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Genetics of spot blotch
resistance in bread wheat
(Triticum aestivum L.) using five
models for GWAS
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Uttam Kumar3, Arun Kumar Joshi4, Vinod Kumar Mishra5,
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Gill, Akal College of Agriculture, Eternal University, Sirmaur, India, 3Borlaug Institute for South Asia
(BISA), Ludhiana, India, 4The International Maize and Wheat Improvement Center (CIMMYT), Borlaug
Institute for South Asia (BISA), G-2, B-Block, NASC Complex, DPS Marg, New Delhi, India, 5Department
of Genetics and Plant Breeding, Indian Institute of Agricultural Science, Banaras Hindu University,
Varanasi, India, 6Department of Mycology and Plant Pathology, Indian Institute of Agricultural Science
Banaras Hindu University, Varanasi, India, 7Murdoch’s Centre for Crop & Food Innovation, Murdoch
University, Murdoch, WA, Australia
Genetic architecture of resistance to spot blotch in wheat was examined using a

Genome-Wide Association Study (GWAS) involving an association panel comprising

303 diverse genotypes. The association panel was evaluated at two different locations

in India including Banaras Hindu University (BHU), Varanasi (Uttar Pradesh), and

Borlaug Institute for South Asia (BISA), Pusa, Samastipur (Bihar) for two consecutive

years (2017-2018 and 2018-2019), thus making four environments (E1, BHU 2017-18;

E2, BHU 2018-19; E3, PUSA, 2017-18; E4, PUSA, 2018-19). The panel was genotyped

for 12,196 SNPs based on DArT-seq (outsourced to DArT Ltd by CIMMYT); these SNPs

included 5,400 SNPs, which could not be assigned to individual chromosomes and

were therefore, described as unassigned by the vendor. Phenotypic data was recorded

on the following three disease-related traits: (i) Area Under Disease Progress Curve

(AUDPC), (ii) Incubation Period (IP), and (iii) Lesion Number (LN). GWASwas conducted

using each of five different models, which included two single-locus models (CMLM

and SUPER) and three multi-locus models (MLMM, FarmCPU, and BLINK). This

exercise gave 306 MTAs, but only 89 MTAs (33 for AUDPC, 30 for IP and 26 for LN)

including a solitary MTA detected using all the five models and 88 identified using four

of the fivemodels (barring SUPER) were considered to be important. These were used

for further analysis, which included identification of candidate genes (CGs) and their

annotation. A majority of these MTAs were novel. Only 70 of the 89 MTAs were

assigned to individual chromosomes; the remaining 19 MTAs belonged to unassigned

SNPs, for which chromosomes were not known. Seven MTAs were selected on the

basis of minimum P value, number of models, number of environments and location

on chromosomeswith respect toQTLs reported earlier. These 7MTAs, which included
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five main effect MTAs and two for epistatic interactions, were considered to be

important for marker-assisted selection (MAS). The present study thus improved our

understanding of the genetics of resistance against spot blotch in wheat and provided

seven MTAs, which may be used for MAS after due validation.
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Introduction

Wheat is the third most important crop world-wide, next only to

rice and maize, contributing ~20% of total dietary calories and

proteins worldwide (Shiferaw et al., 2013). Although the global

production of wheat has been able to keep pace with the demand

and consumption during the last more than five decades, the decline

in rate of annual production from 3% in the past during green

revolution to <1% in recent years has been a cause of alarm, since

18% increase in global wheat production will be needed by the year

2050, according to some available estimates (Alexandratos and

Bruinsma, 2012). Therefore, there is a need to improve the

productivity and production of wheat to meet future demands. In

this connection, it is relevant to recognize that the productivity of

wheat has been constantly under threat due to a variety of biotic and

abiotic stresses. Among biotic stresses, several diseases cause major

yield losses to wheat crop everywhere in the world. Spot blotch has its

own share in this loss in productivity. According to some estimates,

globally spot blotch affects >25 million ha, representing 12% of the

total wheat area (Duveiller et al., 2005). Geographically, this affected

area includes parts of South Asia (including North-Eastern Plain

Zone of India, Bangladesh, and Tarai Region of Nepal), South-East

Asia (including Thailand, Philippines, Indonesia, and China), Latin

America (including North East part of Argentina, Bolivia, warmest

area of Brazil, Paraguay) and Africa (including Tanzania and Zambia)

(Joshi et al., 2002; Joshi et al., 2007b; Chatrath et al., 2007; Juliana

et al., 2022). According to different estimates, yield losses due to SB, in

different years, ranged from 0% to 100% in different parts of the world

(Sharma and Duveiller, 2006; Siddique et al., 2006; Juliana et al.,

2022); complete destruction of the crop leading to 100% loss occurs

only under conditions, favourable for the pathogen, (Mehta, 1985;

Saari, 1998). The end-use quality of harvested grain is also affected,

since the pathogen infects the spikes and the grain (Singh et al., 2015;

Gupta et al., 2018a; Gupta et al., 2018b; Kumar et al., 2019).

It is widely known that the use of resistant cultivars is the safest

means to safeguard against yield losses and is also environmentally

safe. A knowledge of the genetics of resistance in the host is necessary

for the development of these resistant cultivars. Therefore, a large

number of studies for the study of the genetics of resistance have been

undertaken in the past. The early inheritance studies suggested

monogenic to polygenic resistance with the involvement of

dominant as well as recessive genes. The availability of dominant as

well as recessive nature of disease resistance in these different studies

has been attributed to the use of parents with different genetic

constitutions and the possibility of same genes behaving as
02
dominant in one genetic background and recessive in the other (for

a review, see Gupta et al., 2018a).

