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Non-destructive monitoring of
amylose content in rice by UAV-
based hyperspectral images
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Jueyi Zheng1, Tianyue Xu1, Jiale Li1 and Siting Chen1

1Institute of Applied Remote Sensing & Information Technology, Zhejiang University, Hangzhou, China,
2Key Laboratory of Agricultural Remote Sensing and Information System, Zhejiang University,
Hangzhou, China, 3State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and
Geography, Chinese Academy of Sciences, Urumqi, China
Amylose content (AC) is an important indicator for rice quality grading. The

rapid development of unmanned aerial vehicle (UAV) technology provides rich

spectral and spatial information on observed objects, making non-destructive

monitoring of crop quality possible. To test the potential of UAV-based

hyperspectral images in AC estimation, in this study, observations on five rice

cultivars were carried out in eastern China (Zhejiang province) for four

consecutive years (from 2017 to 2020). The correlations between spectral

and textural variables of UAV-based hyperspectral images at different growth

stages (booting, heading, filling, and ripening) and AC (%) were analyzed, and

the linear regression models based on spectral variables alone, textural

variables alone, and combined spectral and textural variables were

established. The results showed that the sensitive bands (P< 0.001) to AC

were mainly centered in the green (536∽568 nm) and red regions

(630∽660nm), with spectral and textural variables at the ripening stage giving

the highest negative correlation coefficient of -0.868 and -0.824, respectively.

Models based on combined spectral and textural variables give better

estimation than those based on spectral or textural variables alone,

characterized by less variables and higher accuracy. The best models using

spectral or textural variables alone both involved three growth stages (heading,

filling, and ripening), with root mean square error (RMSE) of 1.01% and 1.04%,

respectively, while the models based on combined spectral and textural

variables have RMSE of 1.04% 0.844% with only one (ripening stage) or two

(ripening and filling stages) growth stages involved. The combination of

spectral and textural variables of UAV-based hyperspectral images is

expected to simplify data acquisition and enhance estimation accuracy in

remote sensing of rice AC.

KEYWORDS

amylose content, rice, UAV-based hyperspectral images, spectral variables,
textural measures
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Introduction

As the main staple food for over half of the world’s population,

rice is one of the most important food crops in the world and its

quality is especially important (Yang and Wang, 2019). Amylose

content (AC), combined with grain shape and gelatinization

temperature, are three criteria for rice market classes in the

United States and can also be used for rice cultivar categorization

(Bergman, 2019). Furthermore, AC is the most important factor

defining the palatability or specialty type of rice (Li et al., 2016), and

thus the faster measurement of AC draws a lot of attention from

scientists and technicians who are interested in food quality.

Due to the time-consuming, destructive, laborious, and

complicated analysis procedure (Caporaso et al., 2021),

chemical methods for AC measurement in the laboratory, such

as the iodine colorimetric method (Williams et al., 1958) and

size-exclusion chromatography (Fitzgerald et al., 2009), are

unable to meet the requirement of rapid determination of rice

AC for quality grading or variety classification. Methods

featured with non-contact and rapid estimation using

biomaterial optical properties obtained by spectroscopy or

imaging systems are widely used for the measurement of crop

quality traits (ElMasry et al., 2019).

Most studies on non-destructive estimation of AC by spectral

information have adopted such analytical techniques as near-

infrared (NIR) spectroscopy (Bagchi et al., 2016; Dıáz et al., 2019)

and hyperspectral imaging (HSI) (Caporaso et al., 2018; Huang

et al., 2021) to collect spectral information of samples in the shape

ofmilled rice flour (Bao et al., 2001;Wu and Shi, 2004), brown rice

flour (Shu et al., 1999), milled whole grain (Windham et al., 1997),

brown rice (Bagchi et al., 2016; Dıáz et al., 2019), etc., which were

scanned in reflectance or transmittance mode on a moving

platform. In NIR or HSI methods, samples used for developing

and validating calibration equations are generally collected from

harvested rough rice, in this case, the differences in amylose

content caused by environmental factors are not considered in

spectral information. However, the AC of each sample is a

consequence of a unique combination of genetic and

environmental effects (Bergman, 2019), and the formation of

amylose is strongly affected by ambient air temperature (Dıáz

et al., 2019). Juliano and Pascual (1980) demonstrated that the

same cultivar grown in different environments may vary by up to

6% in AC. Some research also showed that low-amylose types,

which typically have 12%–15% AC when grown at higher

temperatures, have up to 18% when grown at lower

temperatures (Larkin and Park, 1999; Bao et al., 2000). This

means that additional analysis is required to update the

calibration equation to function with each new set of samples,

even for samples coming from the same cultivar. Such analysis is

generally expensive and time-consuming.

Is it possible to obtain knowledge about rice AC from

spectral and spatial information of stand crops in the field
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before harvest? This can not only help rice breeders to obtain

estimates of a cultivar’s AC rapidly to assist in classifying rice

cultivars but also provide opportunities to manage rice harvest

differently (Basnet et al., 2003) and further get helpful

information for rice market classing in advance. In fact, many

researchers have used remote sensed data over large regions to

predict parameters that relate to crop quality, such as grain

protein content (Ryu et al., 2011; Chen, 2020; Li et al., 2020). By

far, there is no relevant research of any attempt to relate rice AC

with remote-sensing spectral or spatial information in

hyperspectral images of rice plants.

With the characteristics of high spatial resolution, high

temporal resolution, and easy operation, unmanned aerial

vehicles (UAVs) have been used as a new technical means for

monitoring physiological and biochemical parameters of crops

in fields rapidly and non-destructively. Progress has been made

in using UAV-based multispectral or hyperspectral images to

estimate agricultural parameters such as grain yield (Wang et al.,

2021), leaf area index (LAI) (Roosjen et al., 2018), chlorophyll

(Tewes and Schellberg, 2018), and nitrogen (N) (Zheng et al.,

2020). In addition to various spectral information, UAV-based

images generally have spatial resolution at the centimeter level

and thus can provide rich spatial information about observed

objects. Some research has proven the great potential of textural

information in UAV-based images for crop parameter

monitoring, such as wheat biomass (Yue et al., 2019), rice N

content (Zheng et al., 2020), and grain yield (Wang et al., 2021).

In recent years, with increased accessibility, reduced sensor

costs, and the speedy development in technology for data

processing, UAVs have become a widely used means for

agronomic trait monitoring (Deng et al., 2018).

