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Isodon rubescens (Hemsley) H. Hara is the source of Donglingcao under the

monograph Rabdosiae Rubescentis Herba in Chinese Pharmacopoeia. In the

local marketplace, this medicine can be accidentally contaminated,

deliberately substituted, or mixed with other related species. The

contaminants of herbal products are a threat to consumer safety. Due to the

scarcity of genetic information on Isodon plants, more molecular markers are

needed to avoid misidentification. In the present study, the complete

chloroplast (cp) genome of seven species of Isodon was sequenced, de novo

assembled and characterized. The cp genomes of these species universally

exhibited a conserved quadripartite structure, i.e., two inverted repeats (IRs)

containing most of the ribosomal RNA genes and two unique regions (large

single copy and small single copy). Moreover, the genome structure, codon

usage, and repeat sequences were highly conserved and showed similarities

among the seven species. Five highly variable regions (trnS-GCU-trnT-CGU,

atpH-atpI, trnE-UUC-trnT-GGU, ndhC-trnM-CAU, and rps15-ycf1) might be

potential molecular markers for identifying I. rubescens and its contaminants.

These findings provide valuable information for further species identification,

evolution, and phylogenetic research of Isodon.
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Introduction

Isodon rubescens (Hemsley) H. Hara belongs to the family

Lamiaceae (Liu et al., 2017), which is listed in the Chinese

Pharmacopoeia, and the Chinese name is “Donglingcao”

(Chinese Pharmacopoeia Commission, 2020). The Rabdosiae

Rubescentis Herba has crucial medicinal value in eliminating

inflammation, reducing sore throats, and treating malignant

tumors (Xue et al., 2020; Guan et al., 2021). The previous

survey has revealed that I. rubescens is generally contaminated

with common adulterants, such as I. inflexus (Thunb.) Kudô, I.

eriocalyx (Dunn) Kudô, I. excisus (Maxim.) Kudô, I.

lophanthoides (Buch.-Ham. ex D.Don) H.Hara, I. coetsa

(Buch.-Ham. ex D.Don) Kudô, and I. japonicus (Burm.f.)

H.Hara (Su et al., 2007; Xia et al., 2013; Ge et al., 2022). These

adulterants are usually of poor quality and some might even be

toxic (Xia et al., 2013; Duan et al., 2018). As the morphology of

these species is similar, interchangeable, and indistinguishable,

the identification of these species remains somewhat

controversial, which may affect their safety and effectiveness in

clinical use (Lazarski et al., 2014; Lin et al., 2019). Therefore, it is

imperative to develop a method for accurately identifying I.

rubescens and its common adulterants.

With the rapid development of molecular technology in

recent years, molecular identification has made significant

progress in Chinese medicine, especially molecular markers,

which involve sequencing specific sections of the genome to

identify differences between individuals of different species or

populations (Roman and Houston, 2020). Recent studies have

shown high levels of genetic variability within species of Isodon

and an associated lack of phylogenetic resolution between

different species (Zhong et al., 2010; Chen et al., 2021).

Universal DNA markers, such as ITS, psbA-trnH, trnD-trnT,

rpl32-trnL, and ETS have been used to identify I. rubescens and

its related taxa (Xia et al., 2013; Yu et al., 2014; Chen et al., 2021).

Moreover, according to Harris and Klooster (2011), they found

that 11 microsatellite loci amplify reliably and are sufficiently

variable for studying population genetics in I. rubescens.

However, some common adulterants were not included in

these studies. Therefore, more scientific and accurate

identification methods must be developed. The chloroplast

(cp) is an essential organelle that plays a crucial role in plant

photosynthesis and biochemical processes (Bendich, 2004).

Compared with the gene fragments, the cp genome is

relatively conserved and slightly varied (Drouin et al., 2008;

Ferrarini et al., 2013), which has been widely used for identifying

Paris, Polygonatum, and its contaminants (Kawabe and

Miyashita, 2003; Jiang et al., 2022; Wang et al., 2022).

