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Carbon isotope composition (d13C) has been widely used to estimate the

intrinsic water-use efficiency (iWUE) of plants in ecosystems around the

world, providing an ultimate record of the functional response of plants to

climate change. This approach relies on established relationships between leaf

gas exchange and isotopic discrimination, which are reflected in different

formulations of 13C-based iWUE models. In the current literature, most

studies have utilized the simple, linear equation of photosynthetic

discrimination to estimate iWUE. However, recent studies demonstrated that

using this linear model for quantitative studies of iWUE could be problematic.

Despite these advances, there is a scarcity of review papers that have

comprehensively reviewed the theoretical basis, assumptions, and

uncertainty of 13C-based iWUE models. Here, we 1) present the theoretical

basis of 13C-based iWUE models: the classical model (iWUEsim), the

comprehensive model (iWUEcom), and the model incorporating mesophyll

conductance (iWUEmes); 2) discuss the limitations of the widely used iWUEsim
model; 3) and make suggestions on the application of the iWUEmes model.

Finally, we suggest that a mechanistic understanding of mesophyll

conductance associated effects and post-photosynthetic fractionation are

the bottlenecks for improving the 13C-based estimation of iWUE.

KEYWORDS

water-use efficiency, carbon isotope discrimination, mesophyll conductance, post-
photosynthetic fractionation, climate change, photosynthesis
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Introduction

During photosynthesis, plant stomata act as a control valve for

the diffusion of CO2 and water vapor, regulating the rates of water

and carbon exchange between the biosphere and the atmosphere

(de Boer et al., 2011; Adams et al., 2020; Walker et al., 2021).

Intrinsic water-use efficiency (iWUE), defined as the ratio of net

photosynthetic rate (An) to stomatal conductance for water vapor

(gsw), plays a key role in quantifying carbon uptake and water loss

at leaf to continental scales (Seibt et al., 2008; Keenan et al., 2013).

The response of iWUE is fundamental to climate change research

since small changes in iWUE can have profound impacts on

global carbon and water cycles. Furthermore, iWUE can provide

insights into the mechanisms of plant physiological responses to

climate change and support the screening and breeding of

climate-resilient crops (Farquhar and Richards, 1984; von

Caemmerer et al., 2014; Gresset et al., 2014). Central to these

research domains is the quantification of iWUE.

Stable carbon isotope discrimination (D) can be used as an

integrated measure of iWUE in C3 plants (Farquhar et al., 1989).

Plants discriminate against 13C in favour of 12C during

photosynthetic CO2 assimilation in C3 leaves, and the

variation in carbon isotope composition (d13C) from source

CO2 to photosynthetic products (e.g., bulk leaf organic carbon or

sugars) is termed as D, following Farquhar et al. (1982b);

Farquhar et al. (1989):

D =
d 13Ca − d 13Cp

1 + d 13Cp
Equation 1

where atmospheric d13Ca is approximately -7~-8‰ during

the 20th century. D can also be estimated from d13C of CO2

entering (din and Cin) and leaving (dout and Cout) the cuvette

during gas exchange, termed as online 12C/13C discrimination

(Evans et al., 1986):

Donline =
x dout − dinð Þ

1 + dout −  x dout − dinð Þ Equation 2

where x= Cin/(Cin-Cout). In this way, D can be measured

nondestructively to probe real-time responses of photosynthesis at

high temporal resolution. Changes in photosynthetic parameters

(An and gs) are captured in Donline and the isotopic signatures are

further imprinted on plant tissues during biosynthesis. As such,

biomass-based D reflects physiological status of plants throughout

the growth period of plant tissues (Cernusak et al., 2013; Soh et al.,

2019). Different from classical approaches such as gas exchange or

growth analysis, biomass-based D can be applied retrospectively,

providing a useful record of iWUE at large spatial and temporal

scales (Frank et al., 2015; Adams et al., 2020; Gong et al., 2022).

