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Chloroplasts in land plants have their own small circular DNA that is presumed

to have originated from cyanobacteria-related endosymbionts, and the

chloroplast genome is an attractive target to improve photosynthetic ability

and crop yield. However, to date, most transgenic or genetic engineering

technologies for plants are restricted to manipulations of the nuclear genome.

In this review, we provide a comprehensive overview of chloroplast genetic

engineering and regulation of gene expression from the perspective of history

and biology, focusing on current and latest methods. In addition, we suggest

techniques that may regulate the chloroplast gene expression at the

transcriptional or post-transcriptional level.
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Introduction

Chloroplasts are photosynthetic organelles that exist in the cells of some protists and

plants, which are critical for their functional integrity and viability. The genome (plastome

or ptDNA) of chloroplasts is 120–180 kb in size and is characterized by highly polyploid,

circular, double-stranded DNA. Chloroplast DNA encodes approximately 120 genes in

land plants, most of which play essential roles in chloroplast development or

photosynthesis. The development of chloroplast genetic engineering has lagged behind

that of nuclear genetic engineering despite its advantages (Boynton et al., 1988)—for

instance, homologous recombination (HR) is prevalent in chloroplasts; therefore it is not

necessary to introduce extra double-stranded DNA for cutting. In addition, chloroplasts in

land plants are usually maternally inherited, resulting in the natural biological limitation of

transgenes through pollen escape. Finally, like prokaryotic gene expression, the design,
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construction, and regulation of metabolic pathways are likely

manipulated by operons, which produce polycistronic

transcripts in plastids. All these properties are very promising

for future metabolic engineering.

Regulation of chloroplast gene expression through

chloroplast genome engineering has been used to produce

high-value industrial targets, improve photosynthetic capacity,

biofortify food crops, etc. (Boynton et al., 1988). Over years of

research, plastids, in general, and chloroplasts, in particular,

have emerged as novel platforms for plant genetic engineering.

The development and application of chloroplast genome

engineering technology may lead to increases in the study of

chloroplast gene functions, gene editing, gene expression

regulation, and genome analysis. This review summarizes the

methodology and new tools used in chloroplast transformation,

discusses current restrictions and future prospects in chloroplast

genome engineering, and also proposes possible applications of

the new technologies in chloroplast gene expression.
Development of chloroplast
transformation technology

Chloroplast transformation provides a valuable alternative

platform to generate transgenic plants. In seed plants,

chloroplast transformation will face greater challenges because

it always contains 1,000–2,000 copies of the chloroplast genome

and approximately 100 chloroplasts per mature leaf mesophyll

cell (Golczyk et al., 2014). Over the last several decades, the

fundamental methods of introducing foreign DNA into

chloroplasts have not significantly changed (Zienkiewicz et al.,

2017; Kumar and Ling, 2021). Chloroplast transformation was

once realized through biolistic delivery, polyether polyethylene

glycol (PEG)-mediated delivery, or Agrobacterium-mediated

delivery. These approaches require the regeneration of

genetically modified progeny plants, which can be challenging

and require lengthy procedures. Therefore, effective

transformation protocols have been designed for a very limited

range of plants to date (Ruf et al., 2021; Kumar and Ling, 2021).

The traditional transformation techniques have important

limitations—for example, PEG-mediated transformation

requires the subsequent regeneration of stable plant lines from

isolated protoplasts that have their cell walls removed, which is

an extremely complex and time-consuming process that has not

been well developed in most plants (Cunningham et al., 2018).

The Agrobacterium-mediated method produces random DNA

insertion, which probably can lead to the dysfunction of critical

genes or introduction into genome positions with weak or

unstable expression (Gelvin, 2017). In addition, the

Agrobacterium-mediated method shows stronger regeneration

and delivery effects in dicotyledonous plants (dicots) than in

monocotyledonous plants (monocots) (Nyaboga et al., 2014)

and has been utilized infrequently in chloroplast transformation.
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As the preferred chloroplast transformation method, biolistic

particle delivery requires gold or tungsten particles combined

with foreign DNA in order to penetrate the cell walls via

bombardment, but this process typically causes extensive

damage to plant tissues and results in low levels of gene

expression in the process.