Recently, although the complete plastid genomes of I.

rubescens has reported by Lian et al. (2022) and Yue et al.,

(2021), the focus of these papers was to compare the intraspecific

variation or characterize one genome information. However, the
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use of cp genomes for comparing Isodon species with their

common adulterants has not been reported.

Our study aims to: (i) contribute new fully-sequenced cp

genomes in Isodon and improve the understanding of the overall

structure of these genomes, (ii) perform comparative analyses

and elucidate the phylogenetic evolution of Isodon cp genomes,

and (iii) screen molecular markers to differentiate I. rubescens

and its adulterants. In the current work, the complete cp

genomes of seven Isodon species were sequenced, de novo

assembled, and annotated. These genomes were then used in a

comparative analysis of genome structure and evolution

relationships. The data acquired in this study increase the

genomic resources available for the Isodon genus and provide

valuable information support for the phylogenetic analysis and

identification of the Isodon genus, as well as safe medical

applications of I. rubescens . This study is the first

comprehensive research on identifying I. rubescens and its

adulterants based on the cp genomes.
Materials and methods

Plant and DNA resources

The fresh, healthy leaves for seven species of I. rubescens

and its common adulterants, including I. inflexus, I. eriocalyx,

I. excisus, I. lophanthoides, I. coetsa, and I. japonicus, were

collected from the Germplasm Resource Garden (Yunnan,

China, 24°49 ′55″N, 102°48 ′58″E), Kunming Zhifen

Biotechnology Co. , Ltd. One individual sample of

approximately 1.0 g of fresh leaves per plant species was

gathered and stored in an ice-filled cooler or refrigerator (4°

C) until DNA extractions could be performed. Professor

Baozhong Duan authenticated the specimens, and the

detailed sample information is available in Supplementary

Table S1 and Figure S1. The voucher specimens were

deposited in the Dali University herbarium. Genomic DNA

was extracted from tissue samples using the Plant Genomic

DNA kit (Tiangen, Be i j ing , China) fo l lowing the

manufacturer’s protocol. The extracted DNA was quantified

on high-sensitivity Qubit 4.0 fluorometry (Life Technologies,

Inc.), and all PCR products were examined for the presence of

amplified products in agarose gels.
DNA sequencing, assembly,
and annotation

For sequencing library preparation, we used thirty

microlitres of high-quality (>100 ng/mL) DNA per individual.

All libraries were sequenced on the Illumina NovaSeq system

(Illumina, San Diego, CA). Paired-end sequence reads were
frontiersin.org
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trimmed to remove low-quality bases and adapter sequences in

the Toolkit_v2.3.3 software. The cp genomes were assembled by

GetOrganelle v.1.6.4, exploiting Bowtie2 v.2.4.4, SPAdes v.3.13.0,

and Blast v.2.5.0 as dependencies (Jin et al., 2019). After

assembly, two online annotation tools, CpGAVAS2 and GeSeq

were used to annotate the circular cp genomes (Wick et al.,

2015), and the annotated cp genome sequences were submitted

to the GenBank database of the National Center for

Biotechnology Information (NCBI) (Table 1). Gene maps of

the cp genomes were produced with the online IRscope (https://

irscope.shinyapps.io/Chloroplot/).
Repeat analysis

The GC content was analyzed using the Geneious 9.0.2

software (Kearse et al., 2012). Four kinds of the dispersed

repeat sequence, including Forward (F), Reverse (R),

Palindromic (P), and Complementary (C), were detected using

the REPuter program (https://bibiserv.cebitec.uni-bielefeld.de/

reputer/) (Kurtz, 2001). The criteria for repeat determination

include a minimum repeat size of 20 bp with a similarity

between repeat pairs of 90% by putting edit value 3.

