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Silicon improves the
photosynthetic performance of
oat leaves infected with
Puccinia graminis f. sp. avenae

Yinghao Li, Jinghui Liu*, Pin Lv, Junzhen Mi
and Baoping Zhao

Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hothot, China
Stem rust, caused by Puccinia graminis f. sp. avenae (Pga) is a key disease

affecting oat production worldwide. Silicon (Si) plays an essential role in

enhancing plant resistance against pathogens. However, the scientific

evidence of Si-mediated stem rust resistance of oat from the photosynthetic

perspective has not been reported. The specific objective of this research was

to investigate the effects of Si application on disease inhibition, photosynthetic

gas exchange parameters, light response parameters, photosynthetic pigments

and chlorophyll fluorescence parameters under Pga infection. Our results

illustrated that Si application significantly reduced rust severity while the

other parameters like net photosynthetic rate (Pn), stomatal conductance

(Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) were

significantly increased. Si application increased maximum photosynthetic rate

(Pnmax) and light saturation point (LSP), while reduced the dark respiration rate

(Rd) and light compensation point (LCP). The results also indicated that Si

application significantly increased the activities of maximum fluorescence (Fm),

variable fluorescence (Fv), maximum quantum yield of photosystem II (Fv/Fm),

photochemical quenching (qP), photosynthetic performance index (PIABS),

actual PSII quantum yield (FPSII), electron transfer rate (ETR), the absorbed

light energy per unit reaction center (ABS/RC) and the dissipated energy per

unit reaction center (DIo/RC), whereas it decreased the minimal fluorescence

(Fo), non-photochemical quenching (NPQ), the absorbed light energy used for

electron transfer per unit reaction center (ETo/RC) and the absorbed light

energy used for reduction of QA per unit reaction center (TRo/RC). The

contents of chlorophyll a, b and carotenoids were also increased due to the

change in the activity of parameters due to Si application as mentioned above.

In conclusion, the results of the current study suggests that Si imparts tolerance

to the stem rust possibly by the underlying mechanisms of improving gas

exchange performance, and efficiency of the photochemical compounds in

oat leaves.
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Introduction

Oat (Avena sativa L.) is a vital grain and forage crop, and is

the sixth most important crop grown globally (Zhao et al., 2020).

Oat is increasingly being used for human consumption as a

beneficial health food, as it contains a variety of nutrient-rich

substances, including b-glucans and vitamin E (Alminger and

Eklund-Jonsson, 2008; Nazare et al., 2009; Whitehead et al.,

2014). Like other agricultural crops, its production is also

affected by various factors including biotic and abiotic stresses.

It has been estimated that, about 25% of annual crop losses are

caused by biotic stresses especial ly plant diseases

(Lugtenberg, 2015).

Among various plant diseases, stem rust of oats is one of the

most significant factors, limiting the high yield potential of the

cultivars, Puccinia graminis f. sp. avenae (Pga) is the causative

agent of oat stem rust, a major oat disease that can lead to total

crop failure during severe epidemics. It is an economically

important disease in the USA and Canada’s prairie provinces

(Gold Steinberg et al., 2005). After infected with stem rust, the

thousand-grain weight is reduced, the flour is black, and the

stems are easy to break (Yuan et al., 2014). Therefore, effective

prevention and control methods of stem rust are

urgently needed.

Silicon (Si) has gained more attention due to its role in plant

growth and imparting tolerance to various biotic and abiotic

stresses (Epstein, 2009; Frew et al., 2018). Its content in the

earth’s crust is about 28%, which makes it the second largest

element in terms of abundance after oxygen. Due to its potential

role in improving plants’ defenses against various diseases

caused by fungi, bacteria and viruses, it has become a prime

focus of research, especially with the increase in the pest and

diseases incidence due to climate change (Debona et al., 2017;

Luyckx et al., 2017).

The leaves of host plants are the major photosynthetic

tissues and are the main targets of many pathogens. The

pathogens infection directly reduces the photosynthetic

performance of the leaves and eventually results in huge

losses in terms of crop yield (Yang et al., 2014). Inhibition of

photosynthesis by pathogens has been reported in many plants.

