equation 7}$$

 C_c is usually unknown since its calculation requires g_m which cannot be directly measured. g_m is assumed to be infinite in early studies (for a review see Flexas et al., 2012); that is, CO₂ mole fraction in the chloroplast is equal to that in the intercellular space. Assuming $C_i=C_c$ and $\Delta_f=0$, Equation 7 is simplified as:

$$\Delta_{\rm sim} = a_s + (b' - a_s) \frac{C_i}{C_a}$$
 Equation 8

Comprehensive model of iWUE and simplifications

The comprehensive model of iWUE which includes all fractionation components of Equation 3 was first derived by Ma et al. (2021):

$$iWUE_{com} = c_a \frac{a_{ac}(1-\varepsilon) + (1+t) \left[\frac{\Gamma^*}{c_a} \left(\frac{e'R_d}{A_a + R_d} - f'\right) + \varepsilon \left(b - \frac{e'R_d}{A_a + R_d}\right)\right] - (1-t)\Delta}{\frac{(1+t) \left(b - \frac{e'R_d}{A_a + R_d}\right) - a_{ac}}{\frac{1+t}{k} - \frac{1}{2}} - (1+t)k \frac{g_{ac}}{g_{ac}} \left(a_m - b + \frac{e'R_d}{A_a + R_d}\right)}$$
Equation 6

where $e'=ea_b/a_e$, $f=fa_b/a_f$ and e=(1/k-W/2)/(1/k+W/2). This formulation is particularly useful for assessing the contribution

of each fractionation component to iWUE estimates. Ma et al. (2021) performed sensitivity tests using theoretical data of the standard photosynthetic scenarios. Their results indicated that ternary correction and Δ_{gbc} had little influence on iWUE_{com} estimates (error< 2 µmol mol⁻¹), which is in agreement with Seibt et al. (2008). Neglecting the contribution of *t* and Δ_{gbc} . Equation 9 can be simplified as:

iWUE_{mes R}

$$= \frac{c_a}{k} \cdot \frac{b - \Delta - f' \frac{\Gamma^*}{c_a} - e' \frac{R_d}{A_n + R_d} \left(1 - \frac{\Gamma^*}{c_a}\right)}{b - a_s + \frac{g_{sc}}{g_m} \left(b - a_m + e' \frac{R_d}{A_n + R_d}\right) - e' \frac{R_d}{A_n + R_d}}$$
Equation 10

 Δ_e in the iWUE_{mes R} model could be ignored as it caused an error of less than 2 µmol mol⁻¹ in typical photosynthetic scenarios (Ma et al., 2021). Excluding the contribution of day respiratory, Equation 10 can be simplified as:

$$iWUE_{mes} = \frac{c_a}{k} \cdot \frac{b - \Delta - f' \frac{\Gamma^2}{c_a}}{b - a_s + \frac{g_s}{g_m}(b - a_m)}$$
 Equation 11

The iWUE_{mes} model provided iWUE estimates that are numerically very similar with iWUE_{com} (error< 3 μ mol mol⁻¹) (Ma et al., 2021). Neglecting the contribution of g_m and photorespiration, the simplified equation for iWUE is given as:

$$iWUE_{sim} = \frac{C_a}{k} \left(\frac{b' - \Delta}{b' - a} \right)$$
 Equation 12

This linear relationship between iWUE and photosynthetic ¹³C discrimination is the most used to estimate iWUE, however, the limitations of this formulation have been raised (Seibt et al., 2008; Ubierna and Farquhar, 2014; Ma et al., 2021).

Uncertainty in iWUE_{sim} estimation associated with mesophyll conductance

Experimental evidence shows that g_m exerts a significant limitation on CO₂ diffusion and leads to a significant drawdown from C_i to C_c (Loreto et al., 1992; Flexas et al., 2008; Cano et al., 2014). It is apparent from Equation 11 that, assuming an infinite g_m will lead to overestimation of iWUE, this is supported by experimental observations (Barbour et al., 2010; Stangl et al., 2019; Adams et al., 2020). Experimental results showed that the relationship between Δ and water-use efficiency is at least partly a function of g_m (Warren and Adams, 2006). Therefore, it is important to incorporate g_m in the parameterization of the iWUE model. Ma et al. (2021) showed that iWUE_{sim} overestimated iWUE by c. 65%. Importantly, the magnitude of overestimation is dependent on Δ , making correction using empirical relations difficult. These results raise concerns regarding the accuracy of iWUE_{sim} estimations.