Furthermore, MISA software (http://pgrc.ipk-gatersleben.de/

misa/) was used to evaluate the simple sequence repeats (SSRs)

with the parameters of ‘10’ for mono, ‘5’ for di-, ‘4’ for tri-, and

‘3’ for tetra-, penta-, and hexanucleotide motifs (Beier

et al., 2017).
Comparative and phylogenetic analyses

Relative synonymous codon usage (RSCU) and codon usage

values were analyzed by CodonW v.1.4.2. Moreover, the RSCU

values were shown in a heatmap by Tbtools (Chen et al., 2020).

The contraction and expansion of IR regions at the junctions

were visualized using the online IRscope (https://irscope.

shinyapps.io/irapp/) (Amiryousefi et al., 2018). The mVISTA

program in Shuffle LAGAN mode was used to compare the cp

genomes of seven species of Isodon (Frazer et al., 2004), using the
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annotation information of I. serra (GenBank NC064127) as a

reference. Additionally, the nucleotide variability (Pi) across the

cp genome sequences was assessed using DnaSP v.6.12.03, with a

window length of 600 sites and a step size of 200 sites (Rozas

et al., 2017). A value of Pi higher than 0.014 was recommended

as mutational hotspots (Cui et al., 2019a). In phylogenetic

analyses, 36 species, including 29 species downloaded from

NCBI (Table S2), were used to infer the phylogeny.

Simultaneously, two species, Scrophularia dentata (GenBank

NC036942) and S. henryi (GenBank NC036943) were used as

outgroups (Chase et al., 2016). All these sequences were aligned

using MAFFT, and alignments were checked manually. The

Maximum-likelihood (ML) tree was reconstructed with an

IQtree using default parameters of 1000 iterations, 1000

replications, and best-fit model selection (Nguyen et al., 2015).
Results and discussion

Genome structure

The cp genome size and gene content of seven Isodon species

are listed in Table 1. All the genome sizes were similar to that of

the reference genome, i.e., around 150 kb. I. inflexu had the

largest genome, with a size of 152,701 bp, and I. japonicus had

the smallest genome, with a size of 152,208 bp. Moreover, the

length of large single copy (LSC) regions ranged from 83,079 bp

(I. lophanthoides) to 83,577 bp (I. rubescens), small single copy

(SSC) regions ranged from 17,656 bp (I. excisus) to 17,729 bp (I.

lophanthoides), and IRa and IRb regions ranged from 25,700 bp

(I. lophanthoides and I. japonicus) to 25,728 bp (I. excisus). In

addition, the cp genomes of Isodon contained 132 genes,

including 88 protein-coding genes, 8 rRNA genes, and 36

tRNA genes, 18 of which are repeated as members of IR

regions (Figure 1), which were congruent and largely

concordant with recent studies of Isodon (Yue et al., 2021;

Lian et al., 2022). It is worth noting that the chIB, chIL, and

ycf68 were lost during evolution, typically in most angiosperms

(Millen et al., 2001). Meanwhile, the number and types of

introns were similar among the seven Isodon species (Table
TABLE 1 Information of Isodon cp genome features.

Genome
characterristics

Total length
(bp)

GC content
(%)

AT content
(%)

LSC length
(bp)

SSC length
(bp)

IR length
(bp)

GenBank
accession

I. inflexus 152695 37.63 62.37 83558 17663 25722 OM808733

I. eriocalyx 152657 37.63 62.37 83546 17657 25727 OM808731

I. excisus 152643 37.64 62.36 83531 17656 25728 OM808732

I. lophanthoides 152208 37.61 62.39 83079 17729 25700 OM808735

I. japonicus 152238 37.60 62.40 83139 17699 25700 OM808734

I. coetsa 152441 37.63 62.37 83289 17670 25726 OM808730

I. rubescens 152690 37.62 62.38 83577 17661 25726 OM808736
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S3). Each of the 18 genes contained one intron, including trnA-

UGC (×2), trnI-GAU (×2), rpl2 (×2), and ndhB (×2) were located

in the IR, and the genes (trnK-UUU, rps16, trnT-CGU, atpF,

rpoC1, trnL-UAA, petB, petD, and rpl16) were located in the LSC,

and the ndhA was the only present in the SSC region.

