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Combating desertification is vital for arresting land degradation and ensuring

sustainable development of the global ecological environment. This study has

analyzed the current desertification status and determined its control needs

based on the difference between potential normalized difference vegetation

index (PNDVI) and actual normalized difference vegetation index (ANDVI) in the

Hotan desertoasis. The MaxEnt model, combined with the distribution point

data of natural vegetation with long-term stable normalized difference

vegetation index (NDVI) and 24 environmental factors was used to predict

the PNDVI spatial distribution of different vegetation coverage grades and

compared it with ANDVI. Excluding the areas of intense human activity such as

arable land, the simulation results show that PNDVI with high, medium, and low

vegetation cover was mainly distributed in the southwest and southeast of

Hotan Oasis, in the midstream and downstream of Kalakash River and Yulong

Kashi River, and the desert or Gobi area outside the oasis, respectively. The

distribution of PNDVI with high, medium, and low vegetation cover accounted

for 6.80%, 7.26%, and 9.17% of Hotan oasis, respectively. The comparison

between ANDVI and PNDVI shows that 18.04% (ANDVI < PNDVI, about 3900

km2) of the study area is still suffering from desertification, which is mainly

distributed in the desert-oasis ecotone in Hotan. The findings of this study

implied that PNDVI could be used to assess the desertification status and

endorsement of desertification control measures in vulnerable ecosystems.

Hence, PNDVI can strengthen the desertification combating efforts at regional

and global scales and may serve as a reference point for the policymakers and

scientific community towards sustainable land development.

KEYWORDS

desertification combating, potential natural vegetation, potential NDVI, over
control, maxent
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Introduction

Desertification has been defined as the land degradation in arid,

semi-arid, dry sub-humid areas (collectively known as dryland),

resulting from various factors, including climate change and human

activity (The United Nations Convention to Combat Desertification

(UNCCD), 1994). Desertification has become a global challenge,

causing unsustainable land management, and threatening the

livelihoods of vulnerable populations (Barbier and Hochard, 2018;

Cai et al., 2022). Anthropogenic climate change has driven over 5

million km2 of drylands toward desertification over the past three

decades, affecting about 213 million people, 93% of them live in

developing economies (Burrell et al., 2020). In addition, Global

Network andMap 30 show that the gross change in Asia is 4.4 times

larger than net change from 2000 to 2010 (Sbafizadeh-Moghadam

et al., 2019). Therefore, governments and relevant institutes are

trying to identify the relationship between human activity, variation

of biophysical attributes of the landscape, and desertification to

prevent and control desertification (Salvati et al., 2016). Failure of

the UNCCD, aiming to reduce the rate of desertification, triggered

the emergence of the land degradation neutrality (LDN) paradigm

(Chasek et al., 2019). To achieve the target of LDN in 2030 and

consolidate the desertification combatting efforts require precise

identification of decertifying areas and site-specific desert

prevention measures.

Given the far-reaching consequences of desertification,

identification of desertification and relevant desertification

control measures are still major challenges for the scientific

community and policymakers (Dong et al., 2020; Hu et al.,

2022). With the advancement of remote sensing technology, the

difference between vegetation biophysical indexes obtained by

remote sensing image inversion has been widely used in large-

scale and long-term desertification evaluation and monitoring,

such as the normalized difference vegetation index (NDVI) and

the net productivity (NPP). NDVI derived from satellite data is

an important vegetation indicator representing vegetation

greenness, revealing the response of vegetation dynamics to

the development of desertification (Zhou et al., 2014; Kalisa

et al., 2019). NDVI has a positive correlation with NPP, which

indicates vegetation growth status and ecosystem health (Bobee

et al., 2012; Philippon et al., 2014; Elnashar et al., 2022). A

decrease in vegetation cover decreases NDVI values reflecting an

increase in desertification. Existing studies on NDVI for

desertification assessment are static and better at warning than

decision making. Moreover, objective measurement of

desertification is difficult due to multiple criteria and the lack

of a reliable baseline. At the same time, Minaei et al. (2018)