10.3389/fpls.2022.1037972

The overestimation of the iWUE_{sim} model has also been observed in recent studies using ¹³C series of environmental archives (Baca Cabrera et al., 2021; Bing et al., 2022). More importantly, iWUE_{sim} model could provide biased estimations of historical iWUE trend. Gong et al. (2022) analyzed tree ring ¹³C series across the globe using the iWUE_{mes} model, and reported that iWUE_{sim} model significantly overestimated iWUE (by c. 100%) and the rate of iWUE gain with time or C_a (by c. 70%) during the 20th century. This finding has been confirmed by studies carried out in distinct ecosystems (Bing et al., 2022; Mathias and Hudiburg, 2022). Failure to consider g_m must lead to an overestimated historical trend as implied by the partial derivative of iWUE_{mes} (Equation 11) (Gong et al., 2022):

$$\frac{diWUE}{dC_a} = \frac{b - \Delta}{k\left(\frac{g_{se}}{g_m} \left(b - a_m\right) + b - a_s\right)}$$
 Equation 13

Given that ¹³C series of environmental archives (e.g. tree rings) provide a unique proxy for benchmarking the output of land surface models (Frank et al., 2015; Wang et al., 2017; Lavergne et al., 2022), cautions should be paid when iWUE_{sim} model is used to predict historical trend of iWUE.

Uncertainty in $iWUE_{sim}$ estimation associated with b'

The value and physiological meaning of b' in the equation of $\Delta_{\rm sim}$ or iWUE_{sim} remain subjects of debate. Initially, Farquhar et al. (1982a) proposed that b'(27%) could be derived from early *in vitro* estimations of Rubisco carboxylation. As it agreed well with the relationship between measured biomass-based Δ and C_i/C_a , it was interpreted as a fitted value. However, when measured Δ from online instantaneous measurements was used to fit Equation 8, the fitted b' appears to be lower than 27‰ (Caemmerer and Evans, 1991; Ma et al., 2021).

b' was also explained as the net fractionation caused by Rubisco and PEPC (phosphoenolpyruvate carboxylase). Farquhar and Richards (1984) described b' as a function of relative contribution of Rubisco and PEPC carboxylation:

$$b' = (1 - \beta)b + \beta b_4$$
 Equation 14

where b (29-30‰) and b_4 (usually taken as -5.7‰ at 25°C) are fractionation factors of Rubisco and PEPC carboxylation, respectively. β is the proportion of carbon fixation through PEPC carboxylation. PEPC uses HCO₃⁻ produced by CO₂ hydration as the substrate for the synthesis of aspartate or malate, which is important for the control of cellular pH (Davies, 1979). Generally, carboxylation by Rubisco contributes a greater fraction of carbon in plants and respiratory substrates. But it is also suggested that the PEPC carboxylation could be important under the conditions of low stomatal conductance or carboxylation in darkness (Ikeda and Yamada, 1981; Gupta et al., 1994; Hibberd and Quick, 2002). Furthermore, several studies have revealed that N source and concentration were potential factors affecting carbon fixation by PEPC, which indicates that b' could vary with nitrogen metabolism (Raven and Farquhar, 1990; Douthe et al., 2012; Lian et al., 2021). That is, Equation 14 is not particularly useful for iWUE estimation because β is variable and difficult to quantify.

b' has also been described by Ubierna and Farquhar (2014) as a parameter that included carboxylation, mesophyll conductance, and photorespiration:

$$b' \cong b \frac{C_{\rm c}}{C_{\rm i}} + a_{\rm m} \left(1 - \frac{C_{\rm c}}{C_{\rm i}}\right) - f \frac{\Gamma^*}{C_a}$$
 Equation 15

According to Equation 15, b' is largely dependent on C_c/C_i which is modulated by g_m . It should be noted that the most used b'=27% is consistent with the C_c/C_i value of 0.9, higher than the common values of 0.7-0.8 (Caemmerer and Evans, 1991; Warren et al., 2003). So far, Equations 14 and 15 have only been used to discuss the potential origin of variation in b', but have not been incorporated in the model of iWUE estimation. In short, there is still no consensus concerning the interpretation of b', and current discussion on b' (Equations 14, 15) illustrated that it should not be treated as a constant value of 27‰.