Furthermore, ycf3 and clpP have two introns, respectively,

consistent with previous genetic studies (Jiang et al., 2022).

The GC content ranged from 37.60% to 37.64% and varied

among the different regions. The findings were identical to those

of other Isodon species (Yue et al., 2021), which is not

unexpected, given that the angiosperms possess the highly

conserved cp character at the genus level (Meng et al., 2018;

Cui et al., 2019b; Shahzadi et al., 2020).
Codon usage bias of cp genomes

The analyses of relative synonymous codon usage (RSCU)

provide information about the encoding frequency of codons for

an amino acid. As shown in Table S4, the results of RSCU

revealed that the cp protein sequences encoded 21 amino acids,

and 30 codons were used frequently in Isodon species, consistent

with recent codon usage studies (Lian et al., 2022). Moreover,

amino acid frequency analyses confirmed the highest frequency

of leucine and isoleucine, whereas cysteine was a rare amino acid

(Table S4), which was supported by other researchers based on
Frontiers in Plant Science 04
codon usage bias (Lian et al., 2022). Notably, the use of start

codon AUG for methionine and UGG for tryptophan in the

Isodon genus showed no codon usage bias, consistent with

previous reports of Isodon (Lian et al., 2022). In general, we

found high similarities in codon usage and amino acid frequency

among the seven species of Isodon. Furthermore, as illustrated in

Figure 2, higher RSCU values (≥1) were found for codons with A

or T at the 3’ position, which showed high encoding efficacy.

Similar findings were reported for codon usage and amino acid

frequency in the cp genomes of other angiosperms, which may

be attributable to the high overall AT content in the cp genome

(Kawabe and Miyashita, 2003; Jiang et al., 2022; Wang et al.,

2022). In addition, the codon usage was similar in I. rubescens, I.

lophanthoides, and I. japonicaus, whereas the codon usage of I.

eriocalyx and I. excisus was relatively close to that of I. inflexus

and I. coetsa (Figure 2).

It was shown that the GC content of synonymous third

codons positions (GC3s) was closely related to codon bias, which

provided the foundation for assessing the codon usage pattern

(Shang et al., 2011). In our study, the values of GC3s ranged

from 29.4% to 29.5%, demonstrating that the genus Isodon had a

greater preference for the A/U ending codons, which, along with

the highly conserved GC content in seven Isodon cp genomes,

suggest that natural selection had a profound impact on codon

usage patterns (Zhang et al., 2018). In addition, the values for the

effective number of codons ranged from 51.73 to 51.81, and both
FIGURE 1

Cp genome map of Isodon.
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the codon adaptation index and frequency of optimal were less

than 0.5. These findings indicated a slight bias of codon usage in

the seven Isodon species.
Repeat analysis

Repetitive sequences play a crucial role in the rearrangement

and stability of cp genomes (Rahemi et al., 2012; Kumar et al.,

2015). A total of 51, 50, 50, 51, 50, 46, and 53 SSRs were

identified in I. inflexus, I. eriocalyx, I. excisus, I. lophanthoides, I.

japonicus, I. coetsa, and I. rubescens, respectively (Figure 3).

More than half of SSRs (62.00% – 69.60%) were mononucleotide

A/T motifs, which is consistent with the previous works in the cp

genomes of angiosperms (Qian et al., 2013; Liang et al., 2019).

The second was dinucleotide (11.65% – 18.00%) with a

predominant motif of AT/TA, followed by tetranucleotide

repeats (14.00% – 19.61%) with a predominant motif of

AAAT/ATTT and AATC/ATTG, trinucleotide (1.89% –

2.17%), pentanucleotide (1.89% – 2.00%) with a predominant

motif of AATAT/ATATT, AATAG/ATTCT. Hexanucleotides
Frontiers in Plant Science 05
(1.96% – 4.00%) were absent in the cp genomes of I. eriocalyx, I.

coetsa, and I. rubescens. This result was consistent with previous

findings that most SSRs include mono- and dinucleotide repeats,

while tri-, tetra-, penta-, and hexanucleotide repeat sequences

exhibit lower frequencies (Dong et al., 2018).