showed that the role of climate and human-made interventions

into the type and extent of land transformation is recommended

in land degradation research. The theoretical benchmark of

desertification needs to exclude the interference of human
Frontiers in Plant Science 02
activities. Therefore, to properly assess desert-prone areas and

relevant desert combating measures, we need to explore the

maximum vegetation potential under current climate

conditions, excluding human activity. This may serve the

purpose of a baseline or benchmark to accurately identify the

regions and extent of land degradation (Pan and Xu, 2020). Thus

PNDVI, the optimum NDVI with an optimal climate and no

human disturbance, can be used as a reference to measure

degradation based on the difference between actual and

potential NDVI (Stoms and Hargrove, 2000; Strandberg

et al., 2022).

PNDVI reflects the growth of potential natural vegetation

(PNV), a theoretical climax vegetation community that would

occupy an area if there is no human interference (Paruelo and

Lauenroth, 1995; Chytry, 1998). Unlike the original vegetation

before man-made interference, the concept of PNV is to predict

the final state of future development of vegetation in the region

based on current vegetation (Zerbe, 1998). Exploration of

potential vegetation without human disturbance is important

to predict actual vegetation development under climate models.

Therefore, the NDVI of PNV can be used as a real benchmark

under current climate conditions to estimate the extent of

desertification. The magnitude of the difference between actual

and potential NDVI provides a quantitative measure of the

overall the magnitude and pattern of land degradation and

ecosystem functioning. However, limited studies on PNDVI

warrant further exploration of this concept for the assessment

of desertification extent and relevant prevention measures

in drylands.

PNDVI is usually simulated based on the relationship

between ANDVI and the natural environmental factors (Gao

et al., 2012). At the end of the last century, Paruelo and

Lauenroth (1995) have proved that the atmospheric and

ecological processes can be linked interactively by empirical

relationships between some traits of the NDVI curves and

climate variables. Therefore, the relationship between NDVI

data for natural areas and climate variables enables us to

produce maps of the PNDVI. Classification and Regression

Tree (CART) is the main model used to construct the

quantitative relationship between ANDVI and climate, and

to simulate the spatial distribution of PNDVI (Pan and Xu,

2020; Ma et al., 2021). However, with the development of

technology and ecological niche theory, more and more

statistical methods and software are used to construct the

empirical relationship between vegetation and climate, such

as surface range envelope (SRE) (Sormunen et al., 2011),

multiple adaptive regression splines (MARS) (Elith and

Leathwick, 2007), generalized boosting models (GBMs)

(Heikkinen et al., 2012), random forests (RFs) (Barbet-

Massin et al., 2013), flexible discriminant analysis (FDA)

(Kuemmerlen et al., 2014), artificial neural networks (ANNs)
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(Ficko et al., 2011), generalized linear models (GLMs) (Mainali

et al., 2015), and maximum entropy (MaxEnt) (Zhang et al.,

2011). However, MaxEnt is the most widely used species

distribution model at present, with numerous advantages,

including ease of operation, short running time and high

precision (Phillips et al., 2017). Furthermore, MaxEnt model

is appropriate for the presence only data, which can

simultaneously use continuous numerical or classified

environmental factors as environmental data to participate in

modeling and the operation is simple and the demand for

sample size is small (Guo et al., 2019). Therefore, we attempt to

use the MaxEnt model to simulate PNDVI.

An oasis is a unique ecological habitat for plants, humans,

and wildlife in desert areas of northwest China. The

sustainability of the oasis is highly important for smooth

ecosystem functioning and stable economic development of

the region. However, desertification due to harsh climate and

overexploitation of resources by humans is seriously threatening

the future development of oasis. Hotan Oasis located in the

southern edge of Tarim Basin, with a complete desert oasis

landscape structure. Therefore, combating desertification and

maintaining the stability of the oasis ecosystem necessitate

accurate identification of desert-prone areas and targeted

control measures for sustainable development in arid regions.

Hence, this study aims to quantify the current desertification

status in Hotan oasis through calculation of PNDVI using

MaxEnt model and to analyze the demand for desertification

control needs in different zones of Hotan oasis by comparing the

spatial distribution characteristics of PNDVI and ANDVI. The

findings of this study may provide a reference point for

researchers and policy makers to pin point desertification

areas and implement targeted policy measures to halt

desertification in arid regions.
Study area

Hotan Oasis located in the southern margin of Tarim Basin

and northern foot of the Kunlun Mountains of northwest China

(Zhang et al., 2022). The Kalakash River and Yulong Kashi River

originated in the Kunlun Mountains supply water to the Hotan

oasis. Hotan oasis has typical continental desert climate

characteristics such as warm and dry, abundant light and heat

resources (Zhao et al., 2009). This oasis also falls into the

category of continental warm temperate monsoon climate,

with the average annual temperature being 13°C, annual

precipitation being less than 50 mm, and evaporation over

2700 mm per year (Huang et al., 2022). At present, the

ecological environment of Hotan Oasis is deteriorating due to

long-term sandstorm disasters and large-scale development and

utilization of water and soil resources in the basin (Yao et

al., 2022).
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Materials and methods

Data source and processing

In order to simulate the empirical relationship between

ANDVI and climate variables and predict the geographical

distribution of PNDVI, an environmental factor dataset that

can characterize environmental characteristics must be defined

(Lu et al., 2012). In this study, we used 24 environmental factors

consisting of climate, soil, topography, and hydrology (Table 1).

Bioclimatic variables were obtained from the WorldClim

database (https://www.worldclim.org/), and the resolution was

30 s (≈1km2). Soil variables were downloaded from the SoilGrids

(https://soilgrids.org), and the resolution was 250 m. The digital

elevation model (DEM) data was downloaded from Geospatial

Data Cloud (http://www.gscloud.cn), and the resolution was

250 m. Considering the importance of groundwater, we

obtained the groundwater level of 25 observation wells

(Figure 1) from Hotan Water Conservancy Bureau, and

obtained the distribution data of groundwater level by inverse

distance weighing method (Noori et al., 2013). The correlation

between environmental variables can easily lead to

multicollinear explanatory problems, such as increasing the

variance of parameter estimation, and making the test of

explicitness of variables meaningless. Therefore, this study

eliminates the impact on the simulation results by

multicollinearity test of 24 environmental variables (Graham,

2003). Firstly, the MaxEnt model was used to obtain the

contribution rate of each variable, and the variables with

contribution rate less than 1 are eliminated. Further, the

Pearson correlation analysis of the data after modeling was

carried out by ArcMap software (Figure 2). The variables with

large contribution rate having correlation coefficient |r| > 0.8

were selected for subsequent model analysis (Yang et al., 2013).

After the above screening process, environmental factors were

finally selected for PNDVI prediction (Table 2).

In order to ensure that PNDVI simulation results are close to

the natural state, modeling sampling points need to be extracted

from natural vegetation areas where NDVI did not change

significantly from 2005 to 2015.Therefore, NDVI and land

cover data were used for point acquisition and model

simulation. Land cover data in Hotan comes from the

Aerospace Information Research Institute, Chinese Academy

of Sciences (https://data.casearth.cn/), data resolution is 30 m

(Figure 1). NDVI data for 2005 and 2015 were provided by

National Ecosystem Science Data Center, National Science and

Technology Infrastructure of China (http://www.nesdc.org.cn),

and NDVI data for 2020 was calculated through Sentinel 2A

image (https://scihub.copernicus.eu/). The steps to obtain the

sampling area by ArcGIS 10.7 were as follows: (1) The threshold

segmentation of NDVI was divided into four grades according to

the classification method of Yao et al. (2022)’s study in temporal
frontiersin.org
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FIGURE 1

Location of the study area and Land-use type. Land-use type is based on the data from the Aerospace Information Research Institute, Chinese
Academy of Sciences in 2020 (Zhang et al., 2021).
TABLE 1 Description of bioclimatic variables used for MaxEnt model prediction.

Code Environmental variables Units

bio1 Annual Mean Temperature °C

bio2 Mean Diurnal Range °C

bio3 Isothermally (BIO2/BIO7) (* 100) %

bio4 Temperature Seasonality (standard deviation *100) %

bio5 Maximum Temperature of Warmest Month °C

bio6 Minimum Temperature of Coldest Month °C

bio7 Temperature Annual Range (Bio5-Bio6) °C

bio8 Mean Temperature of Wettest Quarter °C

bio9 Mean Temperature of Driest Quarter °C

bio10 Mean Temperature of Warmest Quarter °C

bio11 Mean Temperature of Coldest Quarter °C

bio12 Annual Precipitation mm

bio13 Precipitation of Wettest Period mm

bio14 Precipitation of Driest Period mm

bio15 Precipitation Seasonality (coefficient of variation) %

bio16 Precipitation of Driest Quarter mm

bio17 Precipitation of Wettest Quarter mm

bio18 Precipitation of Warmest Quarter mm

bio19 Precipitation of Coldest Quarter mm

clay Proportion of clay particles(<0.002mm) in the fine earth fraction g/kg

sand Proportion of sand particles (>0.05 mm) in the fine earth fraction g/kg

silt Proportion of silt particles (≥0.002 mm and ≤0.05mm) in the fine earth fraction g/kg

DEM digital elevation model m

GWD groundwater level in growing season m
Frontiers in Plant Science
 frontier04
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and spatial changes of vegetation cover in Hotan Oasis (Table 2);

(2) natural vegetation (forest, shrub and grassland) extracted

from land cover data by reclassification method; (3) NDVI with

a stable value during 2005~2015 was calculated by raster

calculator; (4) Extracting sampling area where appeared

simultaneously in the results of (2) and (3) (Figure 3). To keep

the consistency of spatial resolution and the minimum

deformation of area, all data were projected to the

GCS_WGS_1984 coordinate system and resampled to the

30 m resolution by ArcGIS 10.7.
Methodology

MaxEnt (Maximum entropy model) was used to simulate

the species distribution based on presence data (species

presence) and environmental factor data (Phillips et al.,

2006). The sorted distribution point data and the screened

bioclimatic variable data were imported into MaxEnt 3.4.1

and the bioclimatic variables were evaluated by the Jackknife

test (Merow et al., 2013). The models split the dataset by

using 10-fold cross-validation, this method refers to

randomly dividing the original dataset into 10 parts with

nearly equal sample sizes, taking turns merging 9 of them as

training set and the remaining 1 as test set. In practice,

model performance was evaluated by calculating the Area

Under the Receiver Operator Curve (AUC), its value ranges

from 0.5 to 1. It is generally understood that AUC = 0.5

indicates the random distribution was indicated, AUC = 1

indicates that the predicted distribution area of the model

was completely consistent with the actual distribution area

of the research object, and prediction results can be

considered satisfactory for our study when AUC > 0.7

(Phillips and Dudik, 2008).
Results

Contribution of main environmental
factors to the simulation of
PNDVI distribution

The results of MaxEnt model showed that the spatial

distribution of PNDVI in Hotan was mainly affected by

climate, soil, and groundwater. There are certain differences

in the dominant environmental factors corresponding to the

PNDVI distribution of different vegetation coverage (Table 2).