Studies have shown that the photosynthetic activities of wheat

are closely related to stripe rust, and the photosystem II (PSII)

is highly susceptible to Puccinia striiformis f. sp. tritici (Pst)

infection, they also found that wheat may effectively improve

resistance to stripe rust by maintaining a higher PSII activity.

This result provides a better understanding of wheat resistance

mechanisms against stripe rust infections (Chen et al., 2015; Li

et al., 2015). Some evidence suggests that, within given limits,

Si may maintain the photosynthetic rate of plants upon

pathogen infection (Aucique-Pe´rez et al., 2014; Domiciano

et al., 2015; Tatagiba et al., 2015; Debona et al., 2017), but the
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underlying mechanisms remain unresolved. Hence, the current

studies were aimed to explore Si’s protective role and

underlying defense response mechanism in oat against

Pga infection.

We hypothesized that Si-modulated operational ability of

photosystem II may be a potential mechanism imparting stem

rust resistance in oat. The objective of the current study was to

analyze the photosynthetic characteristics and photosystem II

functions in leaves to reveal the photosynthetic mechanism of Si

induced resistance towards stem rust in oat, to test the

original hypothesis.
Materials and methods

Materials, culture conditions and
experimental design

Oat cultivar Bayou 1 (high susceptible) was used for

inoculation with Pga (race TKR, was provided by the Institute

of Plant Immunity, Shenyang Agricultural University). Twenty

oat seeds were grown in a 12 cm diameter pot (12cm×15cm)

with the peat soil matrix, seedlings were cultured in a greenhouse

(20 ± 2°C with a photoperiod of 16 h light/8 h dark) at the Oat

Research Center of Inner Mongolia Agricultural University.

Four treatments with three replications each were prepared

for both plants: (1) CK (no silicon and no Pga inoculation); (2)

+Si-P (1.5 mmol·L–1 silicon application, no Pga inoculation); (3)

-Si+P (no silicon, Pga inoculation); (4) +Si+P (1.5 mmol·L–1

silicon application and Pga inoculation). Silicon (1.5 mmol·L–1)

was added as potassium silicate (K2SiO3) solution, in the silicon-

deficient treatment, potassium chloride (KCl, pH 5.5) was used

to equal the potassium component of the Si treatment, and the

nutrient solution used was configured according to Hoagland’s

classic formula (Jiang et al., 2013). From the beginning of the

emergence of oat seedlings, different treatments of nutrient

solutions were used to irrigate the pots every 3 days, 150 mL

per pot. Below the pot, a solution collector plate was added and

the cultivation system was opened.

The inoculation was carried out when the oat seedlings grew

to the two-leaf stage (one leaf and one sprout). The method of

inoculation was carried out as described by Li et al. (2014). First,

the leaves were sprayed with a 0.05% Tween-20 solution

(Polyoxyethylene sorbaitan monolaurate, water soluble

emulsifier, 0.05%) using a handheld atomizer to form a water

film on the leaves. Then, flat toothpick (only by contact) was

used to pick fresh urediniospores (0.01 g) and inoculated on the

seedlings. Finally, the inoculated plants were kept in a mist

chamber at 18 to 20°C for 16 h in darkness. Plants were

transferred to a 16/8 h (light/dark) photoperiod, and a climatic

chamber at 24 °C with 80 ± 5% humidity.
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Photosynthetic gas exchange parameters

The leaf gas exchange parameters of all treatment

combination were recorded at 0, 1, 3, 5, 7, 9 and 11days after

inoculation. The readings of the variables were performed on the

first fully expanded leaf (the intermediate section, the chlorotic

area), three readings were taken per leaf in the pot.

The net photosynthetic rate (Pn), stomatal conductance (Gs),

intercellular CO2 concentration (Ci) and transpiration rate (Tr)

were measured at room temperature (25°C) and 60% relative

humidity with a portable system (CIRAS-3, PP Systems, UK).

The photosynthetic active radiation (PAR) in the leaf chamber,

provided by the CIRAS-3 LED light source, was set to 1000

µmol·m–2s–1.

On day 11 after inoculation, under a fixed atmospheric CO2

concentration (Ca) of 380 mmol·mol-1, the net photosynthetic

rate (Pn), stomatal conductance (Gs) and intercellular CO2

concentration (Ci) to photosynthetic active radiation (PAR)

curves of the most fully expanded leaf was recorded after the

PAR of LED light sourced couple to a leaf chamber were set to

2000, 1800, 1500, 1200, 1000, 800, 500, 200, 100, 50, 20 and 0

mmol·m−2s−1, respectively. The maximum photosynthetic rate

(Pnmax) and dark respiration rate (Rd) were recorded. The light

compensation point (LCP) was calculated when PAR was close

to zero and the light saturation point (LSP) as the PAR value was

obtained when photosynthesis reached Pnmax.
Chlorophyll a fluorescence parameters

After the photosynthetic gas exchange parameter

measurements, a chlorophyll fluorescence experiment was

carried out on the same leaves using a plant efficiency analyzer

(Handy-PEA, Hansatech, UK). Leaves were dark-adapted for

30 min before measurements, during light illumination,

chlorophyll a fluorescence intensity in dark- adapted leaves

rose rapidly from an initial minimal level, Fo (O step) to the

maximal level, Fm (P step), and two intermediate steps

designated as J and I appeared at 2 and 30 ms, respectively.

So, a fast rise of the chlorophyll fluorescence, transient with the

notation OJIP, was recorded. The photosynthetic performance

index based on the absorbed light energy (PIABS), the absorbed

light energy per unit reaction center (ABS/RC), the absorbed

light energy used for reduction of QA per unit reaction center

(TRo/RC), the absorbed light energy used for electron transfer

per unit reaction center (ETo/RC), and the dissipated energy per

unit reaction center (DIo/RC) were obtained. The maximum

quantum yield of PSII (Fv/Fm) was calculated according to the

formula: Fv/Fm= [(Fm-Fo)/Fm].

Modulated chlorophyll fluorescence was measured with a

FMS-2 pulse-modulated fluorometer (Hansatech, UK). The

light-adapted leaves were continuously illuminated by actinic
Frontiers in Plant Science 03
light at 800 mmol·m−2s−1 from the FMS-2 light source (PFD),

steady-state fluorescence (Fs) was recorded after a 2 min

illumination, and a saturation pulse (8000 mmol·m-2s-1; 0.8s)

was applied to achieve the light-adapted maximum fluorescence

(Fm’). The actinic light was then turned off, and the minimum

fluorescence in the light-adapted state (Fo’) was determined by a

3 s illumination with far-red light. The following parameters

were calculated (Maxwell and Johnson, 2000):
Actual PSII quantum yield, FPSII = (Fm’-Fs)/Fm’

Electron transport rate, ETR = FPSII×PFD×0.5×0.84

Photochemical quenching, qP= (Fm’- Fs)/(Fm’-Fo’)

Non-photochemical quenching, NPQ = (Fm/Fm’)-1
Photosynthetic pigment

The leaves of each plant per replication of each treatment were

collected at 0, 1, 3, 5, 7, 9 and 11days after inoculation, 0.5 g of leaf

tissue was frozen in liquid nitrogen, homogenized in 80% acetone

with a small amount of SiO2 and centrifuged (3600 × g, 5 min).