Uncertainty in iWUE associated with post-photosynthetic fractionation

Post-photosynthetic fractionation (Δ_{post}) includes the discrimination processes that follow photosynthetic carbon fixation, altering δ^{13} C signals in plant organs and leaves at different development stages (Badeck et al., 2005; Vogado et al., 2020). In general, heterotrophic organs (branches, stems and roots) are ¹³C-enriched compared with autotrophic organs (leaves) (Badeck et al., 2005; Bowling et al., 2008; Cernusak et al., 2009; Lamade et al., 2016), and the immature leaves (heterotrophic phase) are ¹³C-enriched (by *c*. 2‰) compared to mature leaves (autotrophic phase) in both deciduous and evergreen species (Lamade et al., 2009; Vogado et al., 2020). However, the contribution of Δ_{post} to δ^{13} C of plant tissues and its influence on iWUE estimation are poorly understood.

Several studies has accounted for Δ_{post} to estimate iWUE (Table S2). Gimeno et al. (2021) found an improvement in correlation between iWUE estimated from gas exchange and that from Δ when g_{m} and Δ_{post} were accounted for. In that study, Δ_{post} was taken as -2.5‰ estimated from the δ^{13} C difference between phloem contents and whole-tree photosynthesis. Similarly, δ^{13} C of wood and cellulose have been corrected by -3.2‰ and -1.3‰, respectively, to account for the offset from leaf δ^{13} C (Thomas et al., 2013; Brownlee et al., 2016). In other studies, iWUE was calculated from tree-ring with a δ^{13} C offset of

-2‰ to account for Δ_{post} (Michelot et al., 2011; Frank et al., 2015). Without correcting a Δ_{post} of about 2.5‰, iWUE estimated from the δ^{13} C of tree-ring could be overestimated by 20% (Gessler et al., 2009).

The likely mechanisms underlying Δ_{post} include fractionation associated with respiration, transport and mixing of assimilates (Tcherkez et al., 2003; Brüggemann et al., 2011; Bögelein et al., 2019). Respiratory fractionation ranges from -6 to 0‰ in various species (Duranceau et al., 1999; Ghashghaie et al., 2001; Tcherkez et al., 2003). Also, there are some variations in the apparent fractionation during transport processes (e.g., daynight differences in δ^{13} C of leaf-export organic matter and different leaf-to-phloem δ^{13} C signatures along vertical canopy gradients) and very few direct measurements of isotopic differences between components at molecule/atom scale (Gessler et al., 2008; Mauve et al., 2009; Gilbert et al., 2011; Gilbert et al., 2012; Bögelein et al., 2019). In addition, postphotosynthetic fractionation is complicated by ontogenic effects (e.g., size, height, and age of individuals) that can confound the relationship between iWUE and environmental factors (Vadeboncoeur et al., 2020). That is, the influence of Δ_{post} could accumulate over time and lead to age-dependent patterns (Cernusak et al., 2009). Therefore, using a constant, empirical value of Δ_{post} could be unreliable. A mechanistic description of Δ_{post} should be very useful to improve the iWUE estimates, which requires further study on the fractionations associated with respiration, transport and allocation of assimilates.

iWUE_{mes}, a useful, simplified model for estimating iWUE

 $iWUE_{mes}$ takes the influence of mesophyll conductance and photorespiratory fractionation into account. We propose to use the $iWUE_{mes}$ model (Equation 11) since it considers the components that have a significant influence on the iWUE estimation. In particular, it includes g_m effect which is known to affect iWUE prediction.

Parameterizing the iWUE_{mes} model requires g_{sc}/g_m rather than g_m (Ma et al., 2021). Some studies use a constant g_m in the equation to estimate iWUE (Keeling et al., 2017), which makes more sense than disregarding g_m . However, the assumption of constant g_m is not supported by experimental evidence. The positive relationships between g_{sc} and g_m have been reported in many studies (Flexas et al., 2013; Gong et al., 2018), and this relationship is rather conserved across levels of CO₂, irradiance, and drought stress and functionally distinct species (Flexas et al., 2008; Ma et al., 2021; Gong et al., 2022). Incorporating the g_{sc}/g_m ratio improves the predictive accuracy of the iWUE model, as demonstrated in gas exchange experiments (Ma et al., 2021). Without knowing g_m , it is preferable to use the average g_{sc}/g_m of 0.79 (\pm 0.07) derived from a global synthesis to parameterize the iWUE_{mes} model rather than using the iWUE_{sim} model.