The influential factors with the highest contribution to the

simulation of PNDVI spatial distribution (later called as

PNDVI distribution) for high vegetation, medium vegetation,

low vegetation and bare or sparse vegetation are bio11 (41.9%),

boi1 (55.7%), bio1 (27.8%) and bio8 (61.3%), respectively
Frontiers in Plant Science 05
(Table 2). In all environmental factors, the contribution of

clay is not the highest, but it has significant influence on the

simulation of PNDVI distribution with different vegetation

coverage, and the contribution rates are 3.3%, 7.7%, 2.5% and

2.4%, respectively (Table 2). In addition, the Jackknife module

of the maximum entropy model is used to analyze the influence

of the weight of the main environmental factors on the

simulation of PNDVI distribution in the current climate

environment. The results are consistent with the contribution

rate of environmental factors (Figure 4). For example, when

simulating the PNDVI distribution of medium and low

vegetation, bio1 provided the highest gains when used

independently, indicating that bio1 contained more useful

information by themselves than the other variables possessed

(Figures 4B, C). Overall, the environmental factors that

contributed greatly to the simulation of PNDVI spatial

distribution in Hotan were mean temperature of the coldest

quarter, precipitation of the warmest quarter, precipitation of

the coldest quarter, isothermally, proportion of clay particles

(<0.002 mm) in the fine earth fraction, annual mean

temperature, mean diurnal range, temperature annual range,

precipitation of the wettest quarter, mean temperature of the

wettest quarter and proportion of sand particles (>0.05 mm) in

the fine earth fraction.
FIGURE 2

Correlation coefficients between the environmental factors.
Positive correlations are shown in blue and negative correlations
are shown in red. The color intensity and the size of the circle
are proportional to the correlation coefficient.
frontiersin.org
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Spatial distribution characteristics of
PNDVI in Hotan
As a vegetation index, spatial distribution of NDVI also

needs to meet the classification criteria of plant survival

possibility. Therefore, according to the division standard of

the suitable survival possibility of species, the regions with the

distribution probability greater than 0.46 were used as the

simulation results of PNDVI distribution (Guo et al., 2019). In

addition, when the PNDVI distribution areas representing

different degrees of vegetation coverage regions overlap, the

vegetation coverage grade of PNDVI with the highest

distribution probability is selected as the simulation result. In

this study, the AUC of MaxEnt model training data for four
Frontiers in Plant Science 06
different degrees of vegetation coverage was more than 75%.

The modeling results can be used to predict PNDVI in

Hotan (Figure 5).

The simulation results showed that the PNDVI with high

vegetation coverage level is mainly distributed in the southwest

and southeast of Hotan Oasis and the upstream and downstream

of Kalakash River and Yulong Kashi River. The PNDVI of

middle vegetation coverage mainly distributed in the

midstream and downstream of Kalakash River and Yulong

Kashi River. When the representative vegetation coverage is

low, PNDVI is distributed in the eastern and western parts of the

Hotan Oasis and the intersection area where Kalakash River and

Yulong Kashi River combined into the Hotan River. PNDVI

with extremely low vegetation coverage is mainly distributed in

desert or Gobi area outside the oasis. Overall, the PNDVI value
TABLE 2 The correspondence table between NDVI value and vegetation cover level.

NDVI Vegetation coverage Vegetation coverage level Environmental factors Contribution

NDVI-1~1 NDVI0~255

>0.50 >191 >60% High vegetation boi11 24.7%

boi18 14.7%

boi19 7.9%

bio3 5.4%

clay 3.3%

bio13 2.5%

silt 2.4%

bio2 1.3%

bio15 1.1%

GWD 1.0%

0.23~0.49 156~190 30%~60% Medium vegetation bio1 43.2%

clay 7.7%

bio2 5.4%

bio18 4.6%

bio19 2.7%

bio3 2.7%

bio16 1.8%

silt 1.7%

GWD 1.1%

0.09~0.22 139~155 15%~30% Low vegetation bio1 29.6%

bio7 10.3%

bio18 7.1%

bio16 6.7%

clay 2.5%

bio4 1.4%

<0.08 <138 <15% Bare or sparse vegetation bio8 67.4%

bio18 3.7%

sand 2.8%

clay 2.4%

bio7 2.1%

bio3 1.9%

GWD 1.0%
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of vegetation showed a decreasing trend from south to north,

and the vegetation distribution gradually contracted to the

vicinity of the river (Figure 6).