Contents of chlorophyll a (Chla), chlorophyll b (Chlb) and total

carotenoids (Car) in the supernatant were then determined

spectrophotometrically (UV2300IISpectrophotometer, CHINA),

according to Lichtenthaler (Lichtenthaler, 1987).
Data analysis

In this study, the charts were made using Microsoft Excel 2016

software. All data were expressed as the mean ± SE. One-way

ANOVA was performed to test the significance of the observed

differences using SPSS (Inc., Chicago, USA). Differences between

parameterswereevaluatedusingDuncan’ smethod,andP≤0.05was

considered the statistically significant threshold.
Results

Phenotypes

Obviously, 15 days after inoculation with Pga, leaves

developed many orange pustules without Si, and the color

depth of pustules was significantly reduced under Si

application (Figure 1).
Photosynthetic gas exchange parameters

The values of photosynthetic parameters showed no

significant difference for non-inoculated oat seedlings
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(Figure 2). In the early stage of infection (0-3 days after

inoculation), Pn (Figure 2A) and Tr (Figure 2B) increased

rapidly, then began to decline gradually after reaching the

peak and Ci (Figure 2D) exhibited the opposite tendency,

while Gs (Figure 2C) showed a chaotic change pattern.

Compared with -Si+P, Si application (+Si+P) increased Pn, Tr,

Gs and Ci significantly (P ≤ 0.05).

Without Pga inoculation, Pn (Figure 3A) and Gs (Figure 3B)

gradually increased with PAR, while Ci (Figure 3C) gradually

decreased, and finally remained stable. Under -Si+P treatment,

Pn began to decrease gradually when it reached the highest point,

while remained stable under +Si+P treatment.

By fitting the Pn/PAR curve of oat leaves, various light

response parameters under different treatments were obtained

(Figure 4). In non-inoculated oat seedlings, Si had no effect on

light response parameters. Compared with CK, Pnmax

(Figure 4A) and LSP (Figure 4B) were significantly decreased

by 44.42 and 47.14%, respectively, while LCP (Figure 4C) and Rd

(Figure 4D) were significantly increased by 119.30 and 35.19%

under -Si+P treatment, respectively; Compared with -Si+P, Si

application (+Si+P) significantly increased Pnmax and LSP by

47.26 and 15.30%, respectively, while decreased LCP and Rd by

25.28 and 11.64%, respectively (P ≤ 0.05).
Photosynthetic pigments

In non-inoculated oat seedlings, Si application did not have

any effects on the content of pigments (Chla, Chlb, Car and Chla
Frontiers in Plant Science 04
+Chlb) in oat leaves (Figure 5). Pigments content began to

decrease significantly at 3 d after Pga inoculation, and compared

with -Si+P, Si application (+Si+P) significantly increased Chla

(up to 20.00%) (Figure 5A), Chlb (up to 20.00%) (Figure 5B),

Car (up to 26.67%) (Figure 5D) and Chla+Chlb (up to 20.00%)

(Figure 5C), respectively (P ≤ 0.05).
Chlorophyll fluorescence parameters

As observed in the study, under Pga infection conditions, Si

application (+Si+P) lead to the decrease of Fo (Figure 6B) and

the increase of Fm (Figure 6C) and changed the trend of OJIP

curve (Figure 6A).

Compared with CK, Pga inoculation (-Si+P) significantly

reduced Fm (Figure 6C), Fv (Figure 6D ), PIABS (Figure 6E), Fv/

Fm (Figure 6F), qP (Figure 6G), FPSII (Figure 6I) and ETR

(Figure 6J), which were reduced by 39.7, 50.4, 10.8,18.2, 47.3,

44.4 and 75.9% respectively, while Fo (Figure 6B) and NPQ

(Figure 6H) were increased by 36.8 and 71.4%, respectively.

Compared with -Si+P, Si application (+Si+P) increased Fm,

Fv, Fv/Fm, PIABS, ETR, qP andFPSII by 15.4, 28.6, 12.5, 3.6, 67.0,

27.1 and 20.0%, respectively, while Fo and NPQ were

significantly decreased by19.2 and 19.0% (P ≤ 0.05).

Compared with CK, Pga inoculation (-Si+P) significantly

reduced ABS/RC (Figure 7A) and DIo/RC (Figure 7B) by 49.5

and 53.3%, respectively; while increased ETo/RC (Figure 7C)

and TRo/RC (Figure 7D) by 98.7 and 54.6%, respectively.

