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Improving bitter pit prediction
by the use of X-ray fluorescence
(XRF): A new approach by
multivariate classification
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Bitter pit (BP) is one of the most relevant post-harvest disorders for apple

industry worldwide, which is often related to calcium (Ca) deficiency at the

calyx end of the fruit. Its occurrence takes place along with an imbalance with

other minerals, such as potassium (K). Although the K/Ca ratio is considered a

valuable indicator of BP, a high variability in the levels of these elements occurs

within the fruit, between fruits of the same plant, and between plants and

orchards. Prediction systems based on the content of elements in fruit have a

high variability because they are determined in samples composed of various

fruits. With X-ray fluorescence (XRF) spectrometry, it is possible to characterize

non-destructively the signal intensity for several mineral elements at a given

position in individual fruit and thus, the complete signal of the mineral

composition can be used to perform a predictive model to determine the

incidence of bitter pit. Therefore, it was hypothesized that using a multivariate

modeling approach, other elements beyond the K and Ca could be found that

could improve the current clutter prediction capability. Two studies were

carried out: on the first one an experiment was conducted to determine the

K/Ca and the whole spectrum using XRF of a balanced sample of affected and

non-affected ‘Granny Smith’ apples. On the second study apples of three

cultivars (‘Granny Smith’, ‘Brookfield’ and ‘Fuji’), were harvested from two

commercial orchards to evaluate the use of XRF to predict BP. With data

from the first study a multivariate classification system was trained (balanced

database of healthy and BP fruit, consisting in 176 from each group) and then

the model was applied on the second study to fruit from two orchards with a

history of BP. Results show that when dimensionality reduction was performed

on the XRF spectra (1.5 - 8 KeV) of ‘Granny Smith’ apples, comparing fruit with
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and without BP, along with K and Ca, four other elements (i.e., Cl, Si, P, and S)

were found to be deterministic. However, the PCA revealed that the

classification between samples (BP vs. non-BP fruit) was not possible by

univariate analysis (individual elements or the K/Ca ratio).Therefore, a

multivariate classification approach was applied, and the classification

measures (sensitivity, specificity, and balanced precision) of the PLS-DA

models for all cultivars evaluated (‘Granny Smith’, ‘Fuji’ and ‘Brookfield’) on

the full training samples and with both validation procedures (Venetian and

Monte Carlo), ranged from 0.76 to 0.92. The results of this work indicate that

using this technology at the individual fruit level is essential to understand the

factors that determine this disorder and can improve BP prediction of

intact fruit.
KEYWORDS
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1 Introduction

Bitter pit (BP) is considered one of the most relevant

postharvest disorders in the apple industry worldwide (Al

Shoffe et al., 2019). It occurs on a wide geographic range and a

significant number of cultivars (Bergmann, 1992; Volz et al.,

2006), causing major economic damage to growers and

exporters, as it develops progressively during storage (Lötze

and Theron, 2006). BP appears mainly in the subepidermal

tissue at the calyx end of the fruit, as internal corky lesions

(Jarolmasjed et al., 2016; Jemrić et al., 2016). It was first

described 150 years ago (Oberdieck and Lucas, 1869), and

remains as one of the most studied disorder of apples, except

for scald. In general terms, BP is associated with a localized

calcium (Ca) deficiency (Perring and Pearson, 1986; Ferguson

and Watkins, 1992; Saure, 2005; Fallahi et al., 2006; Fallahi et al.,

2010; Sharma et al., 2012; Espinosa-Zúñiga et al., 2017; Torres

et al., 2017) in association with an imbalance of other minerals,

most frequently nitrogen (N), potassium (K) and magnesium

(Mg) (Smock and Van Doren, 1937; Perring and Pearson, 1986;

Fallahi et al., 1997; Fallahi et al., 2006; Fallahi et al., 2010;

Jarolmasjed et al., 2016; Jemrić et al., 2016; Kalcsits, 2016; Al

Shoffe et al., 2019; Kalcsits et al., 2019; Torres et al., 2021).

Phosphorus (P), like Ca and Mg, have been found to accumulate

in pitted tissue (Chamel and Bossy, 1981).

Ca reaches the roots by mass flow (Jungk and Claassen, 1997)

and is translocated to the end of the vascular tissues (shoots, leaves

and fruits) by transpiratory flow throughout the xylem (Medrano

et al., 2007; López López et al., 2009). Exchangeable soil Ca is rarely

responsible for the occurrence of BP, at least not in temperate soils,

where it yields more than 50% of exchangeable soil cations (Ca, Mg,

K and Na) (Blume et al., 2016). Thus, Ca uptake and subsequent Ca
02
deficiency in fruit is not necessarily a consequence of soil Ca

restriction. Consequently, soil applications of Ca have not been as

effective in reducing BP in apples as foliar applications (Torres et al.,

2017), although in apple orchards planted in acid soils treated with

lime or gypsum, a decrease in BP has been observed (Wilms and

Basso, 1987). As the fruit develops, the contribution of the xylem to

the total inflow to the fruit decreases and the phloem flow increases,

implying less Ca delivery to the fruit (Lang, 1990). This loss of

xylem functionality, due to the fruit growth, disrupts water mass

flow, limiting the transport of Ca to the fruit, which has been

suggested to favor development of BP (Alarcón et al., 1998;

Miqueloto et al., 2014). Due to this, prediction of BP occurrence

by mineralogical analysis in fruit apples is carried out between 40

and 60 days after full bloom, before Ca is diluted up to 50% by fruit

growth (Peryea et al., 2007; Miqueloto et al., 2014).