Table 3, represents the area of ANDVI and PNDVI with

different vegetation cover levels. PNDVI with different

vegetation covers accounted for 6.8%, 7.26%, 9.17% and

66.95% of the total study area, respectively. Compared with

ANDVI, vegetation coverage area increased by 10.20%. In

addition, the results of PNDVI simulation showed that the

proportion of low, medium, and high vegetation coverage is

higher than ANDVI, while the bare or sparse vegetation

coverage is less than ANDVI. It can be seen that the

vegetation in Hotan still has certain growth potential and can
Frontiers in Plant Science 07
increase the vegetation with different coverage levels by

2192.66 km2.
Analysis of desertification combating
needs on PNDVI

The desertification combating needs of Hotan was analyzed

by comparing PNDVI with the ANDVI, and the study area was

divided into control areas (PNDVI-ANDVI > 0, the coverage of

potential natural vegetation is higher than that of actual

vegetation), suitable areas (PNDVI-ANDVI = 0, the coverage

of potential natural vegetation is equal to actual vegetation) and

over control areas (PNDVI-ANDVI < 0, the coverage of

potential natural vegetation is lower than that of actual

vegetation). The results showed that PNDVI is generally

higher than ANDVI without considering cultivated land,

impervious surface, and water bodies. Therefore, Hotan Oasis

is still facing serious desertification threats, and desertification

combating areas are mainly distributed in the ecotone of desert

and oasis. The desertification zones in Hotan are mainly

comprised of desert-oasis ecotone, accounting for 18.04%

(3902.01 km2) of the total area; the over control areas are

scattered in the periphery of the irrigated cropland area and

the mountainous areas in the southern oasis, accounting for

4.10% (887.13 km2) of the study area; and the suitable areas for

prevention and control are widely distributed in desert areas,

accounting for 68.04% (14713.71 km2) (Figure 7).

In addition, the difference between potential and actual

NDVI is mainly manifested in 12 types after grading NDVI

according to vegetation cover (Table 4). As mentioned above, the

regions with PNDVI value higher than ANDVI value are divided
FIGURE 3

Sampling area.
FIGURE 4

Jackknife test of the importance of top 5 environment variables in MaxEnt. Letters a–d in the graph indicates NDVI of high, medium, low, and
bare or sparse vegetation, respectively.
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into desertification control areas. Therefore, the specific changes

in vegetation cover level during desertification can be analyzed

by the difference between PNDVI and ANDVI, and effective

desertification control measures can be developed on this basis.

The desertification control area in Hotan is composed of the

region with bare or sparse vegetation which needs to be

increased to cover level. Among them, the area (PL-AB) that

needs to increase the vegetation coverage to 15% ~ 30% accounts

for 5.74% of the study area, whereas the extreme degradation

area (PH-AB) where vegetation coverage can reach 60% when

the vegetation growth potential is maximum accounts for 4.11%

(Table 4; Figure 8A).

There are also some other areas where ANDVI is higher than

PNDVI. The over control area is mainly characterized by PB-AL

which is distributed in the region with actual vegetation coverage

between 15% ~ 30% but without vegetation growth potential.

PB-AL, accounts for 2.71% of the study area, is distributed in the

desert and Gobi areas around Hotan oasis, such as the National

Highway G315 (Table 4; Figure 8B).
Discussion

Accurate assessment and monitoring of desertification is an

important pillar for sustainable development as it informs about
Frontiers in Plant Science 08
the degradation processes, and thus appropriate preventive

measures can be initiated in time (Abuzaid and Abdelatif,

2022). In the present study, PNDVI was introduced to

determine desertification combat needs in Hotan oasis through

the identification of desert-prone areas based on vegetation

potential of the oasis. The results revealed that AUC value of
FIGURE 6

Spatial distribution characteristics of PNDVI in Hotan. Non-
simulation area refers to irrigated cropland, impervious surface,
and water body.
FIGURE 5