Compared with -Si+P, Si application (+Si+P) significantly
FIGURE 1

Effects of Si application and Pga inoculation on phenotype of oat, scale bar=1 cm. -Si+P, no Si application and Pga inoculation; +Si+P, 1.5
mmol·L–1 Si application and Pga inoculation.
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increased ABS/RC and DIo/RC by 35.2 and 55.6%, respectively,

while reduced ETo/RC and TRo/RC by 35.8 and 20.2%,

respectively (P ≤ 0.05).
Discussion

The present study showed that the leaf photosynthetic

capacity sensitively responded to Pga infection and Si

application in oat. The results demonstrated that leaf disease

symptoms were remarkably reduced in oat leaves supplied with

Si (Figure 1). Similarly, wheat could be reduced the rice blast

intensity by keeping a high foliar Si concentration (Xavier-Filha

et al., 2011). This also supports previous reports (Camargo et al.,

2020) and several other plants against foliar pathogens (Fauteux

et al., 2005; Domiciano et al., 2010; Resende et al., 2012).

Our study provides new information from a photosynthesis

perspective regarding the effect of Si on improving oat tolerance to

stem rust. Previous studies have shown that there are two aspects that

characterize the possiblemechanisms of Si imparting plant tolerance

to various diseases. One is Si polymerization and deposition in

epidermal cell walls below the cuticle, forming a cuticle-Si double

layer in leaves to prevent fungal invasion (Kim et al., 2002; Cai et al.,

2008;Hayasaka et al., 2008; Samuels et al., 2010).Another view is that
Frontiers in Plant Science 05
Si can induce thedefense responsesofplantsby increasing theactivity

of defense-related enzymes such as peroxidase, polyphenoloxidase,

phenylalanine ammonia-lyase, etc., and promoting the synthesis of

antifungal compounds such as phenolics and phytoalexins (Fawe

et al., 1998; Rodrigues et al., 2004; Re´mus-Borel et al., 2005).

Traditionally, these positive effects of Si have been associated with

alleviating biotic stresses, improving resistance to lodging, and

increasing leaves erectness, which allows better light transmittance

through plant canopies and enhances whole-plant photosynthesis

(Tamai and Ma, 2008).

Necrotrophic pathogens produce many hydrolases that

degrade plant cell walls and ultimately have a profound effect

on photosynthesis (Scholes and Rolfe, 2009). In our study, due to

infection with stem rust, the photosynthetic activity was

remarkably impaired, as also noticed on sugarcane leaves

infected with brown rust (Camargo et al., 2020). Studies have

found that Si increased rice resistance against brown spots was

related to the promotion of the primary metabolism of

photorespiration (Vivancos et al., 2015).

For the oat-Pga interaction, the reduction of symptoms on the

leaves of plants treated with Si improved their gas exchange

performance and reduction in the dysfunction at the

photochemical level (Aucique-Pérez et al., 2014). Meanwhile, the

results of the present study bring new evidence that the
B

C D

A

FIGURE 2

Effects of Si application and Pga inoculation on photosynthetic parameters of oat leaves. (A), net photosynthetic rate (Pn); (B), stomatal conductance
(Gs); (C), transpiration rate (Tr); (D), intercellular CO2 concentration (Ci). CK, no Si application and no Pga inoculation; +Si-P, 1.5 mmol·L–1 Si
application and no Pga inoculation; -Si+P, no Si application and Pga inoculation; +Si+P, 1.5 mmol·L–1 Si application and Pga inoculation.
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photosynthetic machinery of Pga infected oat leaves can be

significantly protected when supplied with Si; such protection was

related to some preservation of the photosynthetic performance, it is

shown as the higher ability to use the incident light {higher values for

PIABS (Figure 6E),ABS/RC(Figure 7A),DIo/RC(Figure 7B) andLSP

(Figure 4B)}, as well as the partial preservation of chlorophylls and

carotenoids contents (Figure 5). Kretschmer et al. (2020) also found

that the F. oxysporum generally had negative effects on chlorophyll

and carotenoid content in tomato leaves, which was in agreement

with our view. Lee et al. (2015) observed that carotenoid or

chlorophyll biosynthesis silencing at the phytoene desaturase or

Mg-chetalase H steps during wheat infection by the

hemibiotrophic fungus Zymoseptoria tritici, resulted in a faster

appearance of HR symptoms.