The challenges of classic delivery methods are characterized

by their tissue specificity and narrow host range, even between

individual cultivars from the same species (Nyaboga et al., 2014),

and an effective method of target DNA transfer for chloroplast

transformation is urgently needed to overcome the above-

mentioned disadvantages. In recent years, nanotechnology has

become a powerful tool in plant biotechnology by providing

modular transport chassis applicable for the transportation of

biomolecules, nanosensors, nanotherapeutics, and chemicals.

Giraldo et al. have previously found that artificially

manufactured nanoparticles, single-walled carbon nanotubes,

can easily pass through the rigid plant cell walls, cell

membranes, and even double lipid bilayers (outer and inner

membrane) of chloroplasts smoothly (Giraldo et al., 2014). In

addition, Kwak et al. used breakthroughs in the research of using

nanomaterials as a carrier to deliver foreign DNA into plant

chloroplasts (Kwak et al., 2019). They designed and screened

single-walled carbon nanotubes to selectively transfer DNA into

chloroplasts derived from various plants species without

additional chemicals or biolistics. This nanoparticle-mediated

delivery tool has practical advantages relative to classic delivery

techniques and is regarded as a potential transformation method

with high efficiency in plants.

A difficulty intrinsic with chloroplast genome transformation is

attributed to the high polyploidy of the plastomes. In order to

generate a stable transplastomic line, it is typically necessary to

provide selective pressure until all copies of chloroplast DNA in the

absence of transgenes are removed. Several rounds of selection are

often essential, resulting in a longer transformation procedure than

those associated with nuclear transgene processes. Recently,

Jakubiec et al. had exploited a novel technique for foreign gene

delivery and expression in chloroplasts. This technology differs from

traditional methods because it does not need to integrate foreign

transgenes into the chloroplast genome. The foreign gene is instead

amplified as an individual unit named “minichromosome” in the

chloroplast (Jakubiec et al., 2021). By identifying a specially

appointed flanking sequence within the “minichromosome”, the

helper protein can start the replication processes (Jakubiec

et al., 2021).
Application of CRISPR/Cas9 editing
systems in chloroplast gene expression

Editing the genome within the plant has a tremendous

potential to enhance crop yield and, in turn, to meet

progressively larger agricultural and environmental challenges.
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As a rapidly developing RNA-guided genome editing tool,

CRISPR-Cas9 has been widely studied and used in plant

nuclear gene editing (Li et al., 2013; Nekrasov et al., 2013;

Shan et al., 2013). However, the use of this tool is rarely

reported in chloroplast gene editing, which is likely due to the

difficulty of transporting both the Cas9 protein and the guide

RNA to the chloroplasts and expressing these two critical

elements in the chloroplasts at the same time (Kim et al., 2021).

It is widely recognized that some free-living photosynthetic

cyanobacteria were entrapped by eukaryotic cells approximately

2 billion years ago, eventually giving rise to modern-day

chloroplasts (Daniell et al., 2021). Therefore, chloroplast

genome sequences share conserved properties with ancestral

cyanobacteria. Researchers can use the similarity between

chloroplast and cyanobacteria genomes to identify new

methods of chloroplast gene editing, and this strategy has

resulted in new attempts that have been made in microalgae in

recent years—for example, the use of CRISPR/Cas9 editing in

microalgae was first suggested by Jiang and his coworkers, but

successful transformants were difficult to generate due to the

potential toxicity of the constitutive expression of Cas9 protein

in Chlamydomonas reinhardtii (Jiang et al., 2014). The CRISPR/

Cas9 system has also been successfully applied to cyanobacterial

genome editing for producing succinate via the deleted glucose-

1-phosphate adenylyltransferase gene (Li et al., 2016). In 2020,

researchers from the genome engineering company Napigen

demonstrated a new CRISPR-mediated organelle genome

editing technique called “Edit Plasmids” and successfully

performed proof-of-concept experiments in Chlamydomonas

reinhardtii chloroplasts (Yoo et al., 2020). The Edit plasmid

can replicate in the mitochondria or chloroplasts independently.