Receiver operating characteristic curve (ROC) of the MaxEnt models. Letter a–d in the graph indicates NDVI of high, medium, low, and bare or
sparse vegetation respectively.
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the model for the relationship between PNDVI spatial

distribution and environmental factors with different

vegetation coverage levels was above 0.75, indicating that the

MaxEnt model is suitable for simulating the potential

distribution of NDVI in the region. It shows that the model is

reliable and can effectively be used to estimate vegetation

distribution (Qin et al., 2020). Screening of environmental

factors revealed that the most influential factors with the

highest contribution to the PNDVI distribution for high,

medium, low, and bare or sparse vegetation were bio11, bio1,

bio1 and bio8, respectively. Particularly, temperature-related

factors (mean temperature of the coldest quarter and annual

mean temperature) showed pronounced contributions towards

vegetation cover distribution. Temperature plays a crucial role in

regulating plant photosynthesis and affects plant growth and

reproduction via light intensity (Zhang et al., 2019). As future

temperature and precipitation in Xinjiang are predicted to

increase (Du et al., 2021), it may somewhat facilitate

desertification combating in Hotan. Furthermore, variation of
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climate from warm-dry to warm-wet has increased vegetation

in Xinjiang.

The simulation results showed that the vegetation coverage

represented by PNDVI in Hotan oasis decreases from south to

north. With the deepening of the desert, the distribution range of

vegetation gradually concentrated near the river. The

comparison of PNDVI and ANDVI found that the

distribution area of PNDVI with vegetation coverage greater

than 15% in the study area increased by 2192.66 km2. Our

findings are supported by Cai et al. (2022), who reported that the

natural vegetation in the desert oasis transitional zone in Hotan

still has high growth potential. However, contrary to our

findings, Pan and Xu (2020) reported that the vegetation

coverage in Hotan is less than 60%. Therefore, the simulation

results of this study may be overestimated. The difference in

PNDVI simulation results could be attributed to the selection of

model, the accuracy of meteorological and soil data, and lack of

groundwater data around oasis and desert areas.

PNDVI-based analysis for desertification control needs in

Hotan indicated that 18.04% of Hotan region is under serious

desertification threats because vegetation cover is not reaching

the potential state and needs desertification control measures. In

contrast, Nuermaimaiti and Wang (2020) showed that 92.5% of

the Hotan area is suffering varying degrees of desertification.

Such a large difference in desertification areas appeared because

in the current study, we did not consider areas of intense human

activities such as farmland and impervious surface in the

research process. On the other hand, considering that the

nature of desertification is a process of land degradation, this

paper uses PNDVI as a benchmark to determine the occurrence

area of desertification, rather than a single vegetation coverage to

evaluate desertification. Moreover, an 853.65 km2 area in the

study region also indicated a trend of desertification reversal.

Our results are in line with Cai et al. (2022), who reported a

significant reversal of desertification within the Hotan oasis, as

well as they also proposed PNPP as a benchmark for

desertification research in Central Asia as we have used

PNDVI as a benchmark for desertification assessment.

The results of this study showed that the precise

identification of areas requiring desertification control can be

achieved by comparing the PNDVI with the ANDVI. As Paruelo

and Lauenroth (1995) proposed that the potential functioning
FIGURE 7

Spatial distribution of desertification combating areas. Control
area is the area where desertification control is required; Suitable
area is where the vegetation growth has reached the maximum
growth potential allowed by the environment; Over contral area
is where the vegetation growth exceeds the maximum growth
potential allowed by the environment; Non-simulation area
refers to irrigated cropland, impervious surface, and water body.
TABLE 3 The area and percentage of ANDVI and PNDVI with different vegetation coverage level.