Sampol et al. (2003) first reported that Gs was the main limiting

factor on Pn in response to grapevine leaves after infected by the

grapevine fan leaf virus (GFLV). To a certain extent, adding Si could

indirectly have helped preserve the photosynthetic apparatus’s

functionality and the gas exchange capacity upon fungal infection

by decreasing rust severity, as noted by the significantly higher values
Frontiers in Plant Science 06
of Pn (Figure 2A), Tr (Figure 2B),Gs (Figure 2C), andCi (Figure 2D)

in the Si application plants under the Pga infection. Regardless of

whether Si is applied or not, infected plantsmay also negatively affect

the process of CO2 fixation and decrease their capacity to use solar

energy for photosynthesis. This result is shown by non-stomatal

limitations, as indicated by declines in Pn but not Ci, despite the

decreases in Gs significantly. Si application can enhance plant cell

wall, and cellwall thickness is oneof themain factorsdetermining the

structural components of Gs because higher thickness increases the

pathway of CO2 from the intercellular spaces to the chloroplast

membrane (Yamamoto et al., 2012).

The fluorescence signal rose from the initial fluorescence level

(Fo) (Figure 6B) to the maximum level (Fm) (Figure 6C) with well-

defined intermediate J and I step, showing a typical polyphase

behavior (OJIP curve) (Figure 6A). These results demonstrated

that all samples were photosynthetically active when supplied with

Si in response to Pga. Measurements of chlorophyll fluorescence

parameters provided important information for PSII activity and

changes in photosynthetic metabolism ability of infected leaves

(Schnabel et al., 1998). In the current data that we referred to, there
B

C

A

FIGURE 3

Response of (A) net photosynthetic rate (Pn), (B) stomatal conductance (Gs) and (C) intercellular CO2 concentration (Ci) to photosynthetic
photon flux density (PAR) of oat leaves. CK, no Si application and no Pga inoculation; +Si-P, 1.5 mmol·L–1 Si application and no Pga inoculation;
-Si+P, no Si application and Pga inoculation; +Si+P, 1.5 mmol·L–1 Si application and Pga inoculation.
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B
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A

FIGURE 4

Effects of Si application and Pga inoculation on light response parameters of oat leaves. (A), maximum photosynthetic rate (Pnmax); (B), light
saturation point (LSP); (C), light compensation point (LCP); (D), dark respiration rate (Rd). CK, no Si application and no Pga inoculation; +Si-P, 1.5
mmol·L–1 Si application and no Pga inoculation; -Si+P, no Si application and Pga inoculation; +Si+P, 1.5 mmol·L–1 Si application and Pga
inoculation. Data are expressed as mean ± SE (n=3). According to Duncan’s multiple comparison tests among treatments, different letters on
bars show significant differences at 0.05 level of probability.
B

C D

A

FIGURE 5

Effects of Si application and Pga inoculation on photosynthetic pigment content of oat leaves. (A), chlorophyll a (Chla); (B), chlorophyll b (Chlb);
(C), chlorophyll a+b (Chla+Chlb); (D), total carotenoids (Car). CK, no Si application and no Pga inoculation; +Si-P, 1.5 mmol·L–1 Si application
and no Pga inoculation; -Si+P, no Si application and Pga inoculation; +Si+P, 1.5 mmol·L–1 Si application and Pga inoculation.
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is avery littleuseful informationavailableon therelationshipbetween

Si and PSII photochemical efficiency of infected leaves. Our results

showed that Pga infection significantly reduced chlorophyll

fluorescence parameters, including Fm (Figure 6C), PIABS
(Figure 6E), Fv/Fm (Figure 6F), qP (Figure 6G), and ETR

(Figure 6J), but Si application significantly increased these

parameters in the infected plants. Bassanezi et al. (2002) found that

electron transport capacity such as ETR, ETo/RC, generation ofATP

and NADPH did not change apparently in the healthy areas of

diseased leaves, but chlorophyll fluorescence emission decreased in

visibly lesioned areas of bean rust, angular leaf spot, or anthracnose.