Inferring iWUE from isotopic records relies on theoretical

models. In the current literature, most studies have utilized the

simple, linear equation of photosynthetic discrimination to

estimate iWUE. However, it can be problematic to interpret
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iWUE using this linear model which ignores effects other than

diffusion through stomata and carboxylation. For instance, Seibt

et al. (2008) suggested that the uncertainty in iWUE-13C models

was related to the simplification of mesophyll conductance (gm). gm
represents the conductance to CO2 diffusion from the intercellular

space to the carboxylation site in chloroplasts, a key limiting factor

of photosynthesis in addition to stomatal conductance and

biochemical capacity (Tholen et al., 2012; Stangl et al., 2019).

However, recent advances in d13C-based iWUE estimation have

not been systematically reviewed. The main objective of this mini

review is to concisely summarize the theoretical basis and

uncertainties of d13C-based iWUE models. We (i) present

different formulations of D and the associated assumptions, (ii)

present D-based iWUE models derived from those formulations:

the classical model (iWUEsim), the comprehensive model

(iWUEcom), the model incorporating gm (iWUEmes), (iii) discuss

the limitations of the widely used iWUEsim model; and make

suggestions on the application of the iWUEmes model.
Comprehensive model of
photosynthetic 13C discrimination
and simplifications

A comprehensive description of 13C discrimination (Dcom)

during C3 photosynthesis was given by Farquhar et al. (1982b)

and extended to include ternary effects of transpiration on CO2

assimilation by Farquhar and Cernusak (2012):

Dcom =
1

1 − t
aac

Ca − Ci

Ca

� �

+
1 + t
1 − t

am
Ci − Cc

Ca
+ b

Cc

Ca
−
ab

ae
e
Rd

Vc

Cc

Ca
−
ab

af
f
Г�

Ca

 !

Equation 3

and

t =
1 + aacð ÞE
2gac

Equation 4

aac =
ab Ca − Csð Þ + as Cs − Cið Þ

Ca − Ci
Equation 5

where ab (2.9‰) and as (4.4‰) are fractionations

associated with the diffusion of CO2 through leaf boundary

layer and in the air, respectively. am (1.8‰) is the fractionation

associated with the dissolution and diffusion of CO2 in

mesophyll (see Table S1 for the list of parameters). Ca, Cs, Ci

and Cc represent the mole fraction of CO2 in air, at leaf surface,

in the intercellular spaces and chloroplast, respectively

(Figure 1). Dcom can be separated into a series of

fractionation components of leaf boundary layer conductance
frontiersin.org

https://doi.org/10.3389/fpls.2022.1037972
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2022.1037972
(Dgbc), stomatal conductance (Dgsc), mesophyll conductance

(Dgm), Rubisco (ribulose-1,5-bisphosphate carboxylase/

oxygenase) carboxylation (Db), day respiration (De), and

photorespiration (Df). Note that t is included to account for

the ternary effects of transpiration rate (E) on photosynthetic
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discrimination (Farquhar and Cernusak, 2012). Usually, the

effect of t is small and can be omitted under low or moderate

vapor pressure deficit (VPD) (Farquhar and Cernusak, 2012;

Evans and Caemmerer, 2013). If Dgbc is also omitted (Ca=Cs

and gac=gsc), the Dcom model is simplified as:
FIGURE 1

Diagram of the CO2 diffusion pathway in C3 leaves and different formulations of iWUE (iWUEcom, iWUEmes R, iWUEmes, and iWUEsim) derived from
the Farquhar et al. model for photosynthetic 13C discrimination.
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Dmes R = as
Ca − Ci

Ca
+ am

Ci − Cc

Ca
+ b

Cc

Ca

−
ab

ae
e
Rd

Vc

Cc

Ca
−
ab

af
f
Г*

Ca
Equation 6

where the subscript “mes R” indicates that the expression

takes mesophyl l conductance, day respirat ion and

photorespiration into account.

