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Phenolic profiles and antioxidant
activity in different organs of
Sinopodophyllum hexandrum

Wei Liu, Zheng Zhang, Tong Zhang, Qi Qiao
and Xiaogai Hou*

College of Agriculture, Henan University of Science and Technology, Luoyang, China
Sinopodophyllum hexandrum is a perennial anti-cancer medicinal plant as

unique phytochemical composition podophyllotoxin, and it has special effects

on the treatments of pneumonic, cervical and testicular cancers. Besides the

podophyllotoxin, phenolic substances play a key role in the clinical practice.

However, few reports were available in terms of the phenolic compositions and

antioxidant activity. In this work, main phenolic compounds were quantified by

RP-HPLC in seven organs from S. hexandrum. Simultaneously, the sodium

borohydride/chloranil-based (SBC) method and the Folin-Ciocalteau

colorimetric method were used to determine total flavonoids and total

phenols contents, respectively. The antioxidant activity of the different

organs was further assessed by three methods (DPPH method, ABTS method

and FRAP method). Phenolic compositions/total flavonoids contents/total

phenols contents/antioxidant activity was observed to have significant

differences among different organs (P<0.05), but have a consistent changing

rule viz. rhizome>root>fruit>flower>leaf>stem>petiole. Furthermore, a

correlation analysis was employed and indicated that a positive correlation

existed between phenolic compositions contents and antioxidant activity.

Obviously, rhizome had high phenolic compositions contents and strong

antioxidant activity with the low DPPHIC50 value of 23.52 mg/mL, high ABTS

value of 1137.82 mmol equiv. Trolox/g and high FRAP value of 685.76 mmol

equiv. Trolox/g. Therefore, rhizome is recommended as a preponderant

medicinal part, and root is proposed as an alternative raw material resource

for natural antioxidant agents in functional food, medicine and chemicals. This

study can provide a new insight into the utilization extension of S.

hexandrum resources.
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Introduction

Sinopodophyl lum hexandrum , a sole species of

Sinopodophyllum genus in Berberidaceae family, is an anti-

cancer medicinal plant that could cure the pneumonic, cervical

and testicular cancers. It is also applied in the treatment of

neuroblastoma, hepatoma and leukemias (Lv and Xu, 2011; Lau

and Sattely, 2015). The pharmacological foundation of S.

hexandrum depends on aryltetralin lignans especially

podophyllotoxin. Podophyllotoxin is a natural precursor for

semi-synthetic production of anticancer chemotherapies

including etoposide (VP-16) and teniposide (VM-26) (Canela

et al., 2000; Giri and Narasu, 2000). In fact, phenolic

compositions also play an important role as effective

ingredients in the clinical practice. There is a growing interest

in identifying new natural sources of potential medical

compounds. Plant could provide a large number of natural

products with diverse effects and few negative influences

(Piat̨czak et al., 2021). Polyphenols are one good example in

phytochemicals, which has broad uses. Phenolic compounds are

ubiquitous secondary metabolites in the growth process of the

plant, and they are helpful in beckoning pollinators, seed

diffusion and diseases and pests defense (Cheynier, 2012).

Plant phenol includes monophenol, diphenyl phenol, and

polyphenol. Plant polyphenols are beneficial for human health,

occupying relatively high proportion in phenol substances. Plant

polyphenols are phenylpropanoid derivatives, including

flavonoids, phenolic acids, stilbenes, and curcumins (Quideau

et al., 2011). These compounds display a variety of biological

activities such as antioxidation, antimicrobial action, anti-

inflammation, anti-tumor and anti-virus (Maleki et al., 2019),

possessing a great application potential in the sectors of drugs,

foods, cosmetics, and chemicals (Yahfoufi et al., 2018; Fraga

et al., 2019).

Phenolic compounds synthesised in the plant cells, and are

usually known as functional ingredients as the hydrogen atoms

on the aromatic ring with the hydroxyl (Alu’datt et al., 2017).

Their antioxidant capacity is crucial in mitigating the negative

effects of oxidative stress, which is associated with the

pathogenesis of many diseases (Ma et al., 2019). These

substances can be commonly divided into two main clusters,

of flavonoid (flavanols, flavonols, anthocyanins) and non-

flavonoid (phenolic acids, stilbenes, tannins, and their

derivatives) (Zhang and Tsao, 2016; Alu’datt et al., 2017).