In view of the abovementioned background, the main

objectives of this study are to 1) identify the bands of UAV

hyperspectral images that are sensitive to rice AC and the crucial

growth stages for AC estimation and 2) test the feasibility of

using spectral and textural features in UAV hyperspectral

images for rice AC estimation.
Materials and methods

Study area

The study area (30°26∼30°42, 119°45’∼120°21’) is located at

Xiashe village, Deqing County, Zhejiang Province (Figure 1). The

annual climate here is characterized by four distinct seasons, sufficient

sunlight, abundant rainfall, with the annual average temperature

ranging from 13°C to 16°C, and the annual average precipitation

exceeding1,300mm.Xiashevillage, as thefirstbatchofprovincial-level

functional areas for grain production inDeqingCounty, has advanced

planting technology and scientific management for rice, making the

accuracy of experimental data stable.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1035379
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1035379
Field experiment

The experimental site covers an area of about 0.82 ha (81 m *

101 m) and is divided into 20 plots according to different

combinations of rice varieties and N fertilization levels. Field

campaigns for data acquisition were carried out for four

consecutive years (from 2017 to 2020) with two rice cultivars

and five N fertilization levels set for each year. The selected

varieties for each experimental year are in line with the most

widely planted varieties in the local area, consisting of Zhegeng 99

and Jia 58 in 2017, Nangeng 9108 and Nangeng 46 in 2019, and

Zhegeng 99 and Jia 67 in 2018 and 2020. Rice seeds were generally

sown in mid to lateMay, transplanted in early to middle June, and

harvested in late November, with the whole growth length about

153–165 days. Five nitrogen (N) rates (N0-N4: 0, 112.5-142.5,

225-285, 337.5-427.5, 450-570 kg ha-1) with the same amount of

phosphate (75 kg ha-1) and potash (150 kg ha-1) fertilizer were

set. All treatments were composed of two or more repeated plots.
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Data acquisition

Determination of amylose content
During the maturing stage, three 75 cm × 75 cm quadrats were

randomly selected from each plot to obtain rice samples. After

sampling, the sampleswerefirst dried in anoven for 40minat 105°C

and then dried to a constant weight at 65°C. Samples of rice, rice

grains, and rice flourwere obtained through threshing, shelling, and

milling procedures. AC (%) inmilled rice flour samples of each plot

was determined in the laboratory at China National Rice Research

Institute using a spectrophotometry method (NY/T2639-2014).

UAV-based hyperspectral image acquisition
At the key growth stages for rice quality formation, the

campaigns for UAV hyperspectral image acquisition were

carried out on clear and cloudless days between 10:00 a.m. and

2:00 p.m. local time. The specific dates for image acquisition

from 2017 to 2020 are listed in Table 1.
frontiersin.org
FIGURE 1

Study area and experimental site.
TABLE 1 Dates for unmanned aerial vehicle (UAV)-based hyperspectral image acquisition.

Date

Growth stages

2017 2018 2019 2020

Variety1 Variety2 Variety1 Variety2

Booting 27/08 23/08 29/07 11/08 24/08 27/08

Heading 08/09 08/09 11/08 20/08 01/09 05/09

Filling 19/09 24/09 20/08 30/08 12/09 24/09

Ripening 03/11 09/11 30/09 10/10 20/10 30/10
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Hyperspectral images were collected by a six-rotor UAV (DJI

M600 Pro) mounted with a hyperspectral imager (Rikola).

Featured with the high load and excellent flight performance,

DJI M600 Pro six-rotor UAV adopts a modular design to further

improve reliability and convenience. It has a maximum takeoff

weight of 15.5 kg, a maximum payload of 6 kg, and a maximum

flight range of 5 km. During flights, the UAV platform was also

equipped with the Ronin-MX stabilization gimbal to maintain

the stability of the hyperspectral imager and reduce the

disturbance of aircraft shaking and wind disturbance, so as to

ensure the high quality of obtained hyperspectral images. The

flight altitude was fixed at 200 m, with a ground spatial

resolution of 0.13 m. Three fixed points were set on the flight

line; each had a hovering shooting time of 45 s.

The hyperspectral imager Rikola carried by the UAV

platform is a frame-type hyperspectral imager that not only

can be used for handheld measurement but also is suitable for

the UAV platform. The default band range of this imager is 500–

900 nm, and the number of bands was set at 62 in this study. The

central band and full width at half maximum (FWHM) of these

bands are shown in Table 2.

Image processing

Data format conversion, lens correction, geometric halo

correction, and dark current correction of acquired

hyperspectral images were realized through the corresponding

module function of Hyperspectral Imager V2.1.4 (Rikola, Ltd.)

software, which is built-in with the camera. Through these

operations, hyperspectral image data can be transformed into

editable, clear, and accurate radiation images. Band registration

was performed by RegMosaic (Rikola, Ltd.) software. The

radiometric correction was conducted by ENVI using the

radiation and reflectance of a standard diffuse reflection plate,

of which the radiation and reflectance are fixed values. For
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details about the calculation of image reflectance, refer to Wang

et al. (2021).

Extraction of textural measures
Gray-level co-occurrence matrix (GLCM), as the most

commonly implemented method for textural analysis, was used

to extract textural features from UAV-based hyperspectral images

in the present study. GLCM is a square matrix with the number of

rows and columns that is the same as the gray values in the image.

The matrix element contains the second-order statistical

probability values for changes between two gray levels at a

particular displacement distance and at a particular angle. The

displacement distance and moving direction are important to the

construction of a GLCM. Here, GLCMs were constructed with

the displacement distance of 1 pixel and the moving directions of

0°, 45°, 90°, and 135°, and by doing so eliminates the effect of

moving direction on the results. The average value of these four

directions was finally used. As each hyperspectral image has 62

bands, 62 GLCMs are generated for each hyperspectral image. In

order to quantitatively describe the textural features contained in

GLCMs, statistical measures can further be calculated using these

conditional probabilities in GLCMs to generate the textural

properties. Haralick et al. (1973) proposed a set of textural

descriptors based on GLCMs. Eight of the most commonly used

textural descriptors were selected in the present work, including

angular second moment (ASM), entropy (ENT; the opposite of

ASM, high when the pixel values of the GLCM have varying

values), homogeneity (HOM), contrast (CON), dissimilarity

(DIS), correlation (COR), mean (MEA), and variance (VAR).