It consists of four parts: Cas9 expression box, guided RNA

expression box, donor DNA, and optional markers. In

addition, donor DNA does not carry functional gRNA target

sites, so it is not resected by highly active Cas9/gRNAs.

Unfortunately, problems such as improving the editing

efficiency of this method, digesting unmodified organelle

DNA, and promoting homogeneity remain as challenges.

At present, there is no CRISPR/Cas9 system suitable for

chloroplast genomes in plants; however, researchers from South

Korea have developed an efficient chloroplast editing technology

(Kim et al., 2021). They designed a Golden Gate cloning system

consisting of 424 transcription activator-like effector and 16

expression plasmids to produce DddA-derived Cytosine Base

Editor (DdCBE) plasmids and then created a DdCBE system to

increase the efficiency of point mutagenesis in chloroplasts. They

used the DdCBEs to induce base editing with chloroplast

genomes in lettuce and rapeseed calli and demonstrated

editing frequency as high as 38%. In addition, they generated

plantlets and lettuce calli with editing frequencies as high as 99%,

which were resistant to spectinomycin and streptomycin.

Further studies will focus on investigating whether

heterogeneity induced by DdCBEs produce phenotypic effects
Frontiers in Plant Science 03
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strengthened by modifying the DdCBE system.
Regulation of chloroplast gene
expression using RNA-binding proteins

RNA plays several key roles in plant cells, including

regulation of gene expression, gene information transfer,

scaffold construction of macromolecular structures, and

reaction catalyzation. RNA combines with RNA-binding

proteins to form ribonucleoprotein complexes. The RNA-

binding proteins manipulate various processes of RNA life

activities (Glisovic et al., 2008). Thus, controlling or revising

the properties of RNA by using artificially designed RNA-

binding proteins is a farsighted approach in plant

biotechnological applications. RNA manipulation may also be

reversible and therefore more useful than DNA editing.

Among RNA-binding proteins, the best characterized are

the pentatricopeptide repeat (PPR) proteins, which are

particularly prevalent in terrestrial plants. Most PPR proteins

mediate RNA to impact multiple aspects of metabolic processes

within organelles (Barkan and Small, 2014). Although PPR

proteins are encoded by nuclear genes, they almost exclusively

target and function in the chloroplasts and mitochondria and are

inherently highly sequence-specific (Gully et al., 2015).

Therefore, many laboratories have designed artificial Designer

Pentatricopeptide Repeat Proteins (dPPRs) to manipulate the

RNA abundance. In 2014, Coquille et al. successfully designed

synthetic PPR domains according to conserved residues within

PPRs. The results indicated that the dPPR domains were highly

soluble and bound targeted RNA in a controlled, sequence-

specific pattern (Coquille et al., 2014). Two years later, to

examine how dPPR proteins recognize and interact with their

single-stranded RNA (ssRNA) targets specifically, Ping Yin’s

group synthesized and expressed a series of artificial PPR

proteins that can bind to specific sites of target ssRNAs. Their

studies not only provided elaborate modular and specific

binding models of dPPR repeats but also laid solid

foundations for improving the RNA manipulation technology

(Shen et al., 2016).

To date, few dPPR in vivo experiments have been successful.

In 2019, Barkan’s laboratory expressed dPPR proteins from

nuclear transgenes to induce an approximately 40-fold

increase in the expression of plastid foreign genes, the

maximal protein accumulation of which was close to Rubisco

level (Rojas et al., 2019). In another experiment, Barkan’s

laboratory successfully designed a dPPR protein in transgenic

Arabidopsis plants and used it in genetic engineering research to

bind a specific mRNA sequence in chloroplasts, demonstrating

that the synthetic dPPR protein can reliably and selectively

combine with targeted RNA in vivo (Mcdermott et al., 2019).