Regard this point, the nutritious values and biological activity

of phenolic compounds have been confirmed from some crops,

medicinal plants and edible plants (Neri-Numa et al., 2020; de

Araújo et al., 2021). Considerable epidemiological evidence

indicating that the consumption of fruits and vegetables is

associated with a reduction of chronic diseases such as

cardiovascular diseases, neurodegeneration and some cancers

(Del Rio et al., 2013). Indeed in the daily diet, the vegetable such
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compositions, including minerals, vitamins C/E, carotenoids,

anthocyanin, (poly)phenols, and organic acids (Martıńez-

Huélamo et al., 2016; Asensio et al., 2019; Cruz-Carrión et al.,

2022). These bioactive compositions have to reach a target tissue

in an effective concentration for their beneficial health effect

(Mart ı ́nez-Huélamo et al. , 2016). The polyphenolic

compositions are not only genotype-dependent but also they

are modulated by many agronomic, geographical and seasonal

factors (Cruz-Carrión et al., 2021).

Although the rhizome and root of S. hexandrum are the

main sources of medicinal ingredients, the aerial parts (leaf,

petiole, stem, flower, fruit) may also possess important

pharmaceutical value. A good example is the fruit of S.

hexandrum, which is commonly regarded as a traditional

Chinese medicine (TCM) in China. In this regard, Liu et al.

(2021) observed that the aerial parts (fruit, flower, leaf) of S.

hexandrum possessed high lignans with powerful antimicrobial

and cytotoxic activities, which was second only to root. It can be

suggested as a potential resource for natural antimicrobial agents

and cancer cell inhibitors. Lots of reports focused more on

lignans not than phenolic substances, and available data on

phenols are very limited in S. hexandrum. Despite these findings,

the reference is still poor in the terms of phytochemical profile of

different parts of S. hexandrum. In particular, there are very few

studies on phenols in different parts of S. hexandrum. On the

other hand, plant secondary metabolism is an integrative result

of the interaction between plants and the environment during

the long evolutionary process. The biosynthesis pathway,

distribution and contents of secondary metabolites usually has

the specificity as the differences in the species, organ and growth

stage (Li et al., 2017). Antioxidant activity level is correlated with

the type and content of chemical compositions, which is

receiving increasing attention. However, antioxidant activity of

the different organs of this species has not been investigated up

to now. Therefore, a study on phenolic compositions and

antioxidant activity is very essential in different plant organs of

S. hexandrumn for its innovative development and utilization.

Hence, seven different plant organs of S. hexandrum

(rhizome, root, stem, leaf, petiole, flower and fruits) were used

as experimental materials, and their phenolic profiles (flavonoid,

phenolic acids) were investigated by RP-HPLC in this study. The

three different measurement methods (DPPH method, ABTS

method, FRAP method) were simultaneously employed for

antioxidant activity evaluation of seven different organs.

Finally, a correlation analysis was performed between phenolic

compositions and antioxidant activity. The present study aims to

(1) reveal the differences in phenolic compositions among

different organs, (2) antioxidant activity variations among

different organs, (3) confirm the correlation between phenolic

compositions content and antioxidant capacity, (4) explore an

optimal part owning both high phenolic contents and strong
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antioxidant activity, (5) provide a new insight into the utilization

expansion of S. hexandrum resources.
Material and methods

Main chemicals and instruments

Folin-Ciocalteus’s phenol reagent was procured from Beijing

Solarbio Co. Ltd, PR China. 1, 1-diphenyl-2-picrylhydrazyl

(DPPH), 2, 2-azino-bis (3-ethyl-benzothiazoline-6-sulphonic

acid) diammonium salt (ABTS), 2, 4, 6-Tripyridyl-s-triazine

(TPTZ), 6-Hydroxy-2, 5, 7, 8-tetramethylchroman-2-

carboxylic acid (Trolox), and seven chemical standards (rutin,

quercetin, kaempferol, gallic acid, chlorogenic acid,

protocatechuic acid, ferulic acid) were provided by Sigma-

Aldrich Co., St. Louis, Missouri, USA. Acetic acid,

chromatographic-scale methanol and acetonitrile were

obtained from Tianjin Bodi Chemical Holding Co. Ltd., China.