For identification of the genes involved in resistance to SB in

wheat, the trait has been treated as a qualitative trait in some studies

and as a quantitative trait in some other relatively recent studies.

While treating it as a quantitative trait, QTL analysis involved either

interval mapping or genome-wide association studies (GWAS)

(Kumar et al., 2009; Kumar et al., 2010; Marone et al., 2013; French

et al., 2016; Juliana et al., 2022). As a qualitative trait, two different

classes of genes were identified, the first having four Sb genes, which

follow a gene-for-gene (GFG) relationship (Flor, 1955), and the

second with a solitary sensitivity gene Tsn1, which follows an

inverse gene-for-gene relationship (IGFG). The four Sb genes in the

former category included the following: Sb1 (7DS), Sb2 (5BL), Sb3

(3BS) and Sb4 (4BL) (Lillemo et al., 2013; Kumar et al., 2015; Lu et al.,

2016; Zhang et al., 2020), but no corresponding avirulence (Avr)

genes is known for any of these four genes. But for sensitivity gene

Tsn1 in the second category, the corresponding virulence gene ToxA

is known (Navathe et al., 2020).

A number of interval mapping studies for the identification of

QTLs and GWA studies for identification of MTAs have also been

conducted (for a review, see Gupta et al., 2018a). These QTLs and

MTAs are listed in “WheatQTLdatabase” that was recently developed

at our centre (Singh et al., 2021; Singh et al., 2022). The most

comprehensive recent GWA study, however, involved six

association panels from a large set of 6,736 advanced bread wheat

breeding lines from the International Maize and Wheat Improvement

Center (CIMMYT) (Juliana et al., 2022). A meta-QTL analysis

involving QTLs for resistance against spot blotch and other related

diseases has also been conducted at our centre, leading to the

identification of 30 M-QTLs based on 87 of the 241 QTLs

identified so far using interval mapping (our unpublished results).

The pathogen (B. sorokiniana) has also been studied for

occurrence of races/pathotypes and identification of genes involved

in pathogenesis. In several studies, isolates have been collected from

specific geographical regions and differentials suggested for

classification of these isolates into groups, sometimes erroneously

described as pathotypes (Aggarwal et al., 2009; Chauhan et al., 2017;

also see reviews by Gupta et al., 2018a and Navathe et al., 2022). So

far, no physiological races or pathotypes have been identified and

described, although a virulence gene has been identified (VHv1 in

barley and VTa1 in wheat; Zhong et al., 2002). However, no

avirulence (Avr) gene for any Sb gene following GFG model and/or

effector molecule derived from the pathogen (B. sorokinaia) has been

identified. However, a virulence gene ToxA in the pathogen and its
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sensitivity gene Tsn1 in the host following IGFG for spot blotch was

identified recently (McDonald et al., 2018), although this pair of genes

for other necrotrophic diseases like Septoria blotch and tan spot was

known for quite some time (Gupta et al., 2022 for a review).

Prevalence of ToxA in wheat genotypes and that of Tsn1 in

pathogen isolates has also been examined. For instance, Navathe

et al. (2020) reported occurrence of ToxA gene in 70% isolates (77 of

110 Indian isolates) and Tsn1 gene in 36.8% of wheat genotypes (81 of

220 wheat genotypes). Whole genome sequence of the pathogen (B.

sorokiniana) has also been worked out recently and putative

avirulence genes suggested, but these genes need to be validated

through further investigations (Aggarwal et al., 2022).

Despite the progress outlined above, we feel convinced that the

available genes/QTLs/MTAs do not represent the entire repertoire of

gene loci or QTLs that may be involved in providing resistance against

spot blotch, and that there is a scope for finding additional novel

MTAs using additional germplasm. Keeping this in view, a GWA

study was undertaken using five different models to identify novel

marker trait association (MTAs) and to detect loci which provide spot

blotch resistance through a novel association panel (never used

earlier). As expected, many novel MTAs involved in spot blotch

resistance were identified in the present study. The results of the study

are presented and discussed in this communication.
Material and methods

Association panel and experimental design

The GWAS panel consisted of 303 diverse wheat accessions (a set

of SpringWheat Reference Set also known as SWRS population which

procured from CIMMYT gene bank, Mexico; for details of 303

genotypes, see Supplementary Table 1) and was genotyped for

12,160 (with MAF of <5%) of the 17, 937 SNPs that were generated

using NGS-based DArT-seq using Illumina platform under the “Seed

for Discovery” project of CIMMYTMexico (outsourced by CIMMYT

to Diversity Array Technology Pvt. Ltd. Australia). Of these 12,160

SNPs, 5,400 SNPs were described as unassigned, since these SNPs

could not be assigned to specific chromosomes.

Following alignment, filtering was applied in order to detect the

best assignment/anchorage to a physical position on the reference

genome using the default criteria of Bowtie 2: The following criteria

were used for filtering: (i) unique mapping to an unambiguous locus;

(ii) maximum 1 bp mismatch to the marker sequence, and (iii)

markers with multiple alignment options discarded, if the second-

best hit showed < 3 bp mismatch to the marker sequence, i.e. markers

with 2 or more hits (loci) were discarded if there was not at least 3 bp

difference between the best and second-best hit. (iv) Monomorphic

markers were discarded as well as (v) SNPs with MAF (Minor Allele

Frequency less than 5% and more than 5% missing data).

The panel was raised in a CRBD with two replications in each of

the following four environments: E1 (2017-2018) and E2 (2018-2019)

at Agriculture Research Farm, BHU, Varanasi, UP, E3 (2017-2018)

and E4 (2018-2019) at BISA Agriculture farm, Pusa, Samastipur,

Bihar. Recommended crop management practices were followed (i.e.,

200 kg/ha fertilizer; N: P: K = 8: 8: 8). Each genotype in a replication
Frontiers in Plant Science 03
was represented by a plot of 3 rows of 1m each, with a row-to-row

distance of 0.25 m.
Inoculation and recording of
phenotypic data

Pure culture of a highly aggressing isolate of the pathogen (HD

3069, BHU, Varanasi, India) was multiplied on sorghum grain and

used for inoculation following Chaurasia et al. (1999). Development

of spot blotch was ensured through use of agronomic practices

(including frequent irrigations) to create environment conducive for

the pathogen. Phenotypic data were recorded on the following three

disease related traits: (i) Area Under Disease Progress Curve

(AUDPC; 00-99, double digit data). (ii) Incubation Period (IP; in

days). (iii) Lesion number (LN).

For AUDPC, disease severity (%) was recorded in three different

growth stages (GS), GS 63 (beginning of anthesis to half complete),

GS 69 (anthesis complete) and GS 77 (late milking). Disease severity

was assessed by the formula [(1/9 (D1×D2) ×100] using the double-

digit scale (DD, 00–99) (Saari and Prescott, 1975). The first digit (D1)

refers to vertical disease progress on the plant, whereas the second

digit (D2) was the disease severity score in the affected leaves. Thus,

disease severity was used to estimate the AUDPC by following

formula (Sharma and Duveiller, 2007).

AUDPC  =o  1=2� Yi +  Y(i+1)

� �
* t(i+1) –  ti
� �

Where Yi and Y (i + 1) = disease severity at time ti and t (i + 1),

respectively; t (i + 1)—t i = time interval (number of days) between two

disease scores assessed.

IP was recorded as the duration (in number of days) from

inoculation to the appearance of visible symptoms on five

randomly tagged plants in each plot (Parlevliet, 1979). Similarly, for

LN, five random flag leaves were each divided into four parts with a

marker pen and the number of lesions on each part was counted. The

number of spots from each part were added and the total number of

spots was used as LN (Roumen, 1992).
Statistical analysis and
frequency distribution

ANOVA and correlation coefficients were obtained using

Agricolae package in R studio. Violin plots for phenotypic data

were developed for each of the four individual environments and

BLUP values. For this purpose, BLUP values were obtained using the

‘lme4’ in R (Bates et al., 2015). Descriptive statistics including mean,

standard deviation, coefficient of variation (CV) was obtained using

SPSS v. 17.0 (SPSS Inc 2008).
Principal components, population structure
and kinship matrix

Genotype data were available for 17,937 SNPs, but only 12,160

markers remained after filtering out those with a marker allele
frontiersin.org
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frequency (MAF) of less than 5%. These 12,160 SNPs were then

employed in PCA/population structure analysis and GWAS.

The principal component (PC) analysis using genotypic data was

conducted for the development of population structure (Q matrix)

and relatedness (K matrix) using tools available in GAPIT (Lipka

et al., 2012); Q and K matrices were obtained using default set of

parameters (VanRaden, 2008; Lipka et al., 2012). The first three PCs

were used to produce a 3D scatter plot showing distribution of

genotypes into sub-groups.

Population structure involving 210 SNPs (ten SNPs from each

chromosome) was examined using the software STRUCTURE

version 2.3.4 (Pritchard et al., 2000). The details of the procedure

followed are available in an earlier publication from our lab, where the

same association panel with minor differences was employed (Kumar

et al., 2018).
Identification of marker trait associations

Following five different models were used for GWAS: (i)

Compressed mixed linear model (CMLM; Zhang et al., 2010); (ii)

Settlement of MLM Under Progressively Exclusive Relationship

(SUPER; Wang et al., 2014); (iii) Multi locus mixed-model

(MLMM; Segura et al., 2012); (iv) Fixed and random model

Circulating Probability Unification (FarmCPU; Liu et al., 2016); (v)

Bayesian-information and Linkage-disequilibrium Iteratively Nested

Keyway (BLINK; Huang et al., 2018). The first two models are single

locus models and the remaining three are multi-locus models. These

models are freely available in Latest version of Genomic Association

and Prediction Integrated Tool (GAPIT V.3) (Wang and Zhang,

2021). Default significance threshold value implemented by GAPIT

was FDR<0.05. But since the FDR implemented in GAPIT seems to be

very stringent/conservative, no significant MTAs could be identified

for any of the traits; therefore, GWAS using P<0.001 was also

conducted, as also done earlier in wheat (Wang et al., 2017) and

other cereals including rice (Feng et al., 2016). Significant MTAs were

identified at a stringent probability value of P<0.001 and MTAs were

represented in the form of maps using MAPCHART software

(Voorrips, 2002).
Frontiers in Plant Science 04
Epistasis analysis (SNP×SNP interaction)

PLINK provides several alternatives for selecting the pairs of SNPs to

be used for epistatic interactions, which means either we can use all

available pairs of SNPs or select only a limited number of pairs, using any

one of the several criteria provided. In the present study, epistatic

interactions were identified using all the possible pairs of SNPs (12,160

SNPs give 73,926,720 pairs) was carried out by using PLINK2 (Purcell

et al., 2007). It is freely available and command-based package of tools for

whole genome association analysis. Significant interactions were filtered

at p-value <1×10-8 (Purcell et al., 2007; Jan et al., 2019). The SNPs

involved in epistatic interactions were described as E-QTNs.
Identification of putative candidate genes

The most significant MTAs detected were also used for

identification of CGs through alignment of sequences associated

with MTAs with wheat genome assembly IWGSC v.1 (International

Wheat Genome Sequencing Consortium (IWGSC) et al., 2018) that is

hosted on the Ensembl database3. Highly significant annotated CGs

were retrieved from a 200 kb window for each MTA. IWGSC4 was

used for gene ontology (GO) annotation information of these CGs.
Results

Violin plots showing variation for three spot blotch traits in four

individual environments and BLUP are depicted in Figure 1. The

results of the analysis of variance (ANOVA) are presented in Table 1.
Principal components analysis and
population structure

The results for the first three PCs (PC1, PC2 and PC3) are

presented in Figure 2, suggesting the presence of three sub-groups

in the association panel. Following population structure analysis

using 210 unlinked markers, 303 genotypes were placed in four
FIGURE 1

Violin plots for three traits in four environments and BLUP; means are shown by vertical solid black bars with means shown as white dots within the bars.
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subgroups, with 75 genotypes in subgroup I, 11 genotypes in

subgroup II, 42 in subgroup III and the remaining 175 in the

admixture group IV (Figure 3). The information generated by

population structure was used for developing Q matrix for GWAS.
GWAS and marker trait associations

A representative set of Manhattan plots and QQ plots based on

BLUP data are depicted in Figure 4. Manhattan plots for all 60

combinations (3 traits, 4 environments and 5 models) are available in

Supplementary Figures 1–12. The total number of MTAs involving

three traits and five models were 306 (91 for AUDPC; 100 for IP and

115 for LN; Supplementary Tables 2–4). A summary of 89 MTAs

including one MTA found in all the five models and 88 that were

common among four models (except SUPER) is presented in Table 2

and Figure 5. These 89MTAs include 33 for AUDPC, 30 for IP and 26

for LN. Among these MTAs, 12 MTAs occurred in more than one

environment (four for AUDPC, two for IP, and six for LN) and 19

MTAs belongs to the category of unassigned SNPs. Assignment of
FIGURE 2

3D PC scatter plot (3D PC) for genotypes based on the first three
principal components (PC1, PC2 and PC3).
TABLE 1 ANOVA for three traits: (i) area under disease progress curve (AUDPC), (ii) incubation period (IP) and (iii) lesion number (LN).

Source of variation Df Mean sum of squares

AUDPC IP LN

Env 1 430117* 0.0 23144*

Year 1 8332 1.3* 1524*

Genotype 302 36805* 0.3* 735*

Rep 1 7.6 1.4* 30.5

Env × Genotype 302 35972* 0.3* 342*

Year × Genotype 302 2817 0.1 11.5

*Significant at the p-value (P<0.01) probability level; Df, degrees of freedom.
frontie
FIGURE 3

Population structure showing three sub-groups (G1, G2, G3) by three different colours (red, green, and blue); the subgroup IV representing admixture
had genotypes with more than one color. Each bar represents one genotype.
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remained 57 MTAs; 18 for AUPDC (located on 13 chromosomes), 22

for IP (located on 13 chromosomes), 17 for LN (located on 13

chromosomes) on individual chromosomes is shown in Figure 5.
Epistatic interactions

MTAs representing 44 pairs of first-order epistatic interactions (SNP

× SNP interactions) are listed in Supplementary Table 5. Eight major

interactions (two for AUDPC, one for IP and five for LN) are listed

in Table 3.
Frontiers in Plant Science 06
MTAs overlapping or occurring in the
vicinity of known QTLs/MTAs

When compared with 84 known QTLs reported in earlier studies,

only seven MTAs of the 70 (remaining 19 were unassigned) occurred

within the QTL interval (in green colour) (one associated with

AUDPC, four associated with IP and two associated with LN) and

the other 12 occurred in the vicinity of the markers flanking (range

from 0.4 to 22.7 Mb; in brown colour; three for AUDPC, seven for IP,

and two for LN) the QTLs reported earlier (Supplementary Tables 6

and Figure 5); remained 38 MTAs were novel.
FIGURE 4

A set of representative Manhattan plots (left panel) and Q–Q plots (right panel; expected values shown as red line assuming no association) for five
models (for only BLUP values for AUDPC); red dots above the horizontal line depict significant MTAs.
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TABLE 2 A Summary of MTAs for each trait (one MTA in bold was detected by all the five models; the remaining MTAs were detected by four models
except SUPER; NA=not available).

SNP Chr. Pos. of SNP tag (bp) -log10 (P) maf SNP Chr. Pos. of SNP tag (bp) -log10(P) maf

AUDPC (E1:7; E2:4; E3:4; E4:7 and BLUP:11)