Vegetation coverage level ANDVI PNDVI

Area (km2) Percentage (%) Area (km2) Percentage (%)

High vegetation 44.16 0.20 1471.02 6.80

Medium vegetation 872.98 4.02 1571.026 7.26

Low vegetation 1915.28 8.81 1983.03 9.17

Bare or sparse vegetation 16784.69 77.20 14478.19 66.95
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map of the vegetation, like PNDVI, could be compared with

actual functioning maps and can be used to monitor the

relationship between land cover changes related to human use

at the regional scale. Furthermore, Pan and Xu (2020) implied

that the spatial simulation of PNDVI and PNPP can separate the

direct impact of human activities on natural ecosystems from the

impact of climate change and quantify the difference between

actual and potential ecological conditions under external

pressure. Therefore, the idea of considering biophysical

characteristics of potential vegetation as a benchmark to

combating desertification is more relevant to the current

demand for desertification control aimed at improving the

ability of various ecosystems and ensuring benefits of

sustainable development (Bastin et al., 2019). Since, this paper

highlights the critical role of PNDVI in desertification control

research, but the contribution of some relevant indicators

describing ecosystem functions of desertification has been

neglected, which is a limitation of this study. Therefore, future

studies should consider more ecological indicators to build a

complete desertification assessment system based on this study’s
Frontiers in Plant Science 10
result. It could help to establish a theoretical basis for accurate

desertification assessment.
Conclusion

In the present study an attempt has been made to use

PNDVI for desertification assessment and control needs in the

Hotan oasis. By combining the distribution point data of natural

vegetation with long-term stable NDVI and 24 environmental

factors, the MaxEnt model (Average AUC = 0.826) successfully

simulated the spatial distribution of PNDVI and evaluated the

demand for desertification control in Hotan oasis. In general,

PNDVI spatial distribution with different vegetation cover levels

was mainly affected by the annual mean temperature (bio 1),

mean temperature of the wettest quarter (bio 8), mean

temperature of coldest quarter (bio 11), and groundwater level

in growing season. However, the key environmental factors and

their contribution rates to PNDVI simulation results at different

vegetation cover levels are different. PNDVI simulation results
TABLE 4 Composition of control area and over control area.

Control areas Over control areas

Type Area (km2) Percentage (%) Type Area (km2) Percentage (%)

PH-AB 889.66 4.11 PB-AL 585.25 2.71

PM-AB 789.16 3.65 PL-AM 151.37 0.70

PL-AB 1241.50 5.74 PB-AM 122.17 0.56

PH-AL 320.22 1.48 PM-AH 13.52 0.06

PM-AL 415.98 1.92 PL-AH 4.86 0.02

PH-AM 245.54 1.14 PB-AH 9.94 0.05
The letters P and A represent PNDVI and ANDVI, respectively; H, M, L, and B represent high vegetation, medium vegetation, low vegetation and bare or sparse vegetation, respectively.
Letter combinations represent potential or actual NDVI under different vegetation cover levels.
A B

FIGURE 8

Regions with difference between PNDVI and ANDVI. (A) represents the region where PNDVI with high vegetation and ANDVI with bare or sparse
vegetation; (B) represents the region where PNDVI with bare or sparse vegetation and ANDVI with low vegetation.
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show that the distribution of PNDVI with high, medium, and

low vegetation cover accounted for 6.80%, 7.26%, and 9.17% of

Hotan oasis, respectively. The comparison between PNDVI and

ANDVI shows that Hotan oasis desert ecotone appears to be still

the main area for desertification control in Hotan oasis

(PNDVI>ANDVI). Most regions of deserts and Gobi have not

experienced desertification (PNDVI=ANDVI). In addition,

some vegetation in the study area may have excessive growth

(PNDVI < ANDVI) due to human activity, such as shelter forest

construction and agricultural irrigation. Without considering

the actual functions of these vegetation, we believe that excessive

prevention and control exist in these areas that do not follow the

potential development laws of vegetation. The PNDVI spatial

distribution method has provided substantial information

regarding assessment and desertification combating needs in

Hotan oasis. Therefore, it could be employed as a robust baseline

for desertification assessment from regional to global scale,

thereby strengthening the efforts to halt desertification.
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