All solutions involved in this work were filtered with a 0.22 mm

nylon filter before use. Analytical-grade reagents were dissolved

using deionized water (18 MWcm). T-400B high-speed multi-

function pulverizer was acquired from Dingshuai Hardware

Products Co., Ltd., Yongkang City, Zhejiang Province. R-

1001VN rotary evaporator was provided from Changcheng

Science and Industry Co., Ltd., Zhengzhou City, Henan

Province. The HPLC was carried out by an Agilent Series 1260

liquid chromatograph equipped with a quaternary gradient

pump system and variable-wavelength detector (VWD) system

with a reversed-phase (RP) SB-C18 column (5 mm, 4.6 ×250

mm, Agilent Technologies Inc., USA). Data collection was

performed using ChemStation (Agilent Technologies Inc., USA).
Plant materials

Plant materials were secured from S. hexandrumGermplasm

Resource Repository of Henan University of Science and

Technology (HaUST) locating in Luoyang city of Henan

province in China (E112°25′23″, N34°35’46”) during April and

August in the year 2020. Considered the plant age could

influence the contents of phytochemicals, S. hexandrum with a

growth age of 5 years was selected as experimental materials. In

detail, stem, leaf, petiole and flower were sampled in April. The

rhizome, root (namely lateral roots/fibril root) and fruit samples

were collected in August when the fruits were mature stage. All

fresh organs samples were placed in the shade at room

temperature for natural drought. These samples were

pulverized and sieved through a 40-mesh sieve, and the

powder obtained was stored for further experiments. Plant

material was authenticated by Ph.D. Xian Xue from HaUST.

The voucher specimens of plant materials were deposited into
Frontiers in Plant Science 03
the Herbarium/Plant Sample Collection Center of HaUST

(HaUST-2020-LW000022-24).
Preparation of the ethanolic extract for
plant samples

Each powdered sample was treated using previously

described methods with appropriate modification (Liu et al.,

2015). In detail, plant sample extraction procedure was as

following: extraction time was 1 h using extractant of 65%

aqueous ethanol with liquid-solid ratio of 20:1, and extraction

temperature and number of extractions is 60 °C and 3 times,

respectively. The filtrates products were concentrated to obtain

the crude extracts by rotary evaporation at 55 °C under the

vacuum. The final extracts were stored at −20 °C in the brown

bottle to avoid the light for subsequent use. All samples were

performed in triplicate.
Quantification of phenolic compositions
by RP-HPLC

Test sample solution was accurately prepared using the

crude extracts obtained above. Before the use, all solutions

involved in this work were filtered with a 0.22 mm nylon

filter. The filtered sample solution was separated to quantify

the main phenolic compositions by RP-HPLC (Liu et al., 2017).

Simultaneously, the validation of RP-HPLC procedure was

carried out in this study. Water with 0.3% acetic acid (mobile

phase A) and acetonitrile (mobile phase B) were used as mobile

phases. The flow rate was set at 0.8 mL/min. The injection

volume was 20 mL and the detection wavelength was 254 nm.

The phenolic compositions were detected by the gradient elution

program as follows: 0–20 min, 5–25% B; 20–35 min, 25–35% B;

35–40 min, 35–45% B; 40–55 min, 45–65% B, 55–60 min, 65–

80% B, 60–70 min, 80–100% B; 70–75 min, 100% B. The phenols

contents were calculated by referring to the internal-standard

method. Each sample detection was conducted in triplicate.
Determination of total flavonoids and
total phenols contents

The total flavonoid content (TFC) was determined by the

sodium borohydride/chloranil-based (SBC) method as described

by He et al. (2008); Lay et al. (2014) and Mocan et al. (2015). In

brief, sample solutions were diluted to a concentration of 20 mg/

mL. A calibration curve was established using a series of

concentration gradients of quercetin (0.1–10.0 mM). The

wavelength was 430 nm for measuring the absorbance value.

The TFC values were calculated as the millimoles of quercetin
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equivalent (QE) per 100 g dry weight (mmol QE/100 g D.W.) in

S. hexandrum. Each determination was performed in three

replicates for experimental accuracy.

Total phenol content (TPC) was quantified by the Folin-

Ciocalteau colorimetric method according to Burcu et al.

(2014) and Beato et al. (2011). A calibration curve was

constructed via a batch of concentration gradients of gallic

acid standard solutions (10, 20, 40, 60, 80, 100, 200, 300, and

400 mg/mL) for the TPC quantification of test samples. The

absorbance was measured at 760 nm. The TPC values were

expressed as the millimoles of gallic acid equivalent (GAE) per

100 g dry weight (mmol GAE/100 g D.W.) . Each

determination was performed in three replicates for

experimental accuracy.
Measurement of antioxidant activity

Three different methods (DPPH method, ABTS method,

FRAP method) were employed to evaluate antioxidant activity

of different plant organs of S. hexandrum. DPPH method has

been widely used for the determination of antioxidant activity

of pure antioxidant compounds as well as of plant natural

products (Liu et al., 2016). In the present study, a DPPH

method was used to investigate the DPPH radical scavenging

capacity for reflecting antioxidant activity of different organs of

S. hexandrum, as previously described by Liu et al. (2018) and

Brand-Williams et al. (1995). Trolox and 80% ethanol were

used as the positive and negative control, respectively. The

results of DPPH radical scavenging capacity was displayed as a

median inhibitory concentration, viz. DPPHIC50 value. The

DPPHIC50 value is an indication of the concentration of the

sample when half of the DPPH radicals are scavenged by the

test sample, which is inversely proportional to antioxidant

activity ability of the test samples. All measurements were

carried out in triplicate.