Moreover, oligonucleotide repeats analysis of four types of

repeats in the cp genome, including F, R, P, and C, was

performed by REPuter. As illustrated in Figure 4, the number

of repeat types varied and presented random permutations

among the cp genomes of seven species. The number of

repeats varied among these species, but most repeat sequences

existed in 20 – 29 bp, which was supported by recent literature

(Lian et al., 2022). Meanwhile, the abundance of F and P repeats

was higher than that of R and C repeats. A total of 36 F repeats

and 47 P repeats were observed in I. rubescens, 38 and 48 in I.

inflexus, 34 and 39 in I. eriocalyx, 39 and 48 in I. excisus, 38 and

43 in I. lophanthoides, 39 and 45 in I. japonicus, 42 and 47 in I.

coetsa, respectively. These repeats play a crucial role in the

generation of substitutions and indels, which makes them

important for detecting mutational hotspots (McDonald et al.,

2011; Ahmed et al., 2012)
FIGURE 2

Heat map of the RSCU values among Isodon cp genome.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1036277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.1036277
Inverted repeats

The contraction and expansion of IRs are regarded as crucial

evolutionary phenomena that result in the pseudogenes, gene

duplication, or the reduction of duplicate genes to a single copy

(Abdullah et al., 2020). As illustrated in Figure 5, the rpl22 gene

was present in the LSC region, and rpl2 was entirely in the IRb

region, consistent with a previous study (Lian et al., 2022). A

truncated copy of rps19 gene was observed in all species at the

IRb/LSC junction except for I. ternifolious, which starts in LSC

and integrates into the IRb regions, while rp12 is exclusively

located in the IRb region. In monocotyledons, the rps19 gene is

in the IR region (Ahmed et al., 2012; Henriquez et al., 2020), but

our findings show that things are different in Lamiaceae.

Additionally, the ndhF gene was also found at the junction of

IRb/SSC and integrated into the IRb with a size ranging from 42

to 46 kb. At the IRb/LSC junction, another truncated copy of

ycf1 gene was observed in all species except for I. ternifolious and
Frontiers in Plant Science 06
I. serra. Contrary to the findings of Henriquez et al. (2020), the

de novo assembled genomes of seven Isodon species did not

include a ycf pseudogene at the IRa/SSC junction. Neither an

internal stop codon nor double peaks were observed in the

electropherograms, indicating that the seven Isodon species lack

amplified pseudogenes. In addition, psbA and trnH were in the

LSC, and rpl2 in the IRa.
Genome comparison and
nucleotide diversity

A comparison of overall sequence variation showed that the

cp genome of Isodon is highly conserved, and the coding region

is more conserved than non-coding regions. Except for ndhF,

ycf1, and ycf2 genes, all protein-coding genes showed a highly

conserved character (Figure 6); the intergenic spacers (IGS) with

the highest divergence were trnH-GUG-psbA, trnQ-UUG-psbK,
FIGURE 3

The number and type of SSRs in the cp genome of Isodon.
FIGURE 4

Repeat sequences detected in Isodon cp genome. P, F, C, and R indicate the repeat types: R (Reverse repeats), P (Palindromic repeats), F
(Forward repeats), C (Complement repeats).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1036277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.1036277
trnS-GCU-trnT-CGU, atpH-atpI, trnE-UUC-trnT-GGU, psaA-