We acknowledge that using a constant g_{sc}/g_m is not always adequate. As more g_m data become available, interspecific differences in g_{sc}/g_m can be identified and should be accounted for in the estimated iWUE. Theoretically, species-specific g_{sc}/g_m is more appropriate to be used in the iWUE_{mes} estimation. It is also noteworthy that short-term responses of g_m are still not well defined, implying that neglecting short-term variation in g_{sc}/g_m might lead to errors in estimating iWUE at nonsteady-states, thus should be addressed in further work. Moreover, the iWUE_{mes} model does not account for the post-photosynthetic fractionation, due to a lack of knowledge on post-photosynthetic fractionation. Therefore, we recommend for biomass-based analyses to distinguish the age of organs to minimize the influence of post-photosynthetic fractionation.

Conclusion remarks

The comprehensive model of photosynthetic ¹³C discrimination of Farquhar and Cernusak (2012) is a synthesis of current understanding, and provides the theoretical basis for estimating iWUE from the ¹³C composition of plant materials. The classical iWUE_{sim} model has been shown to strongly overestimate iWUE and its historical trends due to the neglect of g_m associated effect, limiting its use in quantitative studies. iWUE_{mes} is suggested as a useful, simplified model for quantitative estimation of iWUE, which has been included in a standardized, open-source tool (R package) for calculation of iWUE from stable isotope signatures (Mathias and Hudiburg, 2022). Nonetheless, the formulation of iWUE_{mes} could still be further improved. For example, a fixed, empirical g_{sc}/g_m value could be replaced by species-specific values or mechanistic relationships derived from experimental results. ¹³C discrimination of plant material, combining with appropriate iWUE models, is also an ultimate tool for screening genetic resources to enhance the iWUE of crops under climate change scenarios. One of the primary questions is how g_{sc} and g_m of plants will respond to changes in temperature, water availability, and carbon dioxide concentration. Furthermore, the response of postphotosynthetic fractionation to climate change factors remains unknown. We conclude that mechanistic descriptions of gm associated effect and post-photosynthetic fractionation are the bottlenecks for improving the ¹³C-based estimation of iWUE.

Author contributions

XG conceptualized the topic of this review, WM and YY wrote the first draft, and all authors contributed to the writing

and revision of the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC 31870377, 32120103005, 32201277).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Adams, M. A., Buckley, T. N., and Turnbull, T. L. (2020). Diminishing CO₂driven gains in water-use efficiency of global forests. *Nat. Clim. Change* 10 (5), 466– 471. doi: 10.1038/s41558-020-0747-7

Baca Cabrera, J. C., Hirl, R. T., Schäufele, R., Macdonald, A., and Schnyder, H. (2021). Stomatal conductance limited the $\rm CO_2$ response of grassland in the last century. *BMC Biol.* 19 (1), 50. doi: 10.1186/s12915-021-00988-4

Badeck, F. W., Tcherkez, G., Nogués, S., Piel, C., and Ghashghaie, J. (2005). Postphotosynthetic fractionation of stable carbon isotopes between plant organs-a widespread phenomenon. *Rapid Commun. Mass Spectrom* 19 (11), 1381–1391. doi: 10.1002/rcm.1912

Barbour, M. M., Warren, C. R., Farquhar, G. D., Forrester, G., and Brown, H. (2010). Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. *Plant Cell Environ.* 33 (7), 1176–1185. doi: 10.1111/j.1365-3040.2010.02138.x

Bing, X., Fang, K., Gong, X., Wang, W., Xu, C., Li, M., et al. (2022). The intraannual intrinsic water use efficiency dynamics based on an improved model. *Clim Change* 172 (1), 16. doi: 10.1007/s10584-022-03368-1

Bögelein, R., Lehmann, M. M., and Thomas, F. M. (2019). Differences in carbon isotope leaf-to-phloem fractionation and mixing patterns along a vertical gradient in mature European beech and Douglas fir. *New Phytol.* 222 (4), 1803–1815. doi: 10.1111/nph.15735

Bowling, D. R., Pataki, D. E., and Randerson, J. T. (2008). Carbon isotopes in terrestrial ecosystem pools and CO_2 fluxes. New Phytol. 178 (1), 24–40. doi: 10.1111/j.1469-8137.2007.02342.x

Brownlee, A. H., Sullivan, P. F., Csank, A. Z., Sveinbjörnsson, B., and Ellison, S. B. Z. (2016). Drought-induced stomatal closure probably cannot explain divergent white spruce growth in the brooks range, Alaska, USA. *Ecology* 97 (1), 145–159. doi: 10.1890/15-0338.1

Brüggemann, N., Gessler, A., Kayler, Z., Keel, S. G., Badeck, F., Barthel, M., et al. (2011). Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review. *Biogeosciences* 8 (11), 3457–3489. doi: 10.5194/bg-8-3457-2011

Caemmerer, S.v., and Evans, J. R. (1991). Determination of the average partial pressure of CO_2 in chloroplasts from leaves of several C_3 plants. *Aust. J. Plant Physiol.* 18 (3), 287–305. doi: 10.1071/PP9910287

von Caemmerer, S.v., Ghannoum, O., Pengelly, J. J. L., and Cousins, A. B. (2014). Carbon isotope discrimination as a tool to explore C_4 photosynthesis. *J. Exp. Bot.* 65 (13), 3459–3470. doi: 10.1093/jxb/eru127

Cano, F. J., Lopez, R., and Warren, C. R. (2014). Implications of the mesophyll conductance to CO_2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting eucalyptus species. *Plant Cell Environ.* 37 (11), 2470–2490. doi: 10.1111/pce.12325

Cernusak, L. A., Tcherkez, G., Keitel, C., Cornwell, W. K., Santiago, L. S., Knohl, A., et al. (2009). Why are non-photosynthetic tissues generally $_{13}$ C enriched compared with leaves in C₃ plants? Review and synthesis of current hypotheses. *Funct. Plant Biol.* 36 (3), 199–213. doi: 10.1071/FP08216

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ fpls.2022.1037972/full#supplementary-material

Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., and Farquhar, G. D. (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. *New Phytol.* 200 (4), 950–965. doi: 10.1111/nph.12423

Davies, D. D. (1979). The central role of phosphoenolpyruvate in plant metabolism. Ann. Rev. Plant Physiol. 30 (1), 131–158. doi: 10.1146/annurev.pp.30.060179.001023

de Boer, H. J., Lammertsma, E. I., Wagner-Cremer, F., Dilcher, D. L., Wassen, M. J., and Dekker, S. C. (2011). Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO₂. *Proc. Natl. Acad. Sci.* U.S.A. 108 (10), 4041–4046. doi: 10.1073/pnas.1100555108

Douthe, C., Dreyer, E., Brendel, O., and Warren, C. R. (2012). Is mesophyll conductance to CO_2 in leaves of three eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O_2 ? *Funct. Plant Biol.* 39 (5), 435–448. doi: 10.1071/FP11190

Duranceau, M., Ghashghaie, J., Badeck, F., Deleens, E., and Cornic, G. (1999). δ 13C of CO₂ respired in the dark in relation to δ_{13} C of leaf carbohydrates in phaseolus *vulgaris* L. under progressive drought. *Plant Cell Environ.* 22 (5), 515–523. doi: 10.1046/j.1365-3040.1999.00420.x

Evans, J. R., and Caemmerer, S. V. (2013). Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. *Plant Cell Environ.* 36 (4), 745–756. doi: 10.1111/j.1365-3040.2012.02591.x

Evans, J. R., Sharkey, T. D., Berry, J. A., and Farquhar, G. D. (1986). Carbon isotope discrimination measured concurrently with gas exchange to investigate CO_2 diffusion in leaves of higher plants. *Aust. J. Plant Physiol.* 13 (2), 281–292. doi: 10.1071/PP9860281

Farquhar, G. D., Ball, M. C., von Caemmerer, S., and Roksandic, Z. (1982a). Effect of salinity and humidity on δ_{13} C value of halophytes–evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO₂ under different environmental conditions. *Oecologia* 52 (1), 121– 124. doi: 10.1007/BF00349020

Farquhar, G. D., and Cernusak, L. A. (2012). Ternary effects on the gas exchange of isotopologues of carbon dioxide. *Plant Cell Environ.* 35 (7), 1221–1231. doi: 10.1111/j.1365-3040.2012.02484.x

Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 40 (1), 503–537. doi: 10.1146/annurev.pp.40.060189.002443

Farquhar, G. D., O'Leary, M. H., and Berry, J. A. (1982b). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. *Aust. J. Plant Physiol.* 9 (2), 121–137. doi: 10.1071/ PP9820121

Farquhar, G. D., and Richards, R. A. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. *Aust. J. Plant Physiol.* 11 (6), 539–552. doi: 10.1071/PP9840539

Flexas, J., Barbour, M. M., Brendel, O., Cabrera, H. M., Carriquí, M., Díaz-Espejo, A., et al. (2012). Mesophyll diffusion conductance to CO2: an

unappreciated central player in photosynthesis. *Plant Sci.* 193-194, 70-84. doi: 10.1016/j.plantsci.2012.05.009

Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., et al. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. *Photosynth. Res.* 117 (1-3), 45–59. doi: 10.1007/s11120-013-9844-z

Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J., and Medrano, H. (2008). Mesophyll conductance to CO₂: Current knowledge and future prospects. *Plant Cell Environ.* 31 (5), 602–621. doi: 10.1111/j.1365-3040.2007.01757.x

Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G., et al. (2015). Water-use efficiency and transpiration across European forests during the anthropocene. *Nat. Clim. Change* 5 (6), 579–583. doi: 10.1038/nclimate2614

Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H., and Barnard, R. L. (2009). Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. *Plant Cell Environ.* 32, 780–795. doi: 10.1111/j.1365-3040.2009.01957.x

Gessler, A., Tcherkez, G., Peuke, A. D., Ghashghaie, J., and Farquhar, G. D. (2008). Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in ricinus communis. *Plant Cell Environ.* 31 (7), 941–953. doi: 10.1111/j.1365-3040.2008.01806.x

Ghashghaie, J., Badeck, F.-W., Lanigan, G., Nogués, S., Tcherkez, G., Deléens, E., et al. (2003). Carbon isotope fractionation during dark respiration and photorespiration in C_3 plants. *Phytochem. Rev.* 2 (1), 145–161. doi: 10.1023/B: PHYT.0000004326.00711.ca

Ghashghaie, J., Duranceau, M., Badeck, F.-W., Cornic, G., Adeline, M.-T., and Deleens, E. (2001). δ_{13} C of CO₂ respired in the dark in relation to δ_{13} C of leaf metabolites: comparison between nicotiana sylvestris and helianthus annuus under drought. *Plant Cell Environ.* 24 (5), 505–515. doi: 10.1046/j.1365-3040.2001.00699.x

Gilbert, A., Robins, R. J., Remaud, G. S., and Tcherkez, G. G. (2012). Intramolecular $_{13}C$ pattern in hexoses from autotrophic and heterotrophic C_3 plant tissues. *Proc. Natl. Acad. Sci. U.S.A.* 109, 18204–18209. doi: 10.1073/pnas.1211149109

Gilbert, A., Silvestre, V., Robins, R. J., Tcherkez, G., and Remaud, G. S. (2011). A $_{13}C$ NMR spectrometric method for the determination of intramolecular $\delta_{13}C$ values in fructose from plant sucrose samples. New Phytol. 191, 579–588. doi: 10.1111/j.1469-8137.2011.03690.x

Gillon, J. S., and Griffiths, H. (1997). The influence of (photo)respiration on carbon isotope discrimination in plants. *Plant Cell Environ.* 20 (10), 1217–1230. doi: 10.1046/j.1365-3040.1997.d01-24.x

Gimeno, T. E., Campany, C. E., Drake, J. E., Barton, C. V. M., Tjoelker, M. G., Ubierna, N., et al. (2021). Whole-tree mesophyll conductance reconciles isotopic and gas-exchange estimates of water-use efficiency. *New Phytol.* 229 (5), 2535– 2547. doi: 10.1111/nph.17088

Gong, X. Y., Ma, W. T., Yu, Y. Z., Fang, K., Yang, Y., Tcherkez, G., et al. (2022). Overestimated gains in water-use efficiency by global forests. *Global Change Biol.* 28 (16), 4923–4934. doi: 10.1111/gcb.16221

Gong, X. Y., Schäufele, R., Feneis, W., and Schnyder, H. (2015). 13CO2/ 12CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components. *Plant Cell Environ*. 38 (11), 2417–2432. doi: 10.1111/ pce.12564

Gong, X. Y., Tcherkez, G., Wenig, J., Schäufele, R., and Schnyder, H. (2018). Determination of leaf respiration in the light: Comparison between an isotopic disequilibrium method and the laisk method. *New Phytol.* 218 (4), 1371–1382. doi: 10.1111/nph.15126

Gresset, S., Westermeier, P., Rademacher, S., Ouzunova, M., Presterl, T., Westhoff, P., et al. (2014). Stable carbon isotope discrimination is under genetic control in the C_4 species maize with several genomic regions influencing trait expression. *Plant Physiol.* 164 (1), 131–143. doi: 10.1104/pp.113.224816