In another case, Hammani et al. carried out a functional
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complementation experiment to show that synthetic dPPR

protein binds to its expected mRNA target with specificity in

vivo and successfully replaced a natural PPR protein by stably

processing rbcL mRNA (Manavski et al., 2021). These results

indicated that dPPR proteins can be artificially designed and

modified to approximate the functions of natural PPR proteins

and highlighted methods that can be used to regulate when,

where, and to what extent chloroplast genes are expressed. The

growing repertoire of dPPR proteins with clear RNA binding

sites represents tools to exploit the unique properties of the

chloroplast gene expression system.
Regulation of chloroplast gene
expression at the post-
transcriptional level

Small artificial biomolecules such as aptamers may affect

proteins (Gong et al., 2014a; Bao et al., 2017). Peptide aptamers

are small peptides (approximately eight to 20 amino acids in

length) that have a peptide loop in an inert scaffold protein and

can specifically bind to target proteins. Peptide aptamers interact

to disrupt protein function; thus, small peptides can act as

powerful competitive inhibitors and can specifically interrupt

and/or prevent the generation of protein–protein interactions by

covering the original binding sites.

Peptide aptamers have been developed and successfully

applied to reverse genetic approaches for the efficient and

precise perturbation of protein function in plants (Song et al.,

2013; Gong et al., 2014a)—for example, Song et al. designed and

exploited an antagonistic peptide to functionally analyze CLV3/

ESR-related family members in Arabidopsis. Researchers created

a useful interference system and successfully disturbed CLV3

protein function in cultivated plants in a nutrient medium

comprised of the artificial synthetic peptide (Song et al., 2013).

To investigate the function of EJC core component MAGO–Y14

protein, Gong’s group introduced a peptide aptamer into rice

(Gong et al., 2014a; Gong et al., 2014b). They identified a highly

specific aptamer PAP containing a 16-amino-acid random

peptide that antagonizes rice MAGO via yeast two-hybrid

systems. The BiFC and Pulldown analyses showed that the rice

MAGO protein effectively and specifically interacted with PAP

through disrupting the MAGO–Y14 interaction (Gong et al.,

2014a). Moreover, PAP transgenic plants exhibited more serious

phenotypic defects than MAGO or MAGO–Y14RNAi plants

(Gong et al., 2014a; Gong et al., 2014c), demonstrating that

competitive conjunction or the interaction of PAP to MAGO

can affect the heterodimer formation of natural MAGO–Y14 and

impair its function in rice (Gong et al., 2014a).

In conclusion, recent research have shown that peptide

aptamers can be used in a direct, substitutable, and
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compensatory method for plant functional genomics study.

Peptide aptamers directly affect the function of protein or

protein complexes, acting as a complementary method for

other tools that play a part at the DNA and RNA levels. At

present, few studies have been reported on the use of peptide

aptamers in the plant research field, and most uses remain in the

“proof-of-concept” stage. In the future, peptide aptamers may,

for example, fused to chloroplast transport peptide structures

which can cross the chloroplast membrane and interfere with the

function of chloroplast-gene-encoded proteins.
Summary and outlook

Chloroplasts (plastids) are the defining organelles of

photosynthetic organisms. In addition to executing normal

photosynthesis, chloroplasts play roles in many other

metabolic pathways and provide access both in the

engineering of intrinsic metabolic pathways and in the

addition of new biochemical pathways. Therefore, chloroplasts

are the biosynthetic factories in plant cells. In recent years,

studies have expanded the toolbox that can be used for

chloroplast genome engineering by a wide margin, and new

systems to regulate the expression of plastid transgenes have

been developed (Yoo et al., 2020; Jakubiec et al., 2021; Kim et al.,

2021; Newkirk et al., 2021). In this review, we described and

summarized chloroplast transformation methods and suggested

potential regulation methods that may be applicable to

chloroplast engineering in the future (Figure 1).

