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Low temperatures are among the most commonly encountered

environmental conditions that adversely affect plant growth and

development, leading to substantial reductions in crop productivity. Plants

have accordingly evolved coordinated mechanisms that confer low-

temperature adaptation and resistance. The plant metabolic network,

including polyamines (PAs) and g-aminobutyric acid (GABA) is reprogrammed

to ensure that essential metabolic homeostasis is maintained in response to

cold stress conditions. Additionally, GABA might serve as a central molecule in

the defense system during low-temperature tolerance in plants. However, our

understanding of how these metabolites function in conferring cold tolerance

is still far from complete. Here, we summarized how PAs and GABA function in

conferring cold tolerance, and describe the crucial role of GABA in the

mitigation of ROS during cold stress in plants.

KEYWORDS
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Introduction

Low-temperature stress has two distinct components: chilling, which is generally

defined as lower-than-normal and higher than 0°C growth temperatures, and freezing,

which indicates temperatures below 0°C (Raju et al., 2018). The molecular mechanisms

underlying low-temperature tolerance have been extensively studied. Several signaling

pathways and cold-responsive genes have been characterized and identified in different
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species, including those from the ICE-CBF-COR transcriptional

cascade. Emerging evidence has also indicated that several

metabolites, such as polyamines (PAs) and g-aminobutyric acid

(GABA), play pivotal roles in alleviating the damage caused by

low temperatures in different plant species (Baier et al., 2019).
Reprogramming of plant
metabolism in response to
low temperature

Plants, as sessile organisms, have evolved processes that

confer protection against low-temperature conditions.

Adaptive processes termed cold acclimation and chilling

tolerance, have been developed that enhance tolerance in

response to low-temperature exposure, which involves changes

in physiological, biochemical, molecular, and metabolic

processes (Yadav, 2010). Previous studies have shown that a

wide range of metabolites play various roles in low-temperature

tolerance, among which particular interest has focused on

metabolites such as proline, sugars, secondary metabolites, and

polyamines, which can function as osmolytes and are extensively

involved in abiotic stress tolerance. Given the importance of

such osmolytes in protecting plants against abiotic and biotic

stress, they are often collectively referred to as cytoprotectants

(Khan et al., 2010).

Plant metabolism responds sensitively and dynamically to

low-temperature conditions (Xu and Fu, 2022). With the

exposure to temperature stress, plants have developed

metabolic modifications that are essential features in response

to cold stress (Yadav, 2010; Xu and Fu, 2022). Chilling and/or

freezing modify the structure, metabolic properties, and

functions of enzymes, as well as the properties of membrane

metabolite transporters (Kubien et al., 2003; Yadav, 2010),

thereby leading to a diversion of the metabolic flux toward the

synthesis of osmoprotectants, including soluble sugars, proline,

and polyamines. Therefore, the plant metabolic network,

particularly osmoprotectants, must be reprogrammed to

ensure that essential metabolic homeostasis is maintained in

response to low-temperature conditions.
Polyamine pathways are
interconnected with GABA
metabolic processes

Polyamines are aliphatic amines with low molecular mass

that play roles in diverse biological processes, and these are

mainly present in the free form in higher plants, such as

putrescine (Put), spermidine (Spd), and spermine (Spm).

Additionally, cadaverine (Cad) and thermospermine (t-Spm), a
Frontiers in Plant Science 02
Spm isomer, are also reported to exist in higher plants (Wang

et al., 2019).

Polyamine homeostasis is regulated by a dynamic balance

among metabolic processes, conjugation, chemical alteration, and

transport (Moschou and Roubelakis-Angelakis, 2014; Yu et al.,

2019). Given the importance of polyamines, the regulation of their

synthesis and accumulation has been well characterized in plants.

The polyamine biosynthetic pathway commences primarily with

arginine (Arg), which is converted to putrescine via three sequential

reactions catalyzed by arginine decarboxylase, agmatine

iminohydrolase, and N-carbamoylputrescine amidohydrolase

(Figure 1). Subsequently Spd synthase (SPDS) catalyzes Put

conversion to Spd. Finally, Spd is further converted to Spm or T-

Spm, two tetraamine isomers, by Spm synthase (SPMS) and T-

Spmsynthase, respectively (Hanzawa et al., 2002; Yu et al., 2019).

The PA catabolic process is mainly catalyzed by two classes of

amine oxidases (AOs): one is a copper-dependent diamine oxidase

(DAO) and the other is a flavin adenine dinucleotide (FAD)-

dependentpolyamine oxidase (PAO). Notably, putrescine can

subsequently be converted into GABA in a reaction catalyzed by

DAO. Consequently, the levels of GABA are partly dependent on

modifications in polyamine metabolism.

