AUTHOR=Wang Xiaodong , Du Jianming , Xie Chengjun , Wu Shilian , Ma Xiao , Liu Kang , Dong Shifeng , Chen Tianjiao TITLE=Prior knowledge auxiliary for few-shot pest detection in the wild JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1033544 DOI=10.3389/fpls.2022.1033544 ISSN=1664-462X ABSTRACT=

One of the main techniques in smart plant protection is pest detection using deep learning technology, which is convenient, cost-effective, and responsive. However, existing deep-learning-based methods can detect only over a dozen common types of bulk agricultural pests in structured environments. Also, such methods generally require large-scale well-labeled pest data sets for their base-class training and novel-class fine-tuning, and these significantly hinder the further promotion of deep convolutional neural network approaches in pest detection for economic crops, forestry, and emergent invasive pests. In this paper, a few-shot pest detection network is introduced to detect rarely collected pest species in natural scenarios. Firstly, a prior-knowledge auxiliary architecture for few-shot pest detection in the wild is presented. Secondly, a hierarchical few-shot pest detection data set has been built in the wild in China over the past few years. Thirdly, a pest ontology relation module is proposed to combine insect taxonomy and inter-image similarity information. Several experiments are presented according to a standard few-shot detection protocol, and the presented model achieves comparable performance to several representative few-shot detection algorithms in terms of both mean average precision (mAP) and mean average recall (mAR). The results show the promising effectiveness of the proposed few-shot detection architecture.