E1

M2266: A/G 1A 445269309-445269377 8.37E-04 0.445545 M1654: C/A 2B 797177741-797377809 2.36E-04 0.237624

M3799: T/A 3B 685318543-685318611 3.68E-04 0.065677 M4359: A/T 6B 22081357-22081425 6.66E-04 0.356304

M5103: G/C 2A 73179815-73179883 8.98E-04 0.227723 M8026: A/G NA NA 4.53E-04 0.236584

M6031: C/G 5A 672843173-672843241 5.36E-05 0.095215 M9772: A/G 3A 659038152-659038220 2.32E-04 0.285462

M7254: G/A NA NA 3.09E-04 0.11495 M10198: T/G 7A 35630453-35630518 6.17E-04 0.057574

M10592: G/C NA NA 7.72E-04 0.062706 M11870: C/T NA NA 2.70E-04 0.156617

M10876: G/A 4A 709908601-709908669 7.63E-04 0.235066 B

E2 M763: C/G 1A 14161093-14161161 4.38E-04 0.462046

M5576: T/C 3A 23840923-23840991 5.63E-04 0.206254 M3226: T/C 6B 698461241-698461309 5.85E-04 0.321634

M6146: A/C 5B 598120554-598120622 3.61E-04 0.360264 M4359: A/T 6B 22081357-22081425 4.66E-04 0.356304

M8330: A/C 2A 700374249-700374317 9.51E-04 0.155116 M5019: C/T 7B 677430865-677430933 4.18E-04 0.326337

M10783: G/A 7D 490344136-490344204 2.01E-04 0.223531 M7025: T/C NA NA 7.40E-04 0.055941

E3 M7745: G/C 2D 35039085-35039153 2.89E-04 0.431749

M976: G/C NA NA 3.36E-04 0.257228 M9397: C/A NA NA 5.26E-04 0.116386

M1654: C/A 2B 797177741-797377809 4.09E-04 0.237624 M9772: A/G 3A 659038152-659038220 1.25E-04 0.285462

M8026: A/G NA NA 4.99E-04 0.236584 M10783: G/A 7D 490344136-490344204 1.82E-04 0.223531

M9772: A/G 3A 659038152-659038220 1.16E-04 0.285462 M11095: A/G 7A 700115446-700115514 7.88E-04 0.079076

E4 M11338: T/C NA NA 9.06E-04 0.459703

M976: G/C NA NA 5.54E-05 0.257228

Incubation Period (E1:3; E2:2; E3:12; E4:6 and BLUP:7)

E1

M140: A/C 2B 91205274-91205342 4.95E-04 0.158416 M9264: G/C NA NA 7.62E-04 0.174719

M650: C/A 2B 79317077-79317117 4.37E-04 0.19802 M10907: G/T 7B 730875968-730876036 1.24E-04 0.278696

M11792: C/G 4B 647704512-647704580 2.46E-04 0.348878 E4

E2 M4648: G/T 7A 94143005-94143073 2.78E-04 0.285132

M8531: T/C NA NA 9.08E-04 0.108812 M5996: A/C 3D 479617743-479617811 9.84E-04 0.370875

M11418: G/A 6A 443334314-443334382 8.30E-04 0.203663 M7433: T/C 3B 60372653-60372721 3.22E-04 0.17495

E3 M10241: G/T 3B 11646443-11646511 2.24E-04 0.051139

M119: A/G 5B 529608885-529608950 5.53E-04 0.064274 M11765: T/C 2A 107180183-107180251 3.43E-04 0.155116

M225: A/G 2A 143209405-143209473 8.46E-04 0.432343 M12439: G/C NA NA 8.90E-04 0.183828

M804: C/T 5A 582958870-582958938 3.90E-04 0.054406 B

M3107: T/C 7B 196255937-196256005 5.85E-04 0.05264 M876: G/C 6B 27649755-27649823 8.16E-04 0.498548

M3962: C/T 5B 228277790-228277858 6.15E-04 0.318399 M2039: C/G 2A 81660284-81660352 1.32E-04 0.062706

M4648: G/T 7A 94143005-94143073 5.89E-05 0.285132 M2947: T/G 1B 170842706-170842774 7.09E-04 0.395776

M4837: T/C NA NA 1.86E-04 0.224422 M4089: T/A 6A 593657698-593657766 1.81E-04 0.159719

M4958: G/A NA NA 9.23E-04 0.113449 M7868: T/C NA NA 3.70E-04 0.156155

M5551: T/G 1D 452208385-452208453 8.56E-04 0.256997 M9665: C/T 3B 746854760-746854828 9.63E-04 0.154422

(Continued)
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Candidate genes

Genomic regions within a window of 200 kb of each MTA (100 kb

on each side), when subjected to identification of CGs, gave 163 CGs

(61 for AUDPC, 54 for IP and 48 for LN). These CGs were associated

with only 72 MTAs (AUDPC: 26; IP: 28; and LN: 18); the remaining

21 MTAs gave no CGs. These CGs, when screened for the

identification of genes already known to be involved in different

pathways of pathogen–host interactions and pathogenesis, gave 64

CGs, which included 25 CGs for AUDPC, 23 for IP and 16 for LN

(Supplementary Table 7). These CGs encoded the following 14 major

proteins that are relevant to pathogenesis and pathogen–host

interactions: (i) NBS-LRR domain superfamily; (ii) F-box domain

superfamily; (iii) Kinase-like domain superfamily; (iv) DEAD/DEAH

box helicase domain; (v) P-loop containing nucleoside triphosphate

hydrolase; (vi) Senescence-associated family protein; (vii) Zinc finger

like domain; (viii) Transcription factor GRAS; (ix) Helix-loop-helix

DNA-binding domain superfamily; (x) Basic-leucine zipper domain;

(xi) DPBB domain; (xii) Transcription factor, MADS-box

superfamily; (xiii) Cytochrome P450 superfamily and (xiv) GDSL

lipase/esterase-like, plant SGNH hydrolase superfamily. CGs encodes

proteins which are directly or indirectly involved in host-pathogen

response and are the targets for future functional genomics research

focus to understand the significance of these CGs for resistance to

spot blotch.
Frontiers in Plant Science 08
Discussion

In the present study, an association panel comprising global

collection of 303 diverse genotypes (procured from CIMMYT, Mexico)

was evaluated for variation in spot blotch resistance at two different

locations of India, which represented regions with warm humid climate,

suitable for the spot blotch disease. The study allowed identification of

genomic regions carrying markers associated with functional loci for SB

resistance. High level of variability (as revealed by descriptive statistics)

for each of the three traits suggested that the panel was suitable for a

study of the genetics of quantitative traits. The same panel was earlier

utilized by us in GWAS for several other traits including the following: (i)

yield related traits (Sehgal et al., 2017; Malik et al., 2021a; Malik et al.,

2021b; Malik et al., 2022); (ii) Fe, Zn, b-carotene, GPC content (Kumar

et al., 2018); and, (iii) drought tolerance (Gahlaut et al., 2019).