Through trial and error, a moving square window with a size of 3

pixels × 3 pixels was applied for calculation of textural measures.

The formulas and meaning of those eight textural measures also

can be found in Park and Guldmann (2020) and Wang et al.

(2021). For more information about GLCM, refer to Hall-Beyer

(2017) and Park and Guldmann (2020).
TABLE 2 Central wavelength (WL) and full width at half maximum (FWHM) of the used hyperspectral imager.

WL (nm) FWHM (nm) WL (nm) FWHM (nm) WL (nm) FWHM (nm) WL (nm) FWHM (nm) WL (nm) FWHM (nm)

512 8.18 596 7.72 685 5.82 736 6.68 824 7.69

520 8.51 600 7.76 688 6.06 740 6.14 832 13.62

528 7.58 604 7.26 692 6.50 744 6.23 840 14.49

536 8.55 608 9.24 696 7.45 748 5.87 848 13.53

544 7.63 616 10.21 700 6.99 752 6.59 856 13.61

552 7.77 624 9.20 704 5.89 760 5.96 864 12.42

560 7.98 632 8.93 709 6.00 768 6.09 872 12.75

568 7.27 635 9.29 712 6.44 776 8.71 880 12.83

576 8.30 650 8.36 716 6.91 784 7.38 888 10.51

580 8.16 656 9.37 720 6.86 792 8.51

584 7.24 664 8.75 724 6.22 800 8.72

588 6.51 672 9.43 728 5.81 808 8.16

592 7.24 680 9.80 733 6.39 816 9.10
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Construction of spectral and textural indices
The two most widely used types of vegetation index, i.e.,

ratio vegetation index (RVI) and difference vegetation index

(DVI), were adopted for the construction of spectral and textural

indices. Spectral indices were calculated using reflectance by

two-band combinations of 62 bands in the form of these two

types, as were textural indices, except they were based on eight

textural measures. The formulas of these two types of vegetation

indices were presented in Table 3. ENVI 5.3 (Exelis Visual

Information Solutions, Inc.) was used for their calculations.
Model development and evaluation

To verify the capabilities of spectral and textural variables of

UAV-based hyperspectral images for the estimation of rice AC,

three types of models based on spectral variables alone, textural

measures alone, and combined spectral and textural information

were developed using the stepwise multiple linear regression

method. The expression of the model is as in Eq. 1:

AC = a1X1 + a2X2 + a3X3 +⋯+anXn + b (1)

where AC is the estimated amylose content, a is the

coefficient of independent variables or the slope, b is the

intercept, and n is the number of independent variables.

Moreover, three criteria, namely the coefficient of

determination (R2), root mean square error (RMSE), and

mean absolute prediction error (MAPE), were used to test the

performance of the models.
Results and discussion

Statistics of measured amylose content

Two-thirds of 80 measured AC, with the number 54, were

randomly selected as calibration data for model development,

and the remaining 26 data were used for model validation. The

maximum AC was 18.3% and the minimum was 10.0%, with an

average AC of 14.14% (Table 4). The distribution range of the

validation dataset was within that of the calibration dataset.
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Estimation of amylose content based on
spectral variables alone

Relationship between amylose content and
spectral reflectance at different growth stages

The relationship between AC and reflectance of UAV

hyperspectral images at different growth stages (Figure 2)

showed that most of the correlation coefficients were below

the 1% significance level (when the number of samples n = 80,

P0.01 = 0.283), especially those at the heading stage, with all

coefficients below the 1% significance level line, showing the

lowest correlation with AC compared to the other three growth

stages. The reflectance at 504 and 650 nm at the ripening stage

had the most significant correlation with AC (r = -0.411 and r =

-0.386), followed by the spectrum at 635 nm at the booting stage

(r = -0.346), and both showed a negative correlation with AC.

The significant positive correlation was also found for five

other spectrum bands (from 536 to 568 nm) at the filling stage,

with correlation coefficients (r) of approximately 0.3, slightly

higher than the 1% significance level. The sensitive bands to AC

were mainly centered in the green (536∽568 nm) and red

regions (630∽660 nm). Spectrum reflectance in the NIR region

at all four growth stages showed poor correlation with AC.

Relationship between amylose content and
spectral indices at different growth stages

The matrix plots (Figure 3) of correlation coefficients (r) for

the correlation between AC and two types of vegetation indices,

i.e., DVI and RVI, at four growth stages showed that the majority

of r values were smaller than 0.3, with the major color of the map

in blue, indicating the insensitive correlation with AC. However,

significant correlation can still be found in some combinations.

Further analysis showed that the most significant correlations

have r values of 0.692~0.795 for DVI and 0.781~0.868 for RVI.

The highest r of 0.868 was given by the vegetation index in RVI

type, which was constructed by the combination of the

reflectance in 568 and 580 nm at the ripening stage.

Vegetation indices were significantly better correlated to AC

than raw reflectance (Table 5), with all correlation coefficients

significant at 0.001 probability level (P< 0.001), instead of the

0.01 significance level of raw reflectance. Furthermore,

vegetation indices in the RVI type showed a higher correlation

with AC than the DVI type, and RVI at the ripening stage had

the most significant negative correlation with AC, with an r value
TABLE 3 Formulas of textural and spectral index calculation.

Textural index Formula Vegetation index Formula

RTI [L1, L2] TSL1/TSL2 RVI [L1, L2] RL1/RL2

DTI [L1, L2] TSL1-TSL2 DVI [L1, L2] RL1-RL2
TS, textural statistics; R, reflectance; L1, wavelengths in near-infrared (NIR) region (760–
900 nm); L2, wavelengths in the RED region (620–760 nm). All two-band combinations
between NIR and RED were calculated.
TABLE 4 Statistics of measured amylose content for the calibration
and validation datasets.

Datasets Number of samples Range Mean SD

All 80 10.0~18.3 14.14 2.86

Calibration set 54 10.0~18.3 14.14 2.87

Validation set 26 10.2~18.0 14.14 2.83
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of -0.868. Additionally, the highest correlation coefficients were

all given by vegetation indices that were constructed by

reflectance at the ripening stage, and only at this stage was the

raw reflectance correlated to AC at the 0.001 significance level

compared to those at the other three growth stages,

demonstrating the great role of the ripening stage for the

estimation of AC.

Estimation models based on spectral
variables alone

In order to identify the models that have less variables but

higher accuracy for AC estimation, models based on spectral
Frontiers in Plant Science 06
variables at one, two, three, and four growth stages were

established, and the coefficients of determination (R2) for these

models were compared (Figure 4).

The accuracy of the models was improved by more

spectral variables being involved in the models (Figure 4),

with the highest R2 value of 0.887 given by the model based on

the four growth stages. However, the best models based on

variables at three growth stages (R2 = 0.887), and even at two

growth stages (R2 = 0.869), were almost equivalent to the

model based on the four growth stages, especially when those

models involved variables at the ripening stage. Furthermore,

R2 values of models that involved variables at the ripening
FIGURE 2

Correlation coefficients between rice amylose content (AC) and reflectance of unmanned aerial vehicle (UAV)-based hyperspectral images.
FIGURE 3

Matrix plots of correlation coefficients for the relationship between difference vegetation index (DVI) vs. amylose content (AC) and ratio
vegetation index (RVI) vs. AC at different growth stages.
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stage were always higher than those of models without

variables at the ripening stage, further indicating the key

role of the ripening stage for AC estimation.

Models that had variables at the ripening stage were further

tested using a validation dataset, except the model developed

by the four growth stages, which was just slightly better than

those using variables less than four. The following three models

with high stability and accuracy in both calibration and

validation were identified, and their expressions were as in

Eqs. 2–4:

ACS = 217:83 − 207:03*RVI½580,568�(Ripening) (2)
Frontiers in Plant Science 07
ACS = 58:6

+ 84:45*RVI 584,592�(Heading)−133:75*RVI½580,568�(Ripening)½ (3)

ACS = 106:17 + 40:99*RVI½584,592�(Heading)

− 850:84*DVI½664,672�(Filling)

− 135:401*RVI½580,568�(Ripening) (4)

where ACs estimated AC by models using spectral

variables alone.

As expected, the best single growth stage-based model was

constructed by RVI at the ripening stage (Eq. 2). Three involved

vegetation indices were all constructed by reflectance in the

green and red regions.
Estimation of amylose content based on
textural information alone

Relationship between amylose content and
textural measures

As the heading, filling, and ripening stages are significant to

the estimation of AC, the relationship between AC and textural

measures, including eight textural statistics (TS), textural index
TABLE 5 Correlation coefficients (r) of the most sensitive reflectance
and vegetation indices to amylose content.

Spectral variables
Reflectance DVI RVI

Growth stage

Booting stage -0.346* 0.742** 0.781**

Heading stage 0.206 0.692** 0.842**

Filling stage 0.310* -0.762** -0.759**

Ripening stage -0.386** 0.795** -0.868**
*denotes significance at the 0.01 probability level (when the number of samples n = 80, P0.01
= 0.283), and ** denotes significance at the 0.001 probability level (when the number of
samples n = 80, P0.001 = 0.356). DVI, difference vegetation index; RVI, ratio vegetation index.
FIGURE 4

Coefficient of determination (R2) of regression models for amylose content (AC) estimation based on spectral variables alone.
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in differential type [difference textural index (DTI)], and ratio

type [ratio textural index (RTI)], at these three stages was

analyzed (Table 6).

The best correlations between AC and various textural

measures were all significant at the 0.001 probability level, and

all happened at the ripening stage, which were similar to the

correlations between AC and spectral variables. However,

contrary to the significant improvement in the correlation

between AC and spectral indices caused by transforming

spectral reflectance into vegetation indices, increasing the

significance level in textural indices was less, with the

correlation between either DTI or RTI and AC slightly better

than those between TS and AC, indicating the great potential of

the selected TS to be used directly in AC estimation.

The maximum correlation coefficient (rmax) was obtained by

RTI at the ripening stage (r = 0.828), and rmax for each type of

textural measures occurred at the ripening stage, again proving the

significant role of the ripening stage for the estimation of AC

(Table 6). Meanwhile, 704 nm was involved in CON704 at the

heading stage and COR704 at the filling stage, and 650 nm was in

CON650 at the ripening stage, indicating the importance of textural

measures at 704 and 650 nm for the estimation of AC based on

textural measures of UAV spectral images. In fact, the intermediate

results showed that CON704, DIS704, HOM704, and VAR704 at the

filling stage and CON650, VAR650, DIS650, HOM650, and ENT650 at

the ripening stage also had significant correlation with AC.

Four textural measures that significantly correlated to AC were

HOM, DIS, CON, and VAR, and textural indices with the best

performance were mainly constructed by those four types of

textural measures. Actually, they characterize similar features of

images from different aspects. The significant relation between

textural measures and AC can partly be explained by ambient

temperature, which is a key impact factor for plant growth. Previous

studies have proven that rice ACs are affected by environmental

factors, particularly ambient air temperature (Larkin and Park,

1999; Bergman, 2019), which also influences plant traits and

phenotypic parameters (Feng et al., 2021), including yield, plant

height, LAI, and chlorophyll. Differences in these parameters and in

AC will in turn lead to changes of textural features in UAV

hyperspectral images and thus influence their relation. The role of

textural information in improving rice yield estimation has been

demonstrated by Wang et al. (2021). AC is an important
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component of yield; its great correlation with textural measures is

partly attributed to the good correlation between yield and textural

measures. Additionally, the correlation of textural measures with

spectral variables also contributed to the significant relation between

textural measures and AC. Despite these possible reasons,

understanding the relation of textural information in UAV

hyperspectral images with rice AC from cause-and-effect aspects

is insufficient and further exploration is needed.

Estimation models based on textural variables
alone

The models using textural measures at one (Eq. 5), two (Eq.

6), and three growth stages (Eq. 7) were constructed, and the

formulas of the models (Eqs. 5–7) with the highest coefficient of

determination were as follows:

ACT = 58:689 − 43:593*RTIHOM½680,656�(Ripening) (5)

ACT = 48:836 − 33:429*RTIHOM½656,680�(Ripening)

− 31:998*DTIVAR½528,608�(Filling) (6)

ACT = 46:876 − 30:409*RTIHOM½656,680�(Ripening)

− 29:157*DTIVAR½528,608�(Filling)

− 2:388*CON704(Heading) (7)

where ACT is the estimated AC derived from models

constructed by textural measures alone.

Similar to the model using spectral variables alone, the single

growth stage-based model was constructed by textural indices at

the ripening stage. The model (Eq. 7) based on textural measures

at three growth stages gives the highest R2 of 0.843.