GABA is a four-carbon non-proteinogenic amino acid that

acts as a signaling molecule playing multiple roles in a diverse

range of organisms. For example, GABA plays a pivotal role in

regulating C and N metabolic fluxes by linking amino acid

metabolism to the tricarboxylic acid (TCA) cycle (Figure 1).

Accumulating evidence indicates that GABA is involved in

various aspects of plant growth and development, as well as in

the biotic/abiotic stress responses in different plant species.

Although GABA is generally metabolized via the GABA shunt

pathway, under stress conditions, it can undergo synthesis via a

non-enzymatic process involving certain polyamines, including

spermidine and putrescine, together with proline (Signorelli

et al., 2015; Ansari et al., 2021).
Role of polyamines in mediating
low-temperature tolerance

Plants are sessile organisms that cannot physically escape

from stressful environments, including low temperatures, also

referred to as cold stress (Pareek et al., 2017). Generally,

exposure to cold stress induces a range of physiological and

biochemical disturbances, including metabolite imbalance and

metabolic dysfunction (Kazemi-Shahandashti and Maali-Amiri,

2018). The production and accumulation of compatible solutes,

including polyamines, is a common defense mechanism

activated in response to cold stress (Alcázar et al., 2011; Pagter

et al., 2017). An alteration in polyamines during the early stage

of stress is considered a signal that promotes further signal

transduction to activate transcription factors and stress-
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responsive pathways, such as the ICE-CBF-COR transcriptional

cascade, reactive oxygen species (ROS) scavenging, and the

antioxidant defense system (Wei et al., 2021; Hwarari

et al., 2022).

In plants, polyamines are extensively involved in the

responses to abiotic stresses, including low-temperature stress,

and the association between polyamines and cold tolerance is

well established. Accumulating evidence has revealed that

exogenous polyamine treatment enhances tolerance to low

temperatures in different plant species. For example,

spermidine priming has been demonstrated to enhance

polyamine metabolism and hence tolerance to chilling stress in

rice (Sheteiwy et al., 2017). Furthermore, spray application of

putrescine has been found to substantially reduce chilling injury

in peach fruit during storage, regardless of the dose of putrescine

applied or the time of application. In contrast, foliar spraying of

seedlings with spermidine, spermine, and putrescine is believed

to activate a defensive response to enhance cold resistance in

winter oilseed rape (Jankovska-Bortkevič et al., 2020). SAM is a

precursor not only in PA syntheses but also in ethylene

biosynthesis (Figure 1), and ethylene was considered as a

crucial hormone that plays essential roles in cold stress. For

example, ethylene enhanced the cold tolerance via the

MdERF1B–MdCIbHLH1 regulatory module in apple (Wang

et al., 2021)

Genetic manipulation of polyamine biosynthetic genes

enhances tolerance to cold stress. Arginine decarboxylase

(ADC) is a rate-limiting enzyme that catalyzes the first step of

polyamine biosynthesis (Urano et al., 2005). In Arabidopsis,
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exposure to cold stress has been observed to promote increased

levels of AtADC1 and AtADC2 transcripts. Compared with wild-

type plants, mutant plants with T-DNA insertional knockout

(adc1 and adc2) of these enzymes were found to accumulate less

free putrescine and were more sensitive to freezing. However, the

damage caused by freezing conditions could be alleviated by the

exogenous application of putrescine (Cuevas et al., 2008).

Conversely, by modulating putrescine accumulation, the

overexpression of ADC1 in potatoes has been found to confer

a higher level of freezing tolerance (Kou et al., 2018).

GABA, a key player in mitigating
ROS generation during cold
stress in plants

In plants, GABA is a ubiquitous four-carbon metabolite and a

vital signaling molecule that mediates the responses to biotic and

abiotic stress conditions, including pathogen attack, low and high

temperature, flooding, drought, soil salinity, and heavy metals (Li

et al., 2021). Emerging evidence indicates that GABA participates

in the low-temperature regulatory mechanisms of plants. Low

temperatures are common unfavorable environmental conditions

that limits plant development, leading to significantly reduced

plant productivity. Generally, high level of GABA and shunt-

related genes are induced in response to low-temperature

conditions. For example, compared with non-stressed

conditions, a 16-fold increase in GABA levels has been observed

in barely seedlings directly exposed to -3°C, and amounts of
FIGURE 1

Schematic representation of Polyamines (PAs) metabolism and interconnection with g-aminobutiric acid (GABA) synthesis. ADC, arginine
decarboxylase; AIH, agmatine iminohydrolase; CPA, N-carbamoylputrescine amidohydrolase; DAOdiamine oxidase; PAO polyamine oxidase;
SPDS, SPDS, spermidine synthase; SPMS, spermine synthase; ACL5, ACAULIS5; SAMDC, S-adenosylmethionine decarboxylase; ACC, 1-amino-
cyclopropane-1-carboxylic-acid.
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GABA were also elevated in seedlings exposed to a temperature of

-8°C (Mazzucotelli et al., 2006). Further studies in barley have

revealed that the accumulation of GABA induces the expression of

GABA-shunt genes (Mazzucotelli et al., 2006), thereby providing

evidence to indicate the involvement of GABA metabolism in the

cold tolerance in plants.