Several factors predisposing and intensifying nutritional

imbalances at the limb/fruit level have been associated with BP

severity. For example, excessive tree vigor (Terblanche et al.,

1979; Baugher et al., 2017) due to an inappropriate rootstock/

cultivar combination in response to both soil (Sió et al., 1999;

Weibel et al., 2000; Biskup et al., 2003; Fallahi, 2012; Fazio et al.,

2013; Sió et al., 2018) and the environmental characteristics

(Goode and Ingram, 1971; Bergmann, 1992; Jemrić et al., 2016),

as well as the agronomic management that impacts on plant light

interception (Van Der Boon, 1980), nutrition (Fallahi et al.,

1997; Kim and Ko, 2004), crop load (Ferguson and Watkins,

1992; Volz et al., 1993; Tough et al., 1998; Volz and Ferguson,

1999; Telias et al., 2006; Seo et al., 2007), and fruit ripeness at

harvest (Al Shoffe et al., 2020).

Since BP damage often becomes evident after several months

of refrigerated storage (Conway et al., 2002; Jemrić et al., 2016)

and control methods are not always effective (Fernández et al.,
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2009), significant efforts have been committed to developing

methodologies for early prediction of the disorder. Fruit mineral

analysis and infiltration by Mg salts remain the most used

predictive tools, but with different levels of effectiveness

(Baugher et al., 2017). The former, is used to estimate Ca

content as well as its relationship with other nutrients. In

general this method has a low predictive capacity (10 – 40%)

given the need to compose the sample with more than one fruit

(Al Shoffe et al., 2019). Nevertheless, in a study where the

mineral concentration of the fruit was determined three weeks

before commercial harvest, it was concluded that (K+Mg)/Ca,

(N+K+Mg)/Ca or N/Ca ratios were highly correlated with the

occurrence of BP in ‘Honey Crisp` apples, which is a very

susceptible cultivar (Marini et al. , 2020). The main

disadvantage is the analysis based on a group of fruits, that

increases variability on the results. On the other hand,

infiltration by Mg salts has a more significant association with

BP (<70%), but is time consuming, destructive and difficult to

implement massively (Bangerth, 1974; Hopfinger and Poovaiah,

1979; Burmeister and Dilley, 1991; Retamales et al., 2000;

Retamales et al., 2001; Amarante et al., 2010; Torres et al., 2015).

The relevance of the relationship between K and Ca is well

known, and is of particular interest for the present study. For

example, Val et al. (1999) reported that the risk of BP increased

considerably when, between 80 – 100 d after full bloom, the ratio

in fruit increased above 25 and in leaf fell below two. Today, K/

Ca remains as a reference for any cultivar anywhere in the world

(Lötze et al., 2008; von Bennewitz et al., 2015; Espinosa-Zúñiga

et al., 2017). Recently, Prengaman (2021) proposed, as indicator

of BP occurrence, the nutrient content of apple juice, indicating

that K/Ca ratio explained about 70% of the variation in BP of

‘Honey Crisp’ samples. Although the K/Ca ratio could provide

valuable information for the industry, a high variability of Ca

and K content has been reported within the fruit as well as

between fruits on a plant (Wills et al., 1976; Ferguson and Triggs,

1990; Le Grange et al., 1998; Lötze and Theron, 2006).

Therefore, it is pertinent to study the problem at the

individual sample level and, ideally, using non-destructive

tools. Although some non-destructive approaches are not able

to determine the nutrient content (i.e. non-mineral approach),

they can estimate it. In this sense, proximal and non-proximal

remote sensing equipment, such as VIS/NIR/SWIR spectroscopy

(i.e., ~350 – 2,500 nm) are widely used to estimate the nutritional

status of plant tissues (Nicolaï et al., 2006; Kafle et al., 2016;

Jarolmasjed et al., 2017; Jarolmasjed et al., 2018; Mogollón et al.,

2021), mainly in leaves but also in other organs (Garcıá-Sánchez

et al., 2017). For example, spectral reflectance at fruit level was

useful in identifying BP-fruit, however, other lesions were

misclassified as BP (Nicolaï et al., 2006; Jarolmasjed et al., 2017).

Less developed in fruit research, X-ray fluorescence (XRF)

spectroscopy was designed for the semi-quantitative

measurement of mineral levels in different materials, thus with

potential to determine mineral elements and their ratios (e.g., K/
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Ca) (Espinosa-Zúñiga et al., 2017). Handheld XRF devices

accurately quantify the photon emission of elements with an

atomic weight greater than 28.1 (i.e., silicon, Si), which includes

Ca and K. Kalcsits (2016) demonstrated that XRF could be used

for non-destructive semi-quantitative determination of Ca and

K in apples and pears, and there was a significant high

correlations with mineralogical content coming from

traditional laboratory analysis; however, like others (Mohr and

Jamieson, 1984; Baugher et al., 2017), this work highlights that

beyond K/Ca, other elements are implicated in the occurrence of

the disorder. Therefore, it is hypothesized that using a

multivariate modeling approach, other elements in addition to

K and Ca could be found to improve the current predictive

capability of BP.
2 Material and methods

2.1 Apple fruit used for bitter pit prediction

Two studies were carried out as follows:

2.1.1 Study 1
A balanced database was generated with apples with and

without BP symptoms. For this purpose, during the 2018/19

season, Dole Chile Co. provided two groups of ‘Granny Smith’

apples from a commercial lot of refrigerated storage (5 months at

0°C and 90% RH): i) lot 1 with BP: 176 apples with medium and

severe epidermal incidence of BP (i.e., 3 – 5, and >5 pits,

respectively); and ii) lot 2 without BP: 176 apples with no

evidence of BP injury (i.e., no epidermal indication of BP or

other disorder). Since most of the BP damage is concentrated

towards the distal region of the fruit, the evaluations were

concentrated in the calyx area (Figure 1A-1). To determine the

variability associated with XRF measurements at fruit level, a

reