AUTHOR=Zhang Xiaodong , Wang Pei , Wang Yafei , Hu Lian , Luo Xiwen , Mao Hanping , Shen Baoguo TITLE=Cucumber powdery mildew detection method based on hyperspectra-terahertz JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1035731 DOI=10.3389/fpls.2022.1035731 ISSN=1664-462X ABSTRACT=
To explore the use of information technology in detecting crop diseases, a method based on hyperspectra-terahertz for detecting cucumber powdery mildew is proposed. Specifically, a method of effective hyperspectrum establishment, a method of spectral preprocessing, a method of selecting the feature wavelength, and a method of establishing discriminant models are studied. Firstly, the effective spectral information under visible light and near infrared is preprocessed by Savitzky-Golay (SG) smoothing, discrete wavelet transform, and move sliding window, which determine the optimal preprocessing method to be wavelet transform. Then stepwise discriminant analysis is used to select the feature wavelengths in the visible and near-infrared bands, forming the feature space. According to the features, a linear discriminant model is established for the wave bands, and the average recognition rate of cucumber powdery mildew is 93% in the whole wave band. The preprocessing method of terahertz data, the screening method of terahertz effective spectrum, the selection method of feature wavelength and the establishment method of classification model are studied. Python 3.8 is used to preprocess the terahertz raw data and establish the terahertz effective spectral data set for subsequent processing. Through iterative variable subset optimization - iterative retaining informative variables (IVSO-IRIV), the terahertz effective spectrum is screened twice to form the terahertz feature space. After that, the optimal regularization parameter and regularization solution methods are selected, and a sparse representation classification model is established. The accuracy of cucumber powdery mildew identification under the terahertz scale is 87.78%. The extraction and analysis methods of terahertz and hyperspectral feature images are studied, and more details of lesion samples are restored. Hence, the use of hyperspectral and terahertz technology can realize the detection of cucumber powdery mildew, which provides a basis for research on the hyperspectral and terahertz technology in detection of crop diseases.