De, the respiratory contribution to discrimination is mainly

determined by respiratory fractionation (e), and Rd/(An+ Rd). De

has rarely been accurately quantified largely due to the difficulty

of estimating Rd (Tcherkez et al., 2017; Gong et al., 2018).

Moreover, fractionation of day respiration has rarely been

reported, and e estimated from respiration in the dark varies

between 0 and -6‰ (Ghashghaie et al., 2003; Tcherkez et al.,

2010). Under natural conditions, De is usually small and

negligible (Seibt et al., 2008; Ubierna and Farquhar, 2014).

Notably, a significant apparent respiratory fractionation may

occur when the CO2 source used for combined gas exchange and

isotopic measurements has a d13C differed from that of the

ambient air (Gillon and Griffiths, 1997; Gong et al., 2015). Under

such conditions, e should be corrected to account for the isotopic

disequilibria between photosynthetic and respiratory fluxes

(Wingate et al., 2007; Gong et al., 2015). Assuming De=0,

Equation 6 can be simplified as:

Dmes = as
Ca − Ci

Ca
+ am

Ci − Cc

Ca
+ b

Cc

Ca
−
ab

af
f
Г*

Ca
Equation 7

Cc is usually unknown since its calculation requires gm which

cannot be directly measured. gm is assumed to be infinite in early

studies (for a review see Flexas et al., 2012); that is, CO2 mole

fraction in the chloroplast is equal to that in the intercellular

space. Assuming Ci=Cc and Df=0, Equation 7 is simplified as:

Dsim = as + b 0 −as
� � Ci

Ca
Equation 8
Comprehensive model of iWUE
and simplifications

The comprehensive model of iWUE which includes all

fractionation components of Equation 3 was first derived by

Ma et al. (2021):

iWUEcom = ca
aac(1 − є ) + (1 + t) Г∗

ca
e 0 Rd
An+Rd

− f 0
� �

+ є b − e 0 Rd
An+Rd

� �h i
− (1 − t)D

(1+t) b−
e 0 Rd
An+Rd

� �
−aac

1
k+

W
2

− (1 + t)k gac
gm

am − b + e 0 Rd
An+Rd

� �
Equation 9

where e’=eab/ae, f’=fab/af and є=(1/k-W/2)/(1/k+W/2). This

formulation is particularly useful for assessing the contribution
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of each fractionation component to iWUE estimates. Ma et al.

(2021) performed sensitivity tests using theoretical data of the

standard photosynthetic scenarios. Their results indicated that

ternary correction and Dgbc had little influence on iWUEcom
estimates (error< 2 mmol mol-1), which is in agreement with

Seibt et al. (2008). Neglecting the contribution of t and Dgbc,

Equation 9 can be simplified as:

    iWUEmes R

=
ca
k
·

b − D −f 0 G*
ca

− e 0 Rd
An+Rd

1 − G*
ca

� �
b − as +

gsc
gm

b − am + e 0 Rd
An+Rd

� �
− e 0 Rd

An+Rd

Equation 10

De in the iWUEmes R model could be ignored as it caused an

error of less than 2 mmol mol-1 in typical photosynthetic

scenarios (Ma et al., 2021). Excluding the contribution of day

respiratory, Equation 10 can be simplified as:

iWUEmes  =
ca
k
·

b − D −f 0 G*
ca

b − as +
gsc
gm

b − amð Þ Equation 11

The iWUEmes model provided iWUE estimates that are

numerically very similar with iWUEcom (error< 3 mmol mol-1)

(Ma et al., 2021). Neglecting the contribution of gm and

photorespiration, the simplified equation for iWUE is given as:

iWUEsim =
Ca

k
b 0 −D
b 0 −a

� �
Equation 12

This linear relationship between iWUE and photosynthetic
13C discrimination is the most used to estimate iWUE, however,

the limitations of this formulation have been raised (Seibt et al.,

2008; Ubierna and Farquhar, 2014; Ma et al., 2021).