Gupta, S., Ku, M., Lin, J.-H., Zhang, D., and Edwards, G. (1994). Light/dark modulation of phosphoenolpyruvate carboxylase in C_3 and C_4 species. *Photosynth. Res.* 42, 133–143. doi: 10.1007/BF02187124

Hibberd, J. M., and Quick, W. P. (2002). Characteristics of C_4 photosynthesis in stems and petioles of C_3 flowering plants. Nature 415 (6870), 451–454. doi: 10.1038/415451a

Ikeda, M., and Yamada, Y. (1981). Dark CO2 fixation in leaves of tomato plants grown with ammonium and nitrate as nitrogen sources. *Plant Soil* 60 (2), 213–222. doi: 10.1007/BF02374106

Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., et al. (2017). Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. *Proc. Natl. Acad. Sci. U.S.A.* 114 (39), 10361–10366. doi: 10.1073/pnas.1619240114

Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., et al. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. *Nature* 499 (7458), 324–327. doi: 10.1038/nature12291

Lamade, E., Setiyo, I. E., Girard, S., and Ghashghaie, J. (2009). Changes in ${}_{13}C/{}_{12}C$ of oil palm leaves to understand carbon use during their passage from heterotrophy to autotrophy. *Rapid Commun. Mass Spectrom* 23 (16), 2586–2596. doi: 10.1002/rcm.4169

Lamade, E., Tcherkez, G., Darlan, N. H., Rodrigues, R. L., Fresneau, C., Mauve, C., et al. (2016). Natural 13C distribution in oil palm (*Elaeis guineensis* jacq.) and consequences for allocation pattern. *Plant Cell Environ.* 39 (1), 199–212. doi: 10.1111/pce.12606

Lavergne, A., Hemming, D., Prentice, I. C., Guerrieri, R., Oliver, R. J., and Graven, H. (2022). Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. *Global Change Biol.* 28 (2), 524–541. doi: 10.1111/gcb.15924

Lian, L., Lin, Y., Wei, Y., He, W., Cai, Q., Huang, W., et al. (2021). PEPC of sugarcane regulated glutathione s-transferase and altered carbon-nitrogen metabolism under different n source concentrations in oryza sativa. *BMC Plant Biol.* 21, 287. doi: 10.1186/s12870-021-03071-w

Loreto, F., Harley, P. C., Di Marco, G., and Sharkey, T. D. (1992). Estimation of mesophyll conductance to CO_2 flux by three different methods. *Plant Physiol.* 98 (4), 1437–1443. doi: 10.1104/pp.98.4.1437

Ma, W. T., Tcherkez, G., Wang, X. M., Schäufele, R., Schnyder, H., Yang, Y., et al. (2021). Accounting for mesophyll conductance substantially improves ₁₃C-based estimates of intrinsic water-use efficiency. *New Phytol.* 229 (3), 1326–1338. doi: 10.1111/nph.16958

Mathias, J. M., and Hudiburg, T. W. (2022). isocalcR: An r package to streamline and standardize stable isotope calculations in ecological research. *Global Change Biol.* 28 (24), 7428–7436. doi: 10.1111/gcb.16407

Mauve, C., Bleton, J., Bathellier, C., Lelarge-Trouverie, C., Guérard, F., Ghashghaie, J., et al. (2009). Kinetic ${}_{12}C/{}_{13}C$ isotope fractionation by invertase: evidence for a small *in vitro* isotope effect and comparison of two techniques for the isotopic analysis of carbohydrates. *Rapid Commun. Mass Spectrom* 23, 2499–2506. doi: 10.1002/rcm.4068

Michelot, A., Eglin, T., Dufrêne, E., Lelarge-Trouverie, C., and Damesin, C. (2011). Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest. *Plant Cell Environ.* 34 (2), 230–244. doi: 10.1111/j.1365-3040.2010.02238.x

Raven, J. A., and Farquhar, G. D. (1990). The influence of n metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. *New Phytol.* 116 (3), 505–529. doi: 10.1111/j.1469-8137.1990.tb00536.x

Seibt, U., Rajabi, A., Griffiths, H., and Berry, J. A. (2008). Carbon isotopes and water use efficiency: sense and sensitivity. *Oecologia* 155 (3), 441–454. doi: 10.1007/s00442-007-0932-7