Estimation of amylose content based on
combined spectral and
textural information

Models based on combined spectral and textural variables

were established on the basis of the aforementioned results. As

noticed, the accuracies of the models were generally improved

when more independent variables were involved. To make the

comparison of different models more persuasive, the number of
TABLE 6 Correlation coefficients (r) for the relationship between amylose content and textural measures.

Growth stage TS DTI RTI

Variable r Variable r Variable r

Heading CON704 -0.481** DTIVAR[840,864] -0.768** RTICON[840,848] -0.723**

Filling COR704 0.700** DTIDIS[504,720] 0.735** RTIHOM[504,720] -0.730**

Ripening CON650 -0.708** DTICON[688,672] -0.828** RTIHOM[680,656] -0.824**
frontie
** denotes significance at the 0.001 probability level (when the numbers of samples n = 80, P0.001 = 0.356). TS, textural statistics; DTI, difference textural index; RTI, ratio textural index.
rsin.org

https://doi.org/10.3389/fpls.2022.1035379
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1035379
independent variables in models based on combined spectral

and textural variables was also limited to 3, consistent with the

independent variables in models using spectral or textural

measures alone.

The spectral and textural variables in the simplest model (Eq. 8)

both came from the ripening stage, further demonstrating the role of

variables at the ripening stage for AC estimation. The R2 values of

modelsusing threevariables (Eqs.9–11)wereveryclose toeachother,

with the maximum of 0.913 and the minimum of 0.896 almost

indistinguishable (Table 7). Themodel based on spectral indices RVI

at the ripening stage and two textural indices (Eq. 9), i.e., RTI at the

ripening stage andDTI at thefilling stage, was slightly better than the

two other models, indicating the usefulness of textural information.

Additionally, two variables in Eq. 8 were both RVI-type indices,

highlighting that themethod of translating spectral reflectance or TS

into ratio type was a good choice in forming indices.
Validation and comparison of amylose
estimation models

To verify the robustness of estimation models and identify

the model with high accuracy and simple construction, all

established models, including those based on spectral variables

alone, textural variables alone, and combined spectral and

textural variables, were all tested by calibration and validation

datasets (Table 8).

First, the numbers of growth stage that were involved in the

models were compared, as the fewer growth stages in the models,

the easier the data to be obtained, and thus the more likely the

model to be used extensively. The priority was given to the model

with simpler construction when accuracy was similar.

The model (Eq. 8) based on combined spectral and textural

variables at one growth stage, i.e., the ripening stage, with R2 of

0.868 and 0.791, RMSE of 1.04 and 1.37, MAPE of 6.42% and

7.76% for the calibration and validation datasets, respectively, was

obviously superior to the models based on spectral variable (Eq. 2)

or textural variable alone (Eq. 5) at one growth stage, even better

than those constructed by variables at two growth stages (Eqs. 3,

6) and by variables at three growth stages (Eq. 4). Among all tested

models, the model (Eq. 9) constructed by combined spectral and

textural variables with three variables at two growth stages gives

the best performance in all three test criteria, better than models
Frontiers in Plant Science 09
using variables at three growth stages. The superiority of

combining spectral and textural measures to spectral or textural

variables alone in accuracy for the estimation of crop parameters

has been demonstrated by some previous research (Yue et al.,

2019; Zheng et al., 2020; Wang et al., 2021), which generally

attributed the outperformance partly to the complementary

information between textural and spectral variables.

The intercomparison was carried out among models based

on spectral variables alone, textural measures alone, and

combined spectral and textural variables. As models based on

spectral variables alone (Eq. 4) or textural variables alone (Eq. 7)

had three variables at three growth stages and the model (Eq. 9)

based on spectral and textural variables had three variables at

two growth stages, Figures 5E, F were noted as three variables

instead of three growth stages.

The overall performance of models based on spectral and

textural variables was always superior to those based on spectral

or textural variables alone, and results for the calibration dataset

were better than those for the validation dataset (Figure 5). For

models (Eqs. 2, 5, and 8) based on variables at one growth stage

(Figures 5A, B), i.e., the ripening stage, textural-based model (Eq.

5) showed the problem of overestimation when AC was lower

than 15% but underestimation when AC was higher than 15%,

and the spectral-based model tended to overestimate when AC

was below 13%. The same tendency can be found in Figures 5C,

D, in which two growth stages were involved. However, the

spectral and textural-based model (Eq. 9) was likely to have the

ability to adjust the overestimation or underestimation of AC in

spectral-based or textural-based models, thus making it better.

Furthermore, the fitness between measured and estimated AC

visually demonstrated the aforementioned conclusion that spectral

and textural-based model (Eq. 8) using variables at the ripening

stage alone can give a similar accuracy to spectral-based or textural-

based models that have one or two growth stages involved,

indicating the superiority of the method using combined spectral

and textural variables for AC estimation in simplifying model

structure and data acquisition. Additionally, no matter whether

the comparisonwas carried out among the samenumber of growth

stages (Figures 5C, D) or among the same number of independent

variables (Figures 5E, F), the spectral and textural-basedmodel (Eq.

9) always gave thebest estimationofAC, proving the greatpotential

of combined spectral and textural information in UAV

hyperspectral images for rice AC estimation. The test results
TABLE 7 Formula and coefficient of determination (R2) of the models based on combined spectral and textural variables.

Numbers of growth stage Model expressions R2

One
ACST =134:485 − 143:466*RVI 580,568½ �(Ripening) + 21:203*RTIHOM 680,656½ �(Ripening)  

Eq. 8 0.868

Two
ACST = 109:788 − 114:44*RVI 580,568½ �(Ripening) + 18:631*RTIHOM 680,656½ �(Ripening) + 3:456*DTIDIS 504,720½ �(Filling)  

Eq. 9 0.913
ACST = 113:626 − 116:7*RVI 580,568½ �(Ripening) + 16:859*RTIHOM 680,656½ �(Ripening) + 938:708*DVI 664,672½ �(Filling)  

Eq. 10 0.912
ACST = 36:816 − 103:679*RVI 580,568½ �(Ripening) + 16:858*RTIHOM 680,656½ �(Ripening) + 60:857*RVI 584,592½ �(Heading)  

Eq. 11 0.896
frontiers
ACS&T are estimated amylose content by models constructed by combined spectral and textural measures. TS, textural statistics; DTI, difference textural index; RTI, ratio textural index.
The equations in bold are the adopted models.
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TABLE 8 Model test results by the calibration and validation datasets.