The exogenous application of GABA has been demonstrated

to increase GABA levels and enhance cold tolerance in various

plant species. In tomato seedlings, for example, accumulation of

GABA has been observed in response to chilling treatment. The

application of exogenous GABA induces substantially higher

amounts of endogenous GABA in tomato seedlings compared

with those in control plants. (Malekzadeh et al., 2014). Notably,

the antioxidant enzyme activity, malondialdehyde (MDA) and

proline displayed significantly decreased level after GABA

treatment, whereas the sugar and proline level were

significantly enhanced compared to un-treated seedlings

(Malekzadeh et al., 2014). Exogenous GABA enhanced the

endogenous GABA content by increasing the expression of the

glutamate decarboxylase (GAD) gene and decreasing GABA

transaminase (GABA-T) gene level (Shekari et al., 2021). In

most cases, the application of GABA at low temperatures has

been associated with the activation of the antioxidant defense

system. For example, Wang et al. (2014) revealed that the

application of GABA alleviated chilling injury in banana fruit
Frontiers in Plant Science 04
by promoting proline accumulation and enhancing antioxidant

capacity. Similarly, the application of GABA during the

reproductive stage in tomato plants has been found to

substantially alleviate chilling-induced oxidative damage by

enhancing the activity of CAT, SOD and APX (Abd Elbar

et al., 2021), thereby tending to indicate that GABA enhances

the tolerance to low-temperature stress by modulating ROS

content (Figure 2).

The generation of ROS is an inevitable consequence of plant

aerobic metabolism, which occurs in multiple cellular

compartments, including the chloroplasts, mitochondria,

apoplasts, and peroxisomes (Gill and Tuteja, 2010). Emerging

evidence has indicated that the role of ROS in plants might be a

double-edged sword, in that ROS also act as vital signal

molecules involved in plant growth and development,

particularly in response to abiotic and biotic stresses, including

drought, salinity, metal toxicity, heat shock, and cold stress

(Bailey-Serres and Mittler, 2006; Gapper and Dolan, 2006;

Waszczak et al., 2018; Hasanuzzaman et al., 2020). GABA

serves as a central molecule in the defense system of plants

and is extensively involved in the mitigation of ROS in response

to different stresses, including exposure to low temperatures

(Ansari et al., 2021). The GABA shunt pathway effectively

bypasses two enzymes in the TCA cycle that have been

established to be sensitive to oxidative stress (Nicolas and
FIGURE 2

Polyamines and g-aminobutyric acid (GABA) mediate the mitigation of reactive oxygen species (ROS) production under low-temperature
conditions in plants. Cold signals are sensed by receptors and thereby induce a range of physiological, biochemical, and metabolic processes.
Moreover, signal transduction leads to the activation of cold-responsive genes. SOD, superoxide dismutase; POD, Peroxidase activity; APX,
ascorbate peroxidase; CAT, catalase.
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Hillel, 2004; Janse van Rensburg and Van den Ende, 2020).

Moreover, many GABA-related components have been

demonstrated to play vital roles in ROS scavenging and

detoxification under stress conditions (Jalil et al., 2017; Ansari

et al., 2021). For example, succinic semialdehyde dehydrogenase

(SSADH), a GABA shunt enzyme, catalyzes the conversion of

succinic semialdehyde to succinate in the mitochondria.

Previous studies have shown that SSADH is essential for ROS

homeostasis in plants (Bao et al., 2015). Given that the

application of GABA under low-temperature conditions

generally modulates the activities of oxidative enzymes,

suggests that GABA plays a crucial role in the mitigation of

ROS during cold stress in plants (Figure 2).
Concluding remarks

Although the involvement of several key metabolites,

including polyamines and GABA, has been demonstrated

during the low-temperature stress response of plants, a

detailed understanding of how metabolites participated in cold

tolerance is imperative. Further studies are needed to gain a

better understanding of the pathways and regulatory networks of

key metabolites. Additional effort should also be devoted to

elucidating the dynamics of these metabolites in the

development of low-temperature tolerance. In addition, the

rapid development of metabolomics technology in plants will

provide new opportunities to identify novel and/or unknown

metabolites associated with the response to low-temperature

conditions. We believe that with further in-depth research on the

mechanisms of key metabolites involved in low-temperature

responses, the knowledge thus gained will make it possible to

enhance the cold tolerance and productivity of plants.
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