The scavenging effects for the ABTS radical cation were

investigated for all the test samples as described in previous

literature (Re et al., 1999; Wang et al., 2013; Mocan et al.,

2015). Standard antioxidant and blank samples were

prepared with Trolox and phosphate-buffered saline (PBS)

solutions, respectively. The results were expressed as

micromoles of Trolox equivalents per gram dry weight

(mmol equiv. Trolox/g). All measurements were repeated

three times.

The ferric reducing antioxidant power (FRAP) of all

samples was evaluated by the protocol described by Benzie

and Strain (1996) and Wang et al. (2013). Trolox was used as

the standard solution. The results of FRAP assay were

displayed as micromole Trolox equivalents per gram of dry

weight (mmol equiv. Trolox/g). All measurements were

repeated three times.
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Statistical analysis

Correlation analysis (CA) was performed using SPSS

software (SPSS for Windows 25.0, IBM SPSS Inc., Chicago,

USA). Phenolic compositions were regarded as the

independent variables, and antioxaidant activity was regarded

as the dependent variables in CA. CA could reveal the

correlation between phenos contents and antioxidant activity,

providing a referenceable basis for understanding the

relationship between the both.

Microsoft Excel 2016 (Microsoft Corporation, Redmond,

USA) and Origin 9.0 software (OriginLab Corporation,

Northampton, USA) was used for statistical analysis of the data

and the related graphs creation in this study, respectively. All data

was shown as mean values ± standard deviation (mean ± SD) in

accordance with three independent assays (n=3). One-way

analysis of variance (ANOVA) was performed using SPSS 25.0

software, based on Tukey’s HSD test at P<0.05.
Results and discussion

Validation of the HPLC procedure

Sample solutions were repeatedly injected seven times to test

the precision of the RP-HPLC procedure, and plant powder

samples were extracted six times for six solutions to verify the

reproducibility of the procedure (Yang et al., 2007; Liu et al.,

2015; Liu et al., 2016; Liu et al., 2021). The relative standard

deviation (RSDs) values of relative retention times (RRTs) and

relative peak areas (RPAs) were 0.023% to 0.081% and 0.165% to

2.668%, respectively, for the phenolic components of the seven

replicate injections (n=7). Six replicate solid powder samples

with RSDs of 0.032~0.169% and 1.328~3.163% were determined

for RRTs and RPAs, respectively (n=6). Quantitative test

samples were added together with known amounts of

standards to confirm the accuracy of the method through a

recovery experiment. The average recovery ratio of all test

compositions ranged from 95.327 ± 0.453% to 101.225 ±

0.537%, with the RSDs values of 1.127%~1.783% (n=6). The

limit of detection (LOD) and limit of quantification (LOQ) were

the sample concentrations at a signal-to-noise ratio of 3:1 and a

signal-to-noise ratio of 10:1, respectively. The LOD and LOQ of

the seven compounds ranged from 0.531 to 4.225 ng/mL and

6.119 to 11.386 ng/mL, respectively. The stability of these

compounds was investigated by measuring their RRTs and

RPAs after the sample solutions were kept from 0 to 48 h. The

RSDs of the RRTs and RPAs were found to be less than 3%. The

RP-HPLC analytical procedure was proved to be reliable for the

quantification of phenolic components in this study through a

battery of analysises on precision, reproducibility, recovery ratio,

stability, LOD and LOQ.
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Difference in flavonids and phenolic
acids compounds contents in S.
hexandrum organs

Although the substance foundation is lignans such as

podophyllotoxin for medicinal application of S. hexandrum,

phenolic compositions also play an important synergistic role

in the pharmaceutical practice (Lin et al., 2008; Zhou et al.,

2008). Phenolic compositions were detected using RP-HPLC

method in different organs of S. hexandrum. The corresponding

compositions were respectively identified as rutin, quercetin,

kaempferol, gallic acid, chlorogenic acid, protocatechuic acid,

and ferulic acid by the comparison of retention time with the

standards, which was based on the Agilent ChemStation (Agilent

Technologies Inc., USA). Thereinto, three substances (rutin,

quercetin, kaempferol) belong to flavonoids compounds, and

the remaining four substances (gallic acid, chlorogenic acid,

pro toca techu ic ac id , f e ru l i c ac id ) were phenol i c

acids compounds.