Criteria Numbers of Growth stage Calibration dataset Validation dataset

Spectral Textural Spectral and textural Spectral Textural Spectral and textural

R2 One 0.795 (Eq. 2) 0.684 (Eq. 5) 0.868 (Eq. 8) 0.702 0.678 0.791

Two 0.854 (Eq. 3) 0.805 (Eq. 6) 0.913 (Eq. 9) 0.767 0.797 0.826

Three 0.877 (Eq. 4) 0.843 (Eq. 7) / 0.775 0.824 /

RMSE (%) One 1.3 1.61 1.04 1.72 1.64 1.37

Two 1.1 1.27 0.844 1.42 1.28 1.22

Three 1.01 1.14 / 1.44 1.18 /

MAPE (%) One 8.04 9.64 6.42 9.63 10.43 7.76

Two 6.72 7.30 4.70 7.51 7.68 7.08

Three 5.73 6.59 / 8.01 7.11 /
Frontiers in
 Plant Science
 10
The optimum values of criteria are in bold.
B

C D

E F

A

FIGURE 5

Measured vs. estimated amylose content derived from models based on spectral variables alone, textural variables alone, and combined spectral
and textural variables. Panels (A, C, E) are results from the calibration dataset. Panels (B, D, F) are results from the validation dataset.
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using the validation dataset were generally very similar to those of

the calibration dataset, indicating good stability of the

established models.

Discussion
The present study makes the first attempt of using UAV

technique for rice AC monitoring, and results are encouraging.

However, as seen, the above established models were based on

correlations between spectral or textural information and

laboratory-determined AC; they are empirical, not based on

cause and effect. Previous research showed that crop AC is

affected by environmental factors, particularly ambient air

temperature (Ziska et al., 1997; Madan et al., 2012); even the

same cultivar grown in different environments may vary by up to

6% in AC (Juliano and Pascual, 1980). In this study, five

observed rice cultivars grew in small experimental plots, where

the growing conditions have no evident differences except for N

fertilization, making the variation in AC for a certain rice

cultivar small; this means that the efficiency of the results

obtained herein still needs more verification at a larger scale.

Additionally, textural features of images are significantly affected

by spatial resolution (Liu et al., 2018a; Liu et al., 2018b), which was

partly determined by the flight altitudes of UAVs. The different flight

altitudes will make the spatial resolution different and thus lead to

the changes of textural features. Here, the flight altitude for image

acquisition was fixed at 200 m, with a ground spatial resolution of

0.13 m, so the effects of differences in spatial resolution caused by

flight altitudes on values of textural measures were not considered.

Furthermore, the method for GLCM construction and the

window size for the calculation of textural measures may also

cause differences in the final results (Sarker and Nichol, 2011;

Zheng et al., 2019). Although the methods for GLCM

development and TS calculation here were adopted by trials

and errors, whether the plan is suitable for other cases is unclear.

Consequently, the reliability and robustness of these empirical

relations and models proposed here need to be evaluated and

verified by more rice cultivars growing under varied

environmental conditions. In addition, more methods for

model development need to be tested to make the application

of UAV technique in rice AC monitoring more confident.

Conclusions

In this study, the potential of spectral and textural

information in UAV hyperspectral images for rice AC was

tested. The following conclusions can be drawn:

1) Spectral and textural variables at the ripening stage are

crucial to rice AC estimation, and the most sensitive bands to

rice AC are mainly located in the green and red regions.

2) Performances of models based on spectral variables or

textural variables alone are equivalent, with the best estimation
Frontiers in Plant Science 11
given by models constructed by variables at the ripening, filling,

and heading stages.

3) In comparison to models developed by spectral or textural

variables alone, models based on combined spectral and textural

variables can give better estimation of AC with less growth

stages involved.

It can be inferred that using spectral and textural

information in UAV-based hyperspectral images has great

potential to obtain the knowledge of AC of a standing crop in

advance and thus would not only provide scientists and

technicians alternative or complementary information to

define the targeted rice market class in a rapid and non-

destructive way but also provide opportunities to manage

grain harvest differently.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

FW: Conceptualization, Methodology, Investigation, Resources,

Supervision, Writing- Original draft preparation, Projection

administration, Funding acquisition; QY: Formal analysis, Data

curation, Writing- Original draft preparation, Writing - Review and

Editing, Visualization, Funding acquisition; LX: Software, Formal

analysis, Data curation, Investigation; XY, TX, JZ, JL and

SC: Validation, Investigation. All authors contributed to the

article and approved the submitted version.

Funding

This study is supported by the Third Xinjiang Scientific

Expedition Program (2021xjkk1400) and National Natural

Science Foundation of China (41871328).
Acknowledgments

The assistance given by colleagues from the Institute of

Applied Remote Sensing & Information Technology, Zhejiang

University, and local farmers is highly appreciated.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1035379
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1035379
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Plant Science 12
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Bagchi, T. B., Sharma, S., and Chattopadhyay, K. (2016). Development of NIRS
models to predict protein and amylose content of brown rice and proximate
compositions of rice bran. Food Chem. 191, 21–27. doi: 10.1016/
j.foodchem.2015.05.038

Bao, J. S., Cai, Y. Z., and Corke, H. (2001). Prediction of rice starch quality
parameters by near-infrared reflectance spectroscopy. J. Food Sci. 66 (7), 936–939.
doi: 10.1111/j.1365-2621.2001.tb08215.x

Bao, J. S., Xu, J. J., Wu, W. Q., Shu, Q. Y., and Xia, Y. W. (2000). The changes of
eating and cooking quality of indica early rice in different cropping seasons. J.
Zhejiang Univ. (Agricultural Life Sciences) 26, 103–106.

Basnet, B. B., Apan, A. A., Kelly, R. M., Jensen, T. A., Strong, W. M., and Butler,
D. G. (2003). “Relating satellite imagery with grain protein content” In Spatial
Knowledge without Boundaries. Proceedings of the Inaugural Conference of the
Spatial Sciences Institute,” 22–26 September 2003 (Ed. B. Lees.) pp. 22–26.
(Canberra: Australasian Urban & Regional Information Systems Association)..