Uncertainty in iWUEsim
estimation associated with
mesophyll conductance

Experimental evidence shows that gm exerts a significant

limitation on CO2 diffusion and leads to a significant drawdown

from Ci to Cc (Loreto et al., 1992; Flexas et al., 2008; Cano et al.,

2014). It is apparent from Equation 11 that, assuming an infinite

gm will lead to overestimation of iWUE, this is supported by

experimental observations (Barbour et al., 2010; Stangl et al.,

2019; Adams et al., 2020). Experimental results showed that the

relationship between D and water-use efficiency is at least partly

a function of gm (Warren and Adams, 2006). Therefore, it is

important to incorporate gm in the parameterization of the

iWUE model. Ma et al. (2021) showed that iWUEsim

overestimated iWUE by c. 65%. Importantly, the magnitude of

overestimation is dependent on D, making correction using

empirical relations difficult. These results raise concerns

regarding the accuracy of iWUEsim estimations.
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The overestimation of the iWUEsim model has also been

observed in recent studies using 13C series of environmental

archives (Baca Cabrera et al., 2021; Bing et al., 2022). More

importantly, iWUEsim model could provide biased estimations

of historical iWUE trend. Gong et al. (2022) analyzed tree ring
13C series across the globe using the iWUEmes model, and

reported that iWUEsim model significantly overestimated

iWUE (by c. 100%) and the rate of iWUE gain with time or

Ca (by c. 70%) during the 20th century. This finding has been

confirmed by studies carried out in distinct ecosystems (Bing

et al., 2022; Mathias and Hudiburg, 2022). Failure to consider gm
must lead to an overestimated historical trend as implied by the

partial derivative of iWUEmes (Equation 11) (Gong et al., 2022):

diWUE
dCa

=
b − D

k gsc
gm

b − amð Þ + b − as
� � Equation 13

Given that 13C series of environmental archives (e.g. tree

rings) provide a unique proxy for benchmarking the output of

land surface models (Frank et al., 2015; Wang et al., 2017;

Lavergne et al., 2022), cautions should be paid when iWUEsim
model is used to predict historical trend of iWUE.
Uncertainty in iWUEsim estimation
associated with b’

The value and physiological meaning of b’ in the equation of

Dsim or iWUEsim remain subjects of debate. Initially, Farquhar

et al. (1982a) proposed that b’ (27‰) could be derived from early

in vitro estimations of Rubisco carboxylation. As it agreed well

with the relationship between measured biomass-based D and

Ci/Ca, it was interpreted as a fitted value. However, when

measured D from online instantaneous measurements was

used to fit Equation 8, the fitted b’ appears to be lower than

27‰ (Caemmerer and Evans, 1991; Ma et al., 2021).

b’ was also explained as the net fractionation caused by

Rubisco and PEPC (phosphoenolpyruvate carboxylase).

Farquhar and Richards (1984) described b’ as a function of

relative contribution of Rubisco and PEPC carboxylation:

b 0 = 1 − bð Þb + bb4 Equation 14

where b (29-30‰) and b4 (usually taken as -5.7‰ at 25°C)

are fractionation factors of Rubisco and PEPC carboxylation,

respectively. b is the proportion of carbon fixation through

PEPC carboxylation. PEPC uses HCO�
3 produced by CO2

hydration as the substrate for the synthesis of aspartate or

malate, which is important for the control of cellular pH

(Davies, 1979). Generally, carboxylation by Rubisco

contributes a greater fraction of carbon in plants and

respiratory substrates. But it is also suggested that the PEPC

carboxylation could be important under the conditions of low

stomatal conductance or carboxylation in darkness (Ikeda and
Frontiers in Plant Science 05
Yamada, 1981; Gupta et al., 1994; Hibberd and Quick, 2002).

Furthermore, several studies have revealed that N source and

concentration were potential factors affecting carbon fixation by

PEPC, which indicates that b’ could vary with nitrogen

metabolism (Raven and Farquhar, 1990; Douthe et al., 2012;

Lian et al., 2021). That is, Equation 14 is not particularly useful

for iWUE estimation because b is variable and difficult

to quantify.

b’ has also been described by Ubierna and Farquhar (2014)

as a parameter that included carboxylation, mesophyll

conductance, and photorespiration:

b0 ≅ b
Cc

Ci
+ am 1 −

Cc

Ci

� �
− f

Г�

Ca
Equation 15

According to Equation 15, b’ is largely dependent on Cc/Ci

which is modulated by gm. It should be noted that the most used

b’=27‰ is consistent with the Cc/Ci value of 0.9, higher than the

common values of 0.7-0.8 (Caemmerer and Evans, 1991; Warren

et al., 2003). So far, Equations 14 and 15 have only been used to

discuss the potential origin of variation in b’, but have not been

incorporated in the model of iWUE estimation. In short, there is

still no consensus concerning the interpretation of b’, and

current discussion on b’ (Equations 14, 15) illustrated that it

should not be treated as a constant value of 27‰.
Uncertainty in iWUE associated with
post-photosynthetic fractionation

Post-photosynthetic fractionation (Dpost) includes the

discrimination processes that follow photosynthetic carbon

fixation, altering d13C signals in plant organs and leaves at

different development stages (Badeck et al., 2005; Vogado

et al., 2020). In general, heterotrophic organs (branches, stems

and roots) are 13C-enriched compared with autotrophic organs

(leaves) (Badeck et al., 2005; Bowling et al., 2008; Cernusak et al.,

2009; Lamade et al., 2016), and the immature leaves

(heterotrophic phase) are 13C-enriched (by c. 2‰) compared

to mature leaves (autotrophic phase) in both deciduous and

evergreen species (Lamade et al., 2009; Vogado et al., 2020).

However, the contribution of Dpost to d13C of plant tissues and its

influence on iWUE estimation are poorly understood.

Several studies has accounted for Dpost to estimate iWUE

(Table S2). Gimeno et al. (2021) found an improvement in

correlation between iWUE estimated from gas exchange and

that from D when gm and Dpost were accounted for. In that study,

Dpost was taken as -2.5‰ estimated from the d13C difference

between phloem contents and whole-tree photosynthesis.

Similarly, d13C of wood and cellulose have been corrected by

-3.2‰ and -1.3‰, respectively, to account for the offset from

leaf d13C (Thomas et al., 2013; Brownlee et al., 2016). In other

studies, iWUE was calculated from tree-ring with a d13C offset of
frontiersin.org
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-2‰ to account for Dpost (Michelot et al., 2011; Frank et al.,

2015). Without correcting a Dpost of about 2.5‰, iWUE

estimated from the d13C of tree-ring could be overestimated

by 20% (Gessler et al., 2009).

The likely mechanisms underlying Dpost include

fractionation associated with respiration, transport and mixing

of assimilates (Tcherkez et al., 2003; Brüggemann et al., 2011;

Bögelein et al., 2019). Respiratory fractionation ranges from -6 to

0‰ in various species (Duranceau et al., 1999; Ghashghaie et al.,

2001; Tcherkez et al., 2003). Also, there are some variations in

the apparent fractionation during transport processes (e.g., day-

night differences in d13C of leaf-export organic matter and

different leaf-to-phloem d13C signatures along vertical canopy

gradients) and very few direct measurements of isotopic

differences between components at molecule/atom scale

(Gessler et al., 2008; Mauve et al., 2009; Gilbert et al., 2011;