ycf3, ndhC-trnM-CAU, psbH-petB, and rps15-ycf1, as

predicted. In addition, the sliding window analysis revealed

that seven regions, including rps16-trnQ-UUG, ndhF, ndhB,

ccsA-ndhD, ndhA, ndhH, and ycf1 genes, exhibited higher

nucleotide diversity values (> 0.014, Figure 7); the IR regions

exhibited lower sequence divergence than LSC and SSC regions,

consistent with the previous comparisons of cp genomes (Jiang

et al., 2022; Wang et al., 2022). Among these 16 high

polymorphic regions, 11 intergenic spacers were found in the

trnH-GUG-psbA, trnQ-UUG-psbK, trnS-GCU-trnT-CGU, atpH-

atpI, trnE-UUC-trnT-GGU, psaA-ycf3, ndhC-trnM-CAU, psbH-

petB, rps15-ycf1, rps16-trnQ-UUG, and ccsA-ndhD. It is

noteworthy that the atpH-atpI, rps16-trnQ-UUG, and ndhC-

trnM-CAU were also identified as mutational hotspots in a

previous study (Lian et al., 2022). IGS was considered one of

the evolutionary hotspots that exhibited more significant rates of

nucleotide substitutions and indel mutations (Drummond,

2008). Therefore, these IGS might be undergoing more rapid
Frontiers in Plant Science 07
nucleotide substitution at the species level, which could be

served as a potential molecular marker for application in

phylogenetic analyses of the Isodon genus.
Species authentication analysis based
on IGS

Intergenic spacer regions are the most frequently used cp

markers for phylogenetic studies at lower taxonomic levels in

plants (Shaw et al., 2005), as they are regarded as more variable

and could provide more phylogenetically informative characters.

To find candidate markers for identifying I. rubescens and its

adulterants, the 11 IGSs were extracted using the PhyloSuite

v1.2.2 from 14 Isodon species (Zhang et al., 2019). Each of the 11

IGSs was subject to maximum likelihood analyses in IQtree

(Nguyen et al., 2015). As illustrated in Figure S2.1-S2.11, five

IGSs, including trnS-GCU-trnT-CGU, atpH-atpI, trnE-UUC-

trnT-GGU , ndhC-trnM-CAU, and rps15-ycf1 could be
FIGURE 5

Comparisons of the borders of LSC, SSC, and IRa/b regions among the 11 Isodon plastid genomes. The numbers represent the distance
between the gene ends and the border sites, and the numbers below represent the length of the LSC, SSC, and IRa/b regions. This Figure is not
to scale.
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distinguished I. rubescens from I. japonicus and I. lophanthoides.

Whereas the rest of the Isodon species cannot be distinguished

based on these IGSs, bootstrap values for the relationship among

these major clades were weak (<70%). These results are partially

in line with the previous study, which found that the atpH-atpI

and ndhC-trnM-CAU could be potential molecular markers for

distinguishing Isodon species (Lian et al., 2022). Moreover, the
Frontiers in Plant Science 08
remaining fragment, including trnS-GCU-trnT-CGU, trnE-

UUC-trnT-GGU, and rps15-ycf1 also reported as potential

markers for other species identification (Kim et al., 2020; Li

et al., 2020; Alzahrani, 2021). Although the previous study has

revealed that universal DNA barcodes (e.g., psbA-trnH) could

differentiate I. rubescens from their related species (Xia et al.,

2013), some common adulterants were not included in this
FIGURE 6

Global comparison of complete genomes of Isodon.
FIGURE 7

Sliding window analysis of Isodon cp genome. The X-axis represents the midpoint of the window; The Y-axis represents nucleotide diversity
values. Window length: 600 bp; step size: 200 bp.
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study. Furthermore, the comparative analysis showed that the

screened IGSs exhibit higher variability than psbA-trnH. These

IGSs could theoretically distinguish the selected 7 species,

whereas a much more detailed investigation of identification

accuracy and amplification efficiency needs to be accomplished,

and more experimental evidence is needed. Moreover, the ML

phylogenetic tree was also inferred using a combination of these

five IGSs. The results (Figure S3) showed that I. rubescens

(GenBank NW018469) and I. rubescens (GenBank NC053708)

clustered together as sister group groups and closely related to I.