Bergman, C. J. (2019). “Rice end-use quality analysis,” in Rice chemistry and
technology, fourth ed. Ed. J. S. Bao (New York: E-Publishing Inc. in cooperation
with AACC International), 273–337.

Caporaso, N., Elmasry, G., and Gou, P. (2021).Hyperspectral imaging techniques
for noncontact sensing of food quality. Ed. C. M. Galanakis (New York: Innovative
food analysis, E-Publishing Inc), 345–379.

Caporaso, N., Whitworth, M. B., and Fisk, I. D. (2018). Near-infrared
spectroscopy and hyperspectral imaging for non-destructive quality
assessment of cereal. Appl. Spectrosc. Rev. 53, 667–687. doi: 10.1080/
05704928.2018.1425214

Chen, P. F. (2020). Estimation of winter wheat grain protein content based on
multisource data assimilation. Remote Sens. 12, 3201. doi: 10.3390/rs12193201

Deng, L., Mao, Z. H., Li, X. J., Hu, Z. W., Duan, F. Z., and Yan, Y. N. (2018).
UAV-based multispectral remote sensing for precision agriculture: A comparison
between different cameras. ISPRS J. Photogrammetry Remote Sens. 146, 124–136.
doi: 10.1016/j.isprsjprs.2018.09.008

Dıáz, E. O., Kawamura, S., Matsuo, M., Kato, M., and Koseki, S. (2019).
Combined analysis of near-infrared spectra, colour, and physicochemical
information of brown rice to develop accurate calibration models for
determining amylose content. Food Chem. 286, 297–306. doi: 10.1016/
j.foodchem.2019.02.005

ElMasry, G., Mandour, N., Al-Rejaie, S., Belin, E., and Rousseau, D. (2019).
Recent applications of multispectral imaging in seed phenotyping and quality
monitoring–an overview. Sensors 19 (5), 1090. doi: 10.3390/s19051090

Feng, L., Chen, S. S., Zhang, C., Zhang, Y. C., and He, Y. (2021). A
comprehensive review on recent application of unmanned aerial vehicle remote
sensing with various sensors for high-throughput plant phenotyping. Comput.
Electron. Agric. 182, 106033. doi: 10.1016/j.compag.2021.106033

Fitzgerald, M. A., Bergman, C. J., Resurreccion, A. P., Moller, J., Jimenez, R.,
Reinke, R. F., et al. (2009). Addressing the dilemmas of measuring amylose in rice.
Cereal Chem. 86 (5), 492–498. doi: 10.1094/CCHEM-86-5-0492

Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in
landscape classification tasks over a range of moderate spatial scales. Int. J. Remote
Sens. 38 (5), 1312–1338. doi: 10.1080/01431161.2016.1278314

Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for
image classification. IEEE Trans. Systems Man Cybernetics 3 (6), 610–621. doi:
10.1109/TSMC.1973.4309314

Huang, H. P., Hu, X. J., Tian, J. P., Jiang, X. N., Sun, T., Luo, H. B., et al. (2021).
Rapid and nondestructive prediction of amylose and amylopectin contents in
sorghum based on hyperspectral imaging. Food Chem. 359, 129954. doi: 10.1016/
j.foodchem.2021.129954

Juliano, B. O., and Pascual, C. G. (1980). “IRRI research paper series,” in Quality
characteristics of milled rice grown in different countries, vol. V48. (Los Banos,
Laguna, Philippines: International Rice Research Institute), 1–25.

Larkin, P. D., and Park, W. D. (1999). Transcript accumulation and utilization of
alternate and nonconsensus splice sites in rice granule-bound starch synthase are
temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant
Mol. Biol. 40, 719–727. doi: 10.1023/A:1006298608408

Li, H., Prakash, S., Nicholson, T. M., Fitzgerald, M. A., and Gilbert, R. G. (2016).
The importance of amylose and amylopectin fine structure for textural properties
of cooked rice gra ins . Food Chem. 196, 702–711. doi : 10.1016/
j.foodchem.2015.09.112

Li, Z. H., Taylor, J., Yang, H., Casa, R., Jin, X. L., Li, Z. H., et al. (2020). A
hierarchical interannual wheat yield and grain protein prediction model using
spectral vegetative indices and meteorological data. Field Crops Res. 248, 107711.
doi: 10.1016/j.fcr.2019.107711

Liu, W., Dong, J., Xiang, K. L., Wang, S., Han, W., and Yuan, W. P. (2018b). A
sub-pixel method for estimating planting fraction of paddy rice in northeast China.
Remote Sens. Environ. 205, 305–314. doi: 10.1016/j.rse.2017.12.001

Liu, T., Li, R., Zhong, X. C., Jiang, M., Jin, X. L., Zhou, P., et al. (2018a). Estimates
of rice lodging using indices derived from UAV visible and thermal infrared
images. Agric. For. Meteorology 252, 144–154. doi: 10.1016/j.agrformet.2018.01.021

Madan, P., Jagadish, S. V. K., Craufurd, P. Q., Fitzgerald, M., Lafarge, T., and
Wheeler, T. R. (2012). Effect of elevated CO2 and high temperature on seed-set and
grain quality of rice. J. Exp. Bot. 63 (10), 3843–3852. doi: 10.1093/jxb/ers077

Park, Y., and Guldmann, J. M. (2020). Measuring continuous landscape patterns
with Gray-level Co-occurrence matrix (GLCM) indices: an alternative to patch
metrics? Ecol. Indic. 109, 105802. doi: 10.1016/j.ecolind.2019.105802

Roosjen, P. P. J., Brede, B., Suomalainen, J. M., Bartholomeus, H. M., Kooistra,
L., and Clevers, J. G. P. W. (2018). Improved estimation of leaf area index and leaf
chlorophyll content of a potato crop using multi-angle spectral data - potential of
unmanned aerial vehicle imagery. Int. J. Appl. Earth Observation Geoinformation
66, 14–26. doi: 10.1016/j.jag.2017.10.012

Ryu, C., Suguri, M., Iida, M., Umeda, M., and Lee, C. (2011). Integrating remote
sensing and GIS for prediction of rice protein contents. Precis. Agric. 12 (3), 378–
394. doi: 10.1007/s11119-010-9179-0

Sarker, L. R., and Nichol, J. E. (2011). Improved forest biomass estimates using
ALOS AVNIR-2 texture indices. Remote Sens. Environ. 115 (4), 968–977.
doi: 10.1016/j.rse.2010.11.010

Shu, Q. Y., Wu, D. X., Xia, Y. W., Gao, M. W., and McClung, A. (1999).
Calibration optimization for rice apparent amylose content by near infrared
reflectance spectroscopy (NIRS). J. Zhejiang Univ. (Agriculture Life Science) 25,
343–346.

Tewes, A., and Schellberg, J. (2018). Towards remote estimation of radiation use
efficiency in maize using UAV-based low-cost camera imagery. Agronomy 8 (2), 16.
doi: 10.3390/agronomy8020016

Wang, F. M., Yi, Q. X., Hu, J. H., Xie, L. L., Yao, X. P., Xu, T. Y., et al. (2021).
Combining spectral and textural information in UAV hyperspectral images to
estimate rice grain yield. Int. J. Appl. Earth Observation Geoinformation 102,
102397. doi: 10.1016/j.jag.2021.102397

Williams, V. R., Wu, W. T., Tsai, H. Y., and Bates, H. G.. (1958). Rice starch,
varietal differences in amylose content of rice starch. J. Agric. Food Chem. 6, 47–48.
doi: 10.1021/jf60083a009

Windham, W., Lyon, B. G., Champagne, E. T., Barton, F. E.II, Webb, B. D.,
McClung, A. M., et al. (1997). Prediction of cooked rice texture quality using near-
infrared reflectance analysis of whole-grain milled samples. Cereal Chem. 74 (5),
626–632. doi: 10.1094/CCHEM.1997.74.5.626

Wu, J. G., and Shi, C. H. (2004). Prediction of grain weight, brown rice weight
and amylose content in single rice grains using near-infrared reflectance
spectroscopy. Field Crops Res. 87 (1), 13–21. doi: 10.1016/j.fcr.2003.09.005

Yang, L. X., and Wang, Y. X. (2019). “Impact of climate change on rice grain
quality,” in Rice chemistry and technology, fourth ed, vol. pp . Ed. J. S. Bao (New
York: E-Publishing Inc. in cooperation with AACC International), 427–441.

Yue, J. B., Yang, G. J., Tian, Q. J., Feng, H. K., Xu, K. J., and Zhou, C. Q. (2019).
Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-
resolution image textures and vegetation indices. ISPRS J. Photogrammetry Remote
Sens. 150 (1), 226–244. doi: 10.1016/j.isprsjprs.2019.02.022
frontiersin.org

https://doi.org/10.1016/j.foodchem.2015.05.038
https://doi.org/10.1016/j.foodchem.2015.05.038
https://doi.org/10.1111/j.1365-2621.2001.tb08215.x
https://doi.org/10.1080/05704928.2018.1425214
https://doi.org/10.1080/05704928.2018.1425214
https://doi.org/10.3390/rs12193201
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.1016/j.foodchem.2019.02.005
https://doi.org/10.1016/j.foodchem.2019.02.005
https://doi.org/10.3390/s19051090
https://doi.org/10.1016/j.compag.2021.106033
https://doi.org/10.1094/CCHEM-86-5-0492
https://doi.org/10.1080/01431161.2016.1278314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.foodchem.2021.129954
https://doi.org/10.1016/j.foodchem.2021.129954
https://doi.org/10.1023/A:1006298608408
https://doi.org/10.1016/j.foodchem.2015.09.112
https://doi.org/10.1016/j.foodchem.2015.09.112
https://doi.org/10.1016/j.fcr.2019.107711
https://doi.org/10.1016/j.rse.2017.12.001
https://doi.org/10.1016/j.agrformet.2018.01.021
https://doi.org/10.1093/jxb/ers077
https://doi.org/10.1016/j.ecolind.2019.105802
https://doi.org/10.1016/j.jag.2017.10.012
https://doi.org/10.1007/s11119-010-9179-0
https://doi.org/10.1016/j.rse.2010.11.010
https://doi.org/10.3390/agronomy8020016
https://doi.org/10.1016/j.jag.2021.102397
https://doi.org/10.1021/jf60083a009
https://doi.org/10.1094/CCHEM.1997.74.5.626
https://doi.org/10.1016/j.fcr.2003.09.005
https://doi.org/10.1016/j.isprsjprs.2019.02.022
https://doi.org/10.3389/fpls.2022.1035379
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1035379
Zheng, H. B., Cheng, T., Zhou, M., Li, D., Yao, X., Tian, Y. C., et al. (2019).
Improved estimation of rice aboveground biomass combining textural and spectral
analysis of UAV imagery. Precis. Agric. 20, 611–629. doi: 10.1007/s11119-018-
9600-7

Zheng,H. B.,Ma, J. F.,Meng, Z., Li, D., Yao,X., Cao,W.W., et al. (2020). Enhancing
thenitrogensignalsof ricecanopiesacross critical growthstages through the integration
Frontiers in Plant Science 13
of textural and spectral information from unmanned aerial vehicle (UAV)
multispectral imagery. Remote Sens. 12, 957. doi: 10.3390/rs12060957

Ziska, L. H., Namuco, O., Moya, T., and Quilang, J. (1997). Growth and yield
response of field-grown tropical rice to increasing carbon dioxide and air
temperature . Agron. J . 89 (1) , 45–53. doi : 10 .2134/agronj1997 .
00021962008900010007x
frontiersin.org

https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.3390/rs12060957
https://doi.org/10.2134/agronj1997.00021962008900010007x
https://doi.org/10.2134/agronj1997.00021962008900010007x
https://doi.org/10.3389/fpls.2022.1035379
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Non-destructive monitoring of amylose content in rice by UAV-based hyperspectral images
	Introduction
	Materials and methods
	Study area
	Field experiment
	Data acquisition
	Determination of amylose content
	UAV-based hyperspectral image acquisition

	Image processing
	Extraction of textural measures
	Construction of spectral and textural indices

	Model development and evaluation

	Results and discussion
	Statistics of measured amylose content
	Estimation of amylose content based on spectral variables alone
	Relationship between amylose content and spectral reflectance at different growth stages
	Relationship between amylose content and spectral indices at different growth stages
	Estimation models based on spectral variables alone

	Estimation of amylose content based on textural information alone
	Relationship between amylose content and textural measures
	Estimation models based on textural variables alone

	Estimation of amylose content based on combined spectral and textural information
	Validation and comparison of amylose estimation models
	Discussion


	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