The genotyping data for 210 SNP markers (distributed on 21

chromosomes) suggested a low level of population structure in the

association panel (Figure 2), which is a desirable feature for GWAS, as

also shown in our earlier studies involving the same association panel

with minor differences (Kumar et al., 2018; Gahlaut et al., 2019; Malik

et al., 2021a; Malik et al., 2021b; Malik et al., 2022). In earlier studies

involving different association panels also, the number of sub-

populations ranged from three (for example, Wang et al., 2017; Rahimi

et al., 2019) to six (for example, Li et al., 2016; Qaseem et al., 2018; Jamil

et al., 2019), suggesting that in majority of studies in wheat, the level of
TABLE 2 Continued

SNP Chr. Pos. of SNP tag (bp) -log10 (P) maf SNP Chr. Pos. of SNP tag (bp) -log10(P) maf

M8110: T/C 7B 553167382-553167450 7.43E-04 0.074868 M11765: T/C 2A 107180183-107180251 3.43E-04 0.155116

Lesion Number (E1:6; E2:4; E3:9; E4:6 and BLUP:1)

E1

M2326: T/C 5A 32743559-32743627 5.00E-04 0.235924 M6140: T/C 5B 522912127-522912195 3.24E-04 0.221023

M3426: A/G 2B 73990358-73990426 1.85E-04 0.480182 M6730: T/C 1A 20893697-20893765 5.11E-04 0.094604

M5696: T/G 5D 382494021-382494089 6.70E-04 0.287228 M9263: G/C NA NA 7.11E-04 0.440545

M8024: A/G 6A 585062562-585062630 8.90E-04 0.168944 M11585: G/A 7A 66298367-66298435 5.01E-04 0.17066

M8443: G/A 4D 134916786-134916854 3.98E-06 0.124752 M4854: T/G 4A 4A:200817628-200817696 8.44E-04 0.186056

M9994: G/C NA NA 4.57E-04 0.306931 M2010: T/C 3B 598995436-598995504 9.93E-04 0.359736

E2 E4

M164: A/G 4B 538706787-538706855 5.74E-04 0.067607 M2771: A/C 4A 16997957-16998025 1.18E-04 0.308531

M992: C/T NA NA 7.62E-05 0.145017 M3928: G/C 2B 602182720-602182788 2.83E-04 0.438614

M3416: G/A 6A 596590906-596590974 6.52E-04 0.409373 M5313: T/C 2A 485122901-485122967 6.21E-04 0.135314

M9240: G/A 6D 467151830-467151898 2.54E-04 0.192327 M6140: T/C 5B 522912127-522912195 5.34E-04 0.221023

E3 M6730: T/C 1A 20893697-20893765 3.99E-04 0.094604

M2771: A/C 4A 16997957-16998025 6.62E-04 0.308531 M11585: G/A 7A 66298367-66298435 5.37E-04 0.17066

M3928: G/C 2B 602182720-602182788 2.12E-04 0.438614 B

M5313: T/C 2A 485122901-485122967 4.94E-04 0.135314 M5928: T/C 6A 33188097-33188165 5.94E-04 0.250957
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population structure is low. It has been shown that population structure

and relatedness due to ancestry are two important confounding factors in

GWAS, which were initially addressed in mixed linear model, MLM (Yu

et al., 2006). In this model, the problem of population structure and

relatedness were addressed though development and use of Q and K

matrices (Sui et al., 2018). However, MLM had several weaknesses

including computational demand, multiple testing, and background

effect. Therefore, during the last 15 years, about a dozen models were
Frontiers in Plant Science 09
proposed to address these problems. Five of these improved models were

used in the present study to evaluate their relative merits.

In the present study, 306 MTAs were identified using one or more

of the five models used in the present study. There was a solitary MTA

(M876, present on chromosome 6), which was detected by all the five

models. The remaining 305 MTAs were first placed in two groups,

those identified using SUPER and those common to all the remaining

four models. The MTAs other than 88 MTAs common to four
FIGURE 5

Significant MTAs associated with QTLs reported earlier (Green and Brown colour) mapped on different chromosome. In the above figures significant
MTAs for AUDPC indicated by red colour; IP by blue colour & LN by pink colour; E1-Enivironment 1; E2-Enivironment 2; E3-Enivironment 3; E4-
Enivironment 4; B-BLUP.
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models, were then classified into MTAs common to three models, two

models and those unique to individual models (see Supplementary

Tables 2–4).

One of the major issues in GWAS, is the control of both false

positives as well as false negatives. The false positives are the result of

occurrence of LD due to reasons other than linkage, including

selection, genetic drift, etc. To control these false positives, use of

Bonferroni correction and FDR were recommended. However, it has

been repeatedly reported that these measures, although control false

positives, but lead to false negatives, which is equally undesirable

(Narum, 2006; Kaler and Purcell, 2019; White et al., 2019; Kaler et al.,

2020). For the identification of significant MTAs, stringent criteria (p-

value <0.001) were used. Bonferroni correction was also used in the

form of built-in facility in FarmCPU and BLINK. The 88 MTAs

highlighted in the present study represented those, which were

detected using four of the five models (excluding SUPER), such that

these MTAs do not suffer from any weaknesses of the two single locus

models CMLM, SUPER and the multi-locus model MLMM. These

were all identified by FarmCPU and BLINK, thus suggesting that all

MTAs were valid even after Bonferroni correction. Otherwise,

Bonferroni correction is widely known to give many undesirable

false negatives.

The above results can be examined in light of the results of QTL

analysis studies conducted (including interval mapping and GWAS)

in the last three decades. A variety of molecular markers and statistical

tools were utilized for the earlier studies involving all major crops. At

least >30,000 QTLs for different traits including yield and tolerance to

biotic and abiotic stresses are already available in wheat (for wheat

QTL database, see Singh et al., 2021; Singh et al., 2022). Of these ~600

QTLs/MTAs (84 QTLs using interval mapping + 516 MTAs using

GWAS) were available for resistance against spot blotch and

related diseases.