Soh, W. K., Yiotis, C., Murray, M., Parnell, A., Wright, I. J., Spicer, R. A., et al. (2019). Rising CO₂ drives divergence in water use efficiency of evergreen and deciduous plants. *Sci. Adv.* 5 (12), eaax7906. doi: 10.1126/sciadv.aax7906

Stangl, Z. R., Tarvainen, L., Wallin, G., Ubierna, N., Räntfors, M., and Marshall, J. D. (2019). Diurnal variation in mesophyll conductance and its influence on modelled water-use efficiency in a mature boreal pinus sylvestris stand. *Photosynth. Res.* 141 (no. 1), 53–63. doi: 10.1007/s11120-019-00645-6

Tcherkez, G., Gauthier, P., Buckley, T. N., Busch, F. A., Barbour, M. M., Bruhn, D., et al. (2017). Leaf day respiration: low CO₂ flux but high significance for metabolism and carbon balance. *New Phytol.* 216 (4), 986–1001. doi: 10.1111/nph.14816

Tcherkez, G., Nogués, S., Bleton, J., Cornic, G., Badeck, F., and Ghashghaie, J. (2003). Metabolic origin of carbon isotope composition of leaf dark-respired CO_2 in french bean. *Plant Physiol.* 131 (1), 237–244. doi: 10.1104/pp.013078

Tcherkez, G., Schäufele, R., Nogués, S., Piel, C., Boom, A., Lanigan, G., et al. (2010). On the $_{13}C/_{12}C$ isotopic signal of day and night respiration at the mesocosm level. *Plant Cell Environ.* 33 (6), 900–913. doi: 10.1111/j.1365-3040.2010.02115.x

Tholen, D., Ethier, G., Genty, B., Pepin, S., and Zhu, X. G. (2012). Variable mesophyll conductance revisited: Theoretical background and experimental implications. *Plant Cell Environ.* 35 (12), 2087–2103. doi: 10.1111/j.1365-3040.2012.02538.x

Thomas, R. B., Spal, S. E., Smith, K. R., and Nippert, J. B. (2013). Evidence of recovery of juniperus virginiana trees from sulfur pollution after the clean air act. *Proc. Natl. Acad. Sci. U.S.A.* 110, 15319–15324. doi: 10.1073/pnas.1308115110

Ubierna, N., and Farquhar, G. (2014). Advances in measurements and models of photosynthetic carbon isotope discrimination in C₃ plants. *Plant Cell Environ.* 37. (7), 1494–1498. doi: 10.1111/pce.12346

Vadeboncoeur, M. A., Jennings, K. A., Ouimette, A. P., and Asbjornsen, H. (2020). Correcting tree-ring $\delta_{13}C$ time series for tree-size effects in eight temperate tree species. Tree Physiol. 40 (3), 333–349. doi: 10.1093/treephys/tpz138

Vogado, N. O., Winter, K., Ubierna, N., Farquhar, G. D., and Cernusak, L. A. (2020). Directional change in leaf dry matter δ_{13} C during leaf development is widespread in C3 plants. *Ann. Bot.* 126 (6), 981–990. doi: 10.1093/aob/mcaa114

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., et al. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. *New Phytol.* 229 (5), 2413–2445. doi: 10.1111/nph.16866

Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, W. K., et al. (2017). Towards a universal model for carbon dioxide uptake by plants. *Nat. Plants* 3 (9), 734-741. doi: 10.1038/s41477-017-0006-8

Warren, C. R., and Adams, M. A. (2006). Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and

the economics of water and nitrogen use in photosynthesis. *Plant Cell Environ.* 29 (2), 192–201. doi: 10.1111/j.1365-3040.2005.01412.x

Warren, C. R., Ethier, G. J., Livingston, N. J., Grant, N. J., Turpin, D. H., Harrison, D. L., et al. (2003). Transfer conductance in second growth Douglas-fir (*Pseudotsuga menziesii* (Mirb.)Franco) canopies. *Plant Cell Environ.* 26 (8), 1215–1227. doi: 10.1046/j.1365-3040.2003.01044.x

Wingate, L., Seibt, U., Moncrieff, J. B., Jarvis, P. G., and Lloyd, J. (2007). Variations in ${}_{13}$ C discrimination during CO₂ exchange by picea sitchensis branches in the field. *Plant Cell Environ.* 30 (5), 600–616. doi: 10.1111/j.1365-3040.2007.01647.x