Phenolic compositions contents had significant differences

in various organs of S. hexandrum (P<0.05), and rutin and

ferulic acid accounted a relatively large portion (Table 1). Rutin

contents (0.144 ± 0.015%-0.923 ± 0.054%) and ferulic acid

contents (0.147 ± 0.026%-0.834 ± 0.082%) were significantly

higher than other chemical compositions among all test organs

(P<0.05). Rutin content had the highest value of 0.923 ± 0.054%

in rhizome, followed by root (0.616 ± 0.044%). Ferulic acid

displayed a similar changing regulation, viz. the highest ferulic

acid contents (0.834 ± 0.082%) were also found in rhizome,

followed by root (0.583 ± 0.035%). In detail, rutin contents

ranked in the sequence as rhizome (0.923 ± 0.054%)>root

(0.616 ± 0.044%)>fruit (0.377 ± 0.053%)>flower (0.331 ±
Frontiers in Plant Science 05
0.035%)>leaf (0.230 ± 0.024%)>stem (0.181 ± 0.045%)>petiole

(0.144 ± 0.015%) in different plant organs. Other substance

distribution pattern was consisitent with the rutin among

different plant organs. For example, quercetin content ranked

in this order as rhizome (0.399 ± 0.028%)>root (0.318 ±

0.017%) > fruit (0.237 ± 0.030%)>flower (0.194 ± 0.026%)>leaf

(0.157 ± 0.023%)>stem (0.136 ± 0.006%)>petiole (0.100 ±

0.005%). The previous reports have investigated the active

ingredients including flavonids and phenolic acids in different

S. hexandrum organs, and showed that active ingredients

contents significantly changed along with different organs

(P<0.05), always reaching a peak value in the rhizome

followed by root (Liu et al., 2021). Indeed, the results were

agreement with the present studies.

In addition in S. hexandrum, the phenomenon of

chemical compositions contents varying with plant organs

was also observed in other chemical ingredients types such as

lignans, podophyllotoxin and 4’-demethylpodophyllotoxin

(Li et al., 2015; Li et al., 2017), as well as nutritional

ingredients such as soluble sugar and trace metal elements

(Ma et al., 2002). Similar result was also verified in its sibling

species Podophyllum peltatum (Yin et al., 2021), Dysosma

versipellis (Deng et al., 2006; Ma et al., 2014), and D.

tsayuensis (Zhong et al., 2011). These results consistently

demonstrated that observable diversities existed in chemical

compositions of different organs of S. hexandrum. In different

plant organs, chemical compositions distribution variation is

an integrative reflect of reproductive strategy as well as

biochemical-ecological adaptation of the plant-environment

(Ma et al., 2002; Lu et al., 2006), likely depending on

growth period, sampling time, experimental methods and

environmental factors.
TABLE 1 The contents of phenols including flavonids and phenolic acids in different organs of S. hexandrum.

Code Organ Flavonids Phenolic acids

Rutin
(%)

Quercetin
(%)

Kaempferol
(%)

Gallic acid
(%)

Chlorogenic acid
(%)

Protocatechuic acid
(%)

Ferulic acid
(%)

1 Rhizome 0.923 ±
0.054a

0.399 ± 0.028a 0.293 ± 0.016a 0.323 ± 0.074a 0.171 ± 0.018a 0.189 ± 0.038a 0.834 ± 0.082a

2 Root 0.616 ±
0.044b

0.318 ± 0.017b 0.229 ± 0.017b 0.258 ± 0.066b 0.136 ± 0.010b 0.157 ± 0.018b 0.583 ± 0.035b

3 Stem 0.181 ±
0.045f

0.136 ± 0.006e 0.102 ± 0.007e 0.118 ± 0.008e 0.086 ± 0.005d 0.106 ± 0.005d 0.228 ± 0.031f

4 Petiole 0.144 ±
0.015g

0.100 ± 0.005f 0.091 ± 0.004e 0.089 ± 0.008f 0.077 ± 0.004e 0.087 ± 0.005e 0.147 ± 0.026g

5 Leaf 0.230 ±
0.024e

0.157 ± 0.023e 0.116 ± 0.011d 0.137 ± 0.006d 0.098 ± 0.006d 0.118 ± 0.007d 0.289 ± 0.016e

6 Flower 0.331 ±
0.035d

0.194 ± 0.026d 0.131 ± 0.007d 0.190 ± 0.036c 0.114 ± 0.008c 0.129 ± 0.005c 0.405 ± 0.053d

7 Fruit 0.377 ±
0.053c

0.237 ± 0.030c 0.173 ± 0.028c 0.208 ± 0.044c 0.128 ± 0.009b 0.137 ± 0.008c 0.486 ± 0.041c
All data is denoted as mean ± SD (n=3). Significant differences between different treatments (samples) in the same column are indicated by different lowercase letters (P<0.05).
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Rutin, quercetin, kaempferol, gallic acid, chlorogenic acid,

protocatechuic acid, and ferulic acid are beneficial for human

health maintenance (Harwood et al., 2007; Wang et al., 2013).