Among linkage-based interval mapping studies, eleven studies

were conducted for spot blotch (Kumar et al., 2009; Kumar et al.,

2010; Lillemo et al., 2013; Zhu et al., 2014; Kumar et al., 2015; Singh

et al., 2016; Singh et al., 2018; He et al., 2020; Roy et al., 2021; Gahtyari

et al., 2021 and Kaur et al., 2021). Similarly, about a dozen GWA
Frontiers in Plant Science 10
studies (ten studies) were also conducted for spot blotch (Adhikari

et al., 2012; Gurung et al., 2014; Ahirwar et al., 2018; Ayana et al.,

2018; Jamil et al., 2018; Juliana et al., 2019; Bainsla et al., 2020; Tomar

et al., 2021; Juliana et al., 2022; Lozano-Ramirez et al., 2022). The

present study is yet another attempt, adding 36 novel MTAs to the

ever-growing list of markers associated with resistance against spot

blotch. Some of these are recommended for use in MAS (see later).

At least a dozen models are now available showing significant

improvement in GWAS. In the recent past several genome wide

association studies have been conducted, where several models have

been used and the results compared (Ayana et al., 2018; Ward et al.,

2019; Chaurasia et al., 2020; Alemu et al., 2021; Malik et al., 2021a;

Sandhu et al., 2021; Soumya et al., 2021). In this study, we selected five

models for identification of main effect MTAs and PLINK for epistatic

interactions. The merits and demerits of these models have been

widely discussed (Gupta et al., 2014, Gupta et al., 2019; Kaler et al.,

2020). Among these models, till recently, FarmCPU was a preferred

model since it involves the use of Fixed Effect Model (FEM) and a

Random Effect Model (REM) iteratively, and thus eliminates

confounding problems arising due to kinship, population structure,

multiple testing. However, FarmCPU is a model, which is based on

unrealistic assumption that quantitative trait nucleotides (QTNs) are

evenly distributed throughout the genome. BLINK approximates the

maximum likelihood using Bayesian Information Content (BIC) in a

fixed-effect model to eliminate the computational burden. In BLINK,

REM is replaced with FEM to eliminate the requirement that QTNs

are evenly distributed throughout the genome, which further

improved the statistical power over FarmCPU, in addition to

reduced computing time, so that in BLINK, the computational time

is reduced from approximately one week in FarmCPU (Huang et al.,

2018) to three hours in BLINK. The detailed difference among models

is discussed by Gupta et al. (2019).

The single locus single trait analysis (used in CMLM and SUPER)

has several limitations (Gupta et al., 2014). These two models were

used in the present study mainly for the purpose of comparing their

results with the three other improved multi-locus models that were

used in parallel in this study. These new approaches includedMLMM,
TABLE 3 Epistatic interactions for different traits in three environments.

SNP1; SNP Allele Ch: Pos. of SNP Tag SNP2; SNP Allele Ch: Pos. of SNP Tag p- Value

AUDPC

M238; A>G 2B: 67247748-67247765 M1164; A>C 7A: 94495522-94495590 1.27E-03

M4326; C>G 7A: 640669196-640669264 M11844; T>C 3B: 581263393-581263461 1.07E-03

IP

M3711; G>C 1B: 499899181-499899249 M4228; T>C 7B: 572536722-572536790 4.02E-03

LN

M921; G>A 3A: 509934375-509934443 M8709; G>A 6B: 48479624-48479692 1.57E-03

M1998; C>T 3A:12868494-12868562 M8278; G>C 6A: 606427410-606427478 7.26E-03

M7467; C>G 3D: 556059162-556059230 M12122; C>G 7D: 3854256-3854324 9.14E-03

M9322; G>T 2A: 16016622-16016690 M3401; G>A 7A: 27478985-27479053 7.55E-03

M9496; G>A 3A: 17528445-17528513 M9267; T>C 3B: 683764839-683764907 2.00E-03

Ch, Chromosome; Pos, position.
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FarmCPU and BLINK (Segura et al., 2012; Liu et al., 2016 and Huang

et al., 2018). These models were also used in earlier studies, although

BLINK was only sparingly used (Ayana et al., 2018; Bainsala et al.,

2020; and Tomar et al., 2021). These five approaches (two for single

locus; three for multi-locus) for GWAS used in the present study take

into consideration the genetic background and epistatic interaction.

Epistatic interactions are often ignored in GWAS, although

recently studied for the following traits: (1) flowering time (Reif

et al., 2011; Langer et al., 2014), (2) stem rust resistance (Yu et al.,

2011), (3) agronomic traits (Sehgal et al., 2017), (iv) yield related

traits, micronutrients, and grain morphology (Jaiswal et al., 2016;

Kumar et al., 2018; Malik et al., 2021a, Malik et al., 2022). Epistatic

interactions were also detected through interval mapping (Li et al.,

2011; Xu et al., 2012; Rouse et al., 2014; Boeven et al., 2020). However,

epistatic MTAs have been sparingly used in MAS for crop

improvement (Kao et al., 1999; Reif et al., 2011; Langer et al., 2014;