Gilbert et al., 2012; Bögelein et al., 2019). In addition, post-

photosynthetic fractionation is complicated by ontogenic effects

(e.g., size, height, and age of individuals) that can confound the

relationship between iWUE and environmental factors

(Vadeboncoeur et al., 2020). That is, the influence of Dpost

could accumulate over time and lead to age-dependent

patterns (Cernusak et al., 2009). Therefore, using a constant,

empirical value of Dpost could be unreliable. A mechanistic

description of Dpost should be very useful to improve the

iWUE estimates, which requires further study on the

fractionations associated with respiration, transport and

allocation of assimilates.
iWUEmes, a useful, simplified model
for estimating iWUE

iWUEmes takes the influence of mesophyll conductance and

photorespiratory fractionation into account. We propose to use

the iWUEmes model (Equation 11) since it considers the

components that have a significant influence on the iWUE

estimation. In particular, it includes gm effect which is known

to affect iWUE prediction.

Parameterizing the iWUEmes model requires gsc/gm rather

than gm (Ma et al., 2021). Some studies use a constant gm in the

equation to estimate iWUE (Keeling et al., 2017), which makes

more sense than disregarding gm. However, the assumption of

constant gm is not supported by experimental evidence. The

positive relationships between gsc and gm have been reported in

many studies (Flexas et al., 2013; Gong et al., 2018), and this

relationship is rather conserved across levels of CO2, irradiance,

and drought stress and functionally distinct species (Flexas et al.,

2008; Ma et al., 2021; Gong et al., 2022). Incorporating the gsc/gm
ratio improves the predictive accuracy of the iWUE model, as

demonstrated in gas exchange experiments (Ma et al., 2021).

Without knowing gm, it is preferable to use the average gsc/gm of
Frontiers in Plant Science 06
0.79 ( ± 0.07) derived from a global synthesis to parameterize the

iWUEmes model rather than using the iWUEsim model.

We acknowledge that using a constant gsc/gm is not always

adequate. As more gm data become available, interspecific

differences in gsc/gm can be identified and should be accounted

for in the estimated iWUE. Theoretically, species-specific gsc/gm
is more appropriate to be used in the iWUEmes estimation. It is

also noteworthy that short-term responses of gm are still not well

defined, implying that neglecting short-term variation in gsc/gm
might lead to errors in estimating iWUE at nonsteady-states,

thus should be addressed in further work. Moreover, the

iWUEmes model does not account for the post-photosynthetic

fractionation, due to a lack of knowledge on post-photosynthetic

fractionation. Therefore, we recommend for biomass-based

analyses to distinguish the age of organs to minimize the

influence of post-photosynthetic fractionation.
Conclusion remarks

The comprehensive model of photosynthetic 13C

discrimination of Farquhar and Cernusak (2012) is a synthesis

of current understanding, and provides the theoretical basis for

estimating iWUE from the 13C composition of plant materials.

The classical iWUEsim model has been shown to strongly

overestimate iWUE and its historical trends due to the neglect

of gm associated effect, limiting its use in quantitative studies.

iWUEmes is suggested as a useful, simplified model for

quantitative estimation of iWUE, which has been included in a

standardized, open-source tool (R package) for calculation of

iWUE from stable isotope signatures (Mathias and Hudiburg,

2022). Nonetheless, the formulation of iWUEmes could still be

further improved. For example, a fixed, empirical gsc/gm
value could be replaced by species-specific values or

mechanistic relationships derived from experimental results.
13C discrimination of plant material, combining with

appropriate iWUE models, is also an ultimate tool for

screening genetic resources to enhance the iWUE of crops

under climate change scenarios. One of the primary

questions is how gsc and gm of plants will respond

to changes in temperature, water availability, and carbon

dioxide concentration. Furthermore, the response of post-

photosynthetic fractionation to climate change factors remains

unknown. We conclude that mechanistic descriptions of gm
associated effect and post-photosynthetic fractionation are the

bottlenecks for improving the 13C-based estimation of iWUE.
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