Previous studies have demonstrated that S. hexandrum contains

high levels of these active components, which could be regarded

as natural antioxidants with significant application potential for

use in the pharmaceutical, food and chemical industries (Lin

et al., 2008). Phenolic compounds are synthesized by the pentose

phosphate pathway (PPP), shikimate pathway, and

phenylpropanoid pathway (Randhir et al., 2004). The first

rate-limiting enzyme is glucose-6-phosphate dehydrogenase

(G6PDH) for the phenols synthesis in PPP (Liu et al., 2013).

Phenylalanine ammonia-lyase (PAL) is a key enzyme in the

phenylpropanoid pathway (González-Chavira et al., 2018). PAL

can change many chemical compositions structure, such as

ferulic acid and caffeic acid, facilitating the phenols production

(Jeong et al., 2018; Lyu et al., 2022). Also, Liu et al. (2013) and

Ren & Sun (2014) have verified that the enzyme activity increase

of PAL and G6PDH can improve the phenolics contents.

Subsequently, molecular mechanism of phenolic compositions

conetents difference should be performed in different organs of

S. hexandrum at molecular level. In summary, the contents of the

phenols are relatively high and vary considerably in different

organs of S. hexandrum. A more comprehensive investigation of

phenolic constituents in S. hexandrum appears essential for its

effective quality evaluation.
Difference in total flavonoids contents
and in total phenols contents

In this study, the total flavonoids contents and total phenols

contents were also investigated for an integrative comparative

purpose of different organs in S. hexandrum. The results were

displayed in Table 2. The results showed that the total flavonoid

contents and total phenol contents significantly varied with

different plant organs. In different organs of S. hexandrum,

total flavonids contents ranged from 11.68 ± 0.59 to 27.24 ±

2.12 mmol QE/100 g D.W., and 33.26 ± 1.19-67.86 ± 3.11 mmol
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GAE/100 g D.W. for total phenols contents. Total phenols

contents were more abundant than total flavonoids. The

highest total phenols contents were detected in rhizome with

the contents of 67.86 ± 3.11 mmol GAE/100 g D.W., followed by

root with the contents of 61.35 ± 3.02 mmol GAE/100 g D.W.,

and the lowest was in petiole with the contents of 33.26 ± 1.19

mmol GAE/100 g D.W. Consistent with results of total phenols

contents, the highest total flavonids contents were observed in

rhizome with the contents of 27.24 ± 2.12 mmol QE/100 g D.W.,

followed by root with the contents of 22.16 ± 1.16 mmol QE/

100 g D.W., and the lowest was in petiole with the contents of

11.68 ± 0.59 mmol QE/100 g D.W. Obviously, there were

significant differences in total flavonoids and total phenols

contents in various S. hexandrum organs. Furthermore,

effective ingredients content difference is likely to lead to

different bioactivities and therapeutic effect of various parts

from the same species. However, few reports were availabe in

the aspects of total flavonoid and total phenols contents of S.

hexandrum organs. Li et al. (2017) investigated inflence of the

altitude on total flavonoid and total phenols contents of

Podophyllum hexandrum (syn. Sionpodophyllum hexandrum)

using different altitude heights (2400-2500 m and 2900-

3000 m), and found low altitude is conducive for fruit growth

and development and for the accumulation of total flavonoid

and total phenols in the fruit; meanwhile, the results indicated

that total flavonoids and total phenols contents in the fruit peel

were higher than those in fruit pulp in the same altitude.

In summary, in all test organs of S. hexandrum, total

flavonoid contents had the same ranking order as

rhizome>root>fruit>flower>leaf>stem>petiole with total

phenols contents. Therefore, among the various S. hexandrum

organs, rhizome was the best part because of its abundant

flavonoid and phenol contents, followed by root. The

distribution pattern of the total flavonoids and total phenols

contents in various S. hexandrum organs were likely due to the

differences in the types, proportions, and structures of

compound monomers. The observed results, in turn, may be

attributed to the differentce in biosynthesis, accumulation and

storage locations of compound monomers.
TABLE 2 Total flavonoids contents in different organs of S. hexandrum as well as total phenols contents.

Code Organ Total flavonoids contents
(TFC) (mmol QE/100 g D.W.)

Total phenols contents
(TPC) (mmol GAE/100 g D.W.)