Jaiswal et al., 2016; Sehgal et al., 2017; Kumar et al., 2018). We believe

that all epistatic QTLs and MTAs, including those detected in this

study, should be examined for their possible use in MAS.
MTAs for MAS

Among the MTAs identified in this study, 13 MTAs suitable for

marker-assisted selection (MAS) were initially selected using the

following criteria: (1) lowest P-value, (2) identified by more than

one models, (3) identified in more than one environment, (4)

reported in earlier studies. These 13 MTAs included five MTAs for

AUDPC, two MTAs for IP, six MTAs for LN (Table 4). Surprisingly,

no multi-trait MTA was detected for more than one trait. Therefore,
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we need to consider the relative importance of three traits. Due to

proven value of AUDPC in majority of past studies on genetics and

breeding for SB, we like to recommend only five MTAs for AUPDC

and ignore those for IP and LN. Since epistatic QTLs are also

important, we like to add two MTAs only for AUDPC (Table 3)

involving epistatic interaction. In this manner, we recommend that

seven MTAs including five main effect MTAs and two epistatic

interactions (four markers) should be examined for their use in

MAS (or preferably marker assisted recurrent selection).
Candidate genes

Among the candidate genes identified in this study, genes

encoding proteins with NBS-LRR domain superfamily are the most

important, since these are the most common disease resistance genes

(Lee and Yeom, 2015; Dubey and Singh, 2018; Tomar et al., 2021).

Nine CGs (Supplementary Table 7) identified are known to be

involved in defense response of wheat to Puccinia triticina causing

leaf rust (Wang et al., 2019), Zymoseptoria tritici causing septoria

tritici blotch (STB) and some other fungal diseases (He et al., 2018).

The genes encoding proteins with F-box family are also known to

mediate responses to biotic (Kim and Delaney, 2002) and abiotic

stresses (Calderon-Villalobos et al., 2007); these genes are also known

to control leaf senescence (Woo et al., 2001), stay-green trait (Tomar

et al., 2021) and leaf blight resistance (Joshi et al., 2007a; Rosyara et al.,

2008). Three CGs were associated with the genomic region, which

encode proteins with Zinc finger domain and are known to take part

in several traits including the following: (i) ABA/gibberellin stress

response (Lin et al., 2011); (ii) seed germination (Kim et al., 2008);
TABLE 4 A summary of most important MTAs common in four GWAS models (CMLM, MLMM, FarmCPU & BLINK; MTAs with SUPER not included).

Marker: SNP Chr* Pos*. of SNP tag (bp) P. value Description

AUDPC

M1654: C/A 2B 797177741-797377809 4.09E-04 E3, E4

M4359: A/T 6B 22081AU357-22081425 6.66E-04 E4, B

M9772: A/G 3A 659038152-659038220 1.16E-04 E3, E4, B

M10783: G/A 7D 490344136-490344204 2.01E-04 E2, B

M8330#: A/C 2A 700374249-700374317 9.51E-04 QSb.bhu-2A

IP

M4648: G/T 7A 94143005-94143073 5.89E-05 E3, E4

M11765: T/C 2A 107180183-107180251 3.55E-04 E4, B

LN

M2771: A/C 4A 16997957-16998025 1.18E-04 E3, E4

M3928: G/C 2B 602182720-602182788 2.12E-04 E3, E4

M5313: T/C 2A 485122901-485122967 4.94E-04 E3, E4

M6140: T/C 5B 522912127-522912195 5.34E-04 E3, E4

M6730: T/C 1A 20893697-20893765 5.11E-04 E3, E4

M11585: G/A 7A 66298367-66298435 5.01E-04 E3, E4

*Chr, Chromosome; Pos, Position; bp, base pair #Lying within QTL interval of QSb.bhu-2A (Kumar et al., 2010).
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(iii) pathogen-associated molecular pattern-triggered immune (PTI)

responses (Maldonado-Bonilla et al., 2013); (iv) salt stress response

(Sun et al., 2007).

Conclusions

The MTAs for three SB resistance traits i.e., AUDPC, IP and LN

identified in the present study may be useful for MAS in breeding

programs involving improvement in spot blotch resistance. These

MTAs may be validated for use in MAS and may also be used for

post-GWAS or joint linkage and association mapping (JLAM; Gupta

et al., 2019). The information of the CGs may also be useful for the

development of CG-based functional markers. The CGs identified in

the present study may also be used for CG based association mapping

and functional genomics in future research.

Web links

1 Wheat QTL database (http://wheatqtldb.net/)
2 PLINK (https://zzz.bwh.harvard.edu/plink/index.shtml)
3 Ensembl database (http://www.ensembl.org/info/docs/tools/

vep/index.html)
4 IWGSC (http://www.wheatgenome.org)
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SUPPLEMENTARY FIGURE 1

Manhattan and Q-Q plots for AUDPC in E1, for all five models.

SUPPLEMENTARY FIGURE 2

Manhattan and Q-Q plots for AUDPC in E2, for all five models.

SUPPLEMENTARY FIGURE 3

Manhattan and Q-Q plots for AUDPC in E3, for all five models.

SUPPLEMENTARY FIGURE 4

Manhattan and Q-Q plots for AUDPC in E4, for all five models.

SUPPLEMENTARY FIGURE 5

Manhattan and Q-Q plots for IP in E1, for all five models.

SUPPLEMENTARY FIGURE 6

Manhattan and Q-Q plots for IP in E2, for all five models.

SUPPLEMENTARY FIGURE 7

Manhattan and Q-Q plots for IP in E3, for all five models.

SUPPLEMENTARY FIGURE 8

Manhattan and Q-Q plots for IP in E4, for all five models.

SUPPLEMENTARY FIGURE 9

Manhattan and Q-Q plots for LN in E1, for all five models.

SUPPLEMENTARY FIGURE 10

Manhattan and Q-Q plots for LN in E2, for all five models.

SUPPLEMENTARY FIGURE 11

Manhattan and Q-Q plots for LN in E3, for all five models

SUPPLEMENTARY FIGURE 12

Manhattan and Q-Q plots for LN in E4, for all five models.
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