Rahoutei et al. (2010) pointed out that in both symptomatic and
Frontiers in Plant Science 08
asymptomatic leaves ofNicotiana benthamianaGray plants, infected

with pepper mild mottle virus (PMMoV) and Paprika mild mottle

virus (PaMMoV), theETRinPSIIdeceased. Inaddition, the results of

the current study showed that Pga infection significantly increased

ETo/RC (Figure 6J) while it was significantly reduced after the

application of Si. Bonfig et al. (2006) reported that non-

photochemical quenching (NPQ) in Arabidopsis leaves was

decreased after being infected with either a virulent or an avirulent

strain of Pseudomonas syringae. However, theNPQ in oat leaves was

found to be increased significantly after the infection of Pga

(Figure 6H), which demands further studies to elucidate the cause

of this.
B

C D
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A

FIGURE 6

Effects of Si application and Pga inoculation on OJIP curves and Chlorophyll fluorescence parameters of oat leaves. (A), OJIP curve; (B),
chlorophyll b (Fo); (C), maximum fluorescence (Fm); (D), variable fluorescence (Fv); (E), photosynthetic performance index (PIABS); (F), maximum
quantum yield of PSII (Fv/Fm); (G), Photochemical quenching (qP); (H), non-photochemical quenching (NPQ); (I), actual PSII quantum yield
(FPSII); (J) electron transport rate (ETR). CK, no Si application and no Pga inoculation; +Si-P, 1.5 mmol·L–1 Si application and no Pga inoculation;
-Si+P, no Si application and Pga inoculation; +Si+P, 1.5 mmol·L–1 Si application and Pga inoculation. Data are expressed as mean ± SE (n=3).
According to Duncan’s multiple comparison tests among treatments, different letters on bars show significant differences at 0.05 level of
probability.
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In addition, the experimental results showed that the ETR

(Figure 6J) reduction is much lower than Pnmax (Figure 4A),

coupled with the lower LSP (Figure 4B), which are expected to

generate a photoinhibition event. It explains the performance of

the Pn/PAR (Figure 3A) response curve reasonably in this study,

especially for the infected plants without Si application

treatment. In fact, the diseased plants are prone to suffer from

photoinactivation, which may lead to oxidative damage and

losses of PSII functionality, ultimately leading to increased Fo
(Figure 6B) values (Baker, 2008; Rolfe and Scholes, 2012).
Conclusions

The results fromthepresent study indicated that Si application in

oat could promote plant growth and enhance plant tolerance to stem

rust and improve its photosynthetic performance. During Pga

infection with Si addition, adequate Gs and Pn values were

maintained, which helped to protect the photosynthetic system

against chronic photoinhibition. Under Pga inoculation, Si

application increased pigment content and made it more efficient

in the process of light energy dissipation such as Fv/Fm, PIABS, ABC/

RC and DIo/RC. Our findings also suggest that gas exchange

properties and photochemical functions are involved in the Si-

mediated amelioration of oats to stem rust.
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Effect of Si application and Pga inoculation on ABS/RC (A), DIo/RC (B), ETo/RC (C), and TRo/RC (D) of oat leaves. CK, no Si application and no
Pga inoculation; +Si-P, 1.5 mmol·L–1 Si application and no Pga inoculation; -Si+P, no Si application and Pga inoculation; +Si+P, 1.5 mmol·L–1 Si
application and Pga inoculation. Data are expressed as mean ± SE (n=3). According to Duncan’s multiple comparison tests among treatments,
different letters on bars show significant differences at 0.05 level of probability.
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