1 Rhizome 27.24 ± 2.12a 67.86 ± 3.11a

2 Root 22.16 ± 1.16b 61.35 ± 4.02b

3 Stem 14.66 ± 0.76d 38.43 ± 2.57d

4 Petiole 11.68 ± 0.59e 33.26 ± 1.19e

5 Leaf 14.82 ± 0.88d 41.55 ± 2.33d

6 Flower 17.27 ± 1.02c 49.68 ± 2.31c

7 Fruit 19.58 ± 1.03c 52.51 ± 3.15c
All data is presented as mean ± SD (n=3). Significant differences between different treatments (samples) in the same column are indicated by different lowercase letters (P<0.05).
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Antioxidant activity of different organs
of S. hexandrum

Free radical is an intermediate metabolite of various

biochemical reactions in human life activities. It has high

chemical activity and is an effective defense system of the

human-body. However, excessive accumulation of free radical

that is unable to be scavenged in time would attack the life

macromolecules substances and various organelles, and caused

the human-boday damage in molecular, cell and tissue level,

which could further accelerate the aging-process of human-

boday and induced various chronic diseases (Brand-Williams

et al., 1995; Akbari et al., 2022; Anand et al., 2022). As the

improvement of people’s cognitive level, more and more people

realized the harm of free radicals. In order to reduce the harm of

free radicals, a lot of antioxidants were synthesized, but artificial

synthetic antioxidants have high toxicity. For exmple, toxic and

carcinogenic effects of butylated hydroxyanisole (BHA), butylated

hydroxy toluene (BHT) and tertiary butylhydroquinone (TBHQ)

have been confirmed in the mice and other biological organisms

(Goh et al., 2003; Mira-Sánchez et al., 2019). Therefore,

antioxidant activity should be evaluated in different plant organs

of S. hexandrum, which is essential and meaningful to develop the

natural antioxidants for functional foods, medicines and health-

care products.
Three different antioxidant activity assessment methods

(DPPH method, ABTS method and FRAP method) were used

to measure the antioxidant activity of different organs of S.

hexandrum (Figure 1). The results of the DPPH method, ABTS

method and FRAP method were respectively presented in

Figures 1A–C using DPPHIC50, ABTS and FRAP values. In

detail, the DPPHIC50 values showed a parabolic change trend

which firstly increased and then decreased from rhizome to fruit,

and peaked at the petiole. DPPHIC50 value, a median-inhibitory

concentration, is a sample concentration at which the clearance

rate reached 50%. The smaller DPPHIC50 value indicates the test

sample has the stronger antioxidant activity. The DPPHIC50

values ranked as petiole (64.75 mg/mL)>stem (53.39 mg/mL)>leaf

(46.55 mg/mL)>flower (40.68 mg/mL)>fruit (36.44 mg/mL)>root

(31.37 mg/mL)>rhizome (23.52 mg/mL) (Figure 1A), whereas

antioxidant activity ability is ranked in the opposite order, viz.

rhizomes>root>fruit>flower>leaf>stem>petiole. Specially, the

petiole had the largest DPPHIC50 value, and was 2.75 times as

rhizomes with the smallest DPPHIC50 value. Therefore, the

rhizome possessed the strongest antioxidant activity, and the

petiole was the weakest among the seven different test organs.

Additionally, DPPHIC50 value of positive control trolox was 9.41

mg/mL. S. hexandrum rhizome has relatively strong antioxidant

activity compared with positive control, which accounted for

40% of trolox.

The other two evaluation methods, ABTS method

(Figure 1B) and FRAP method (Figure 1C), had the consistent

results, which agreed with DPPH method. In brief, the results
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that the antioxidant activity was significantly different among

different organs of S. hexandrum (P<0.05), but the changing

regulation of the antioxidant activity ability was observed as the

same sequence of rhizome>root>fruit>flower>leaf>stem>petiole

(Figures 1A–C). Obviously, rhizome and root possessed

relatively high antioxidant activity, and could be used as the

predominate raw materials for natural antioxidants production.
Correlation analysis between the
phenolic profiles contents and
antioxidant activity

A correlation analysis was conducted to further investigate

the relationship between the phenolic profiles contents and

antioxidant activity using SPSS25.0 software. The range of

correlation coefficients was 0.533-0.959 (Table 3). The results

showed that antioxidant activity had a positive correlation with

phenolic constituents contents at different levels. In flavonoids

compositions, rutin contents had high correlation with

DPPHIC50/ABTS/FRAP values (0.652-0.767), and was

significantly and positively correlated with ABTS/FRAP values

(P<0.05). In phenolic acids, chlorogenic acid contents had high

correlation with DPPHIC50/ABTS/FRAP values (0.685-0.882).

Chlorogenic acid content was significantly and positively

correlated with ABTS/FRAP values (P<0.05), and a high

significant correlation was found between chlorogenic acid

contents and ABTS values (P<0.01). It’s worth noting that the

total flavonoids contents and total phenols contents had high

positive correlation with DPPHIC50/ABTS/FRAP values (0.847-

0.959) (P<0.01), and an extremely significant and positive

correlation existed between total flavonoids contents and

ABTS values (0.935) (P<0.001). Total phenols contents had

also extremely significant and positive correlation with

DPPHIC50/FRAP values (P<0.001).