Designing an effective chloroplast transformation scheme for

new species depends on the improvement of transformation

systems, and the engineering of chloroplast genomes via genetic

transformation is only currently implemented in a few species due

to l imited transformation systems (PEG-mediated

transformation, Agrobacterium-mediated delivery, biolistics-

mediated delivery, etc). Due to the lack of new transformation

technology, the development of chloroplast engineering in

different plant species is restricted (Bock, 2015). However,

nanotechnology and minichromosome may be used to address

the most difficult challenges in chloroplast biotechnology studies

(Jakubiec et al., 2021; Newkirk et al., 2021). The interaction

between nanoparticles and plant cells is an area of interest that

requires further development, and the actual mechanism through

which nanoparticles enter plant cells and cross chloroplast bilayer

membranes has not been identified. With a well-developed

understanding of the interactions between plants and

nanoparticles, accurate nanoparticle-based biomolecule

transport to chloroplasts in a variety of plant species may

become possible. The study of minichromosome indicates that

it is a powerful approach in chloroplast transgene expression and

organelle genome engineering (Jakubiec et al., 2021). This method
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can effectively reduce the screening procedure by avoiding the

polyploidy of the plastomes under selective pressure. Thus, the

“minichromosome” tool is expected to make a broader impact on

agricultural and industrial applications.

Plant chloroplast genomes encode a large number of genes

necessary for photosynthesis or related metabolism. Approaches

or tools for editing genes in chloroplasts are essential for
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exploring the functions of these genes, raising crop

productivity, and improving crop traits. Burgeoning genome

engineering technologies, particularly CRISPR–Cas9-based

approaches, have been widely applied to knock out or change

the gene function in nuclear DNA. In the future, newly modified

CRISPR/Cas9-based approaches may be useful for chloroplast

gene editing. PPR proteins with specific sequences can be
BA

BA

FIGURE 1

Summary of the chloroplast transformation technologies and potential regulation methods for chloroplast gene expression. (A) Technologies
that introduce target genes into chloroplasts include biolistics and nanoparticle-mediated transformation. Biolistics and nanoparticle-mediated
methods require that foreign plasmid DNA be adhered to the surface of metal particles or wrapped in nanoparticles and then DNA be mediated
by power of free-power into chloroplasts or nucleus. PEG can change the structure of cell membranes such that foreign plasmid DNA can enter
plant cells and nucleus. The Agrobacterium infection method transforms the recombinant plasmid into competent cells of Agrobacterium and
then infect plant cells with Agrobacterium to achieve nuclear transformation. (B) I: Regulation of chloroplast gene expression at the DNA level.
Target genes can directly enter the chloroplast and regulate gene expression at the DNA level through CRISPR/Cas9 techniques via the HR
method or foreign DNA functions as an independent minichromosome. II: Regulation of chloroplast gene expression at the RNA level. After the
dPPR gene enters the recipient cell, it replicates and expresses dPPR protein. The fused transit peptide of the dPPR protein guides it to enter the
chloroplast through the TOC/TIC transport complex. TOC, translocase at the outer envelope membrane of the chloroplast; TIC, translocase at
the inter-chloroplast membrane. The dPPR protein directly binds with mRNA to regulate the expression of chloroplast genes. III: Regulation of
chloroplast gene expression. After the target gene enters the recipient cell, it replicates and expresses in the nucleus to construct the aptamer.
The aptamer with fused transit peptide can be guided into the chloroplast and interacts with the corresponding chloroplast protein to affect the
chloroplast protein function.
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artificially designed and used for RNA editing within

chloroplasts in a predictable, sequence-specific manner via

fusion with chloroplast transport peptides and encoded in the

nucleus (Figure 1). The peptide aptamers method may reverse

genetic strategies to precisely and efficiently disrupt plant

protein function without compromising gene structure or

expression (Figure 1). Thus, using new technologies and tools

such as Crispr/CAS9, dPPR proteins, and aptamers to regulate

chloroplast gene expression may enhance chloroplast

engineering and increase the number of possible plant

recipients (Figure 1). Finally, the breathtaking pace of

advancement in chloroplast engineering will be not only

conducive to generating plants traits that are valuable to

humans but also helpful to improve the photosynthesis

efficiency of chloroplasts.
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