excisus. Simultaneously, I. rubescens (GenBank OM808736) was

located in independent branches in the phylogeny, and well-

supported sister relationship between I. rubescens and I.

japonicus + I. lophanthoides (100% B/S). These results

indicated that the combination of five IGSs could effectively

discriminate I. rubescens from its common adulterants.
Species identification and
phylogenetic analysis

The ML phylogenetic tree was inferred using 36 species,

with Scrophularia as the outgroup. As illustrated in Figure 8, on
Frontiers in Plant Science 09
the consensus trees, most nodes were supported with

maximum support (100% bootstrap support). Ocimoideae

and Lamioideae were sister taxa within the three subfamilies,

and Ajugoideae was sister to the clade containing Ocimoideae

+ Lamioideae. The phylogenetic tree’s crown was occupied by

the subfamily Ocimoideae, which included the genera Isodon

and Ocimum. These findings confirm the position of Isodon

within the Lamiaceae and are consistent with previous

phylogenomic studies (Chen et al., 2021; Yue et al., 2021).

The genus Isodon is further divided into three clades: (i) clade

A, including I. rubescens (GenBank NC053708, GenBank

NW018469), I. excise, I. serra, I. nervosus, I. amethystoides, I.

coetsa, I. inflexus, I. eriocalyx, and I. rubescens (GenBank

NW376483); (ii) clade B, only I. ternifolious; (iii) clade C,

including I. japonicas, I. lophanthoides, and I. rubescens

(GenBank OM808736). It is worth noting that the I.

rubescens (GenBank OM808736) clustered differently from

the other three samples (GenBank NC053708, GenBank

NW018469, GenBank NW376483) of the same species in the

phylogeny, which is consistent with the finding of other

researcher based on rps16, trnL-trnF, and ITS sequence

(Harris et al., 2012). Moreover, Lian et al. (2022) also found

that the samples of I. rubescens from different geographical
frontiersin.org
FIGURE 8

ML phylogenetic tree reconstruction containing the cp genomes of 36 plants. The Sceophularia species were set as the outgroup.
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areas were not recovered as monophyletic and were placed in

different branches in the previous report, which is well

distinguished by sampling locations, suggesting that the

intraspecific diversity was present in I. rubescens. This

phenomenon might be explained by the fact that the

geographical area of origin might influence the variation of I.

rubescens. Another previous study supported the same

conclusion; the Artemisia argyi collected from different

geographical areas display high intraspecific diversity in the

cp genome (Chen et al., 2022). In addition, clade B only

includes a species of I. ternifolious, which was supported by

the findings of other researchers based on trnD-trnT, psbA-

trnH, rpl32-trnL, trnL-trnF, rps16, and nrITS (Zhong et al.,

2010; Yu et al., 2014; Chen et al., 2021). Moreover, maximum

likelihood analysis demonstrated that I. rubescens (GenBank

OM808736) was located in independent branches in the

phylogeny and deeply nested within clade C, and the sister

relationship between I. rubescens and I. japonicus + I.

lophanthoides was highly supported (100% B/S), indicating

that the cp genome could discriminate I. rubescens from its

common adulterants. The findings supported the results of

morphological classification reported by Ge et al. (2022) and

Xia et al. (2013).
Conclusion

In the current study, the complete cp genome of seven

species of Isodon was de novo assembled from Illumina high

throughput sequencing reads, and cp genome sequences of I.

inflexus, I. eriocalyx, I. excisus, and I. coetsa were reported for the

first time. These cp genomes were generally conserved and

exhibited similar gene content and genomic structure. Five

highly variable cp loci, including trnS-GCU-trnT-CGU, atpH-

atpI, trnE-UUC-trnT-GGU, ndhC-trnM-CAU, and rps15-ycf1,

were identified, which could serve as potential markers for

identifying I. rubescens and its common adulterants. In

conclusion, our study provides a powerful tool and valuable

scientific reference for the safety and effectiveness of clinical drug

use, and it also contributes to the bioprospecting and

conservation of Isodon species.
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