In fact, this study have found that the change regulation of

phenolic composition contents (rhizome>root>fruit>flower>

leaf>stem>petiole) was in conformity with the antioxidant

activity in different organs of S. hexandrum by the

investigation of phenolic compositions and antioxidant activity

in aboved description (Table 1 and Figure 1). Similary, the

change regulation of total flavonoids contents and total

phenols contents also agreed with the that of antioxidant

activity (Table 2 and Figure 1). Namely, the plant organ with

higher chemical compositions contents also has stronger

antioxidant activity, well verifying the results of correlation

analysis. A positive correlation between chemical compositions

and antioxidant activity had been described in previous reports

(Dar et al., 2013). For example, Li et al. (2017); Li et al. (2018)

found antioxidant activity of S. hexandrum was stronger in

higher altitude areas, because where podophyllotoxin was

more easily accumulated, forming high podophyllotoxin
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FIGURE 1

Antioxidant activity represented by DPPHIC50 (A), ABTS (B) and FRAP (C) for different organs of S. hexandrum. DPPHIC50 value is an effective
sample concentration at which DPPH radicals were scavenged by 50%. ABTS and FRAP values can reflect the results of ABTS radical cation
scavenging assay and ferric reducing power assay, respectively. ABTS and FRAP values are both expressed as micromoles of trolox equivalent
per gram. All data is presented as mean ± SD (n=3). Different lowercase letters indicate the significant difference by ANOVA with Tukey’s
multiple range test (P<0.05).
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contents. The results from Wang et al. (2013) showed

antioxidant activity has a positive correlation with flavonoids

and phenolic compounds. Liu et al. (2020) found a similar

phenomenon in different Rehmannia glutinosa samples, which

possibly attributed to the high chemical ingredients such as

catalpol (6.74 mg/g), rehmaionoside A (1.93 mg/g) and

rehmannioside D (5.13 mg/g). However, such a rule has not

been found in all the medicinal plants, that is, the plant organ

with high chemical ingredients contents could not always have

strong antioxidant activity. Liu et al. (2016) found that

Potentilla fruticosa leaf had high chemical compositions

contents (quercetin, rutin, etc.), but its antioxidant activity was

low compared with other test samples. This phenomenon may

have been related to the plant species type, chemical ingredients

synergy, genetic factors and external environmental factors.
Conclusions

Monomeric compounds of phenol substances, total

flavonoids contents, total phenol contents and antioxidant

activity were investigated in the present study, as well as the

correlation between phenolic compositions contents and

antioxidant activity. All resulting data demonstrated that there

were significant differences in monomeric compounds, total

flavonoids contents, total phenol contents and antioxidant

activity among different organs of S. hexandrum (P<0.05).

Whereas , they have cons i s t en t chang ing ru l e o f

rhizome>root>fruit>flower>leaf>stem>petiole. Moreover,

antioxidant activity is significantly and positively correlated

with phenolic compositions contents. Considering the high

phenol percentages and antioxidant activity, rhizome was

regarded to possess the high quality, followed by root. The

results indicates that the rhizome and/or root extraction can

be considered as a potential raw material source that can be used

as natural antioxidant agents in the production of food,

medicine, cosmetic and chemicals. In conclusion, this study
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well investigated the phenolics and antioxidant activity of S.

hexandrum, providing a valuable reference for its innovative and

comprehensive utilization.

In the following research, we should increase the sampling

areas, collect more S. hexandrum samples, comprehensively

evaluate their phenolic compositions, antioxidant activity and

the relationship between the two. Meanwhile, biochemistry,

phytochemistry, molecular biology and multi-omics method

should be combined with in vivo antioxidant activity evaluation

methods to investigate the biosynthesis and antioxidation

mechanism of phenolic compounds at the gene level.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Author contributions

WL and XH designed the experiments and supervised the

project. WL, ZZ and TZ performed the experiments. WL, ZZ

and TZ analyzed the data and prepared the manuscript. QQ and

XH commented and revised the manuscript. WL and XH were

responsible for ensuring that the descriptions are accurate and

agreed by all authors. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the Project for Technical system

of Tradiational Chinese Medicinal Material Industry in

Henan Province (YuCaiKe [2022] No.24), the Program for

Science and Technology Development of Henan Province
TABLE 3 Correlation coefficients between the phenolic profiles contents and antioxidant activity for different organs of S. Hexandrum.

Items DPPHIC50 values ABTS values FRAP values

Rutin 0.652 0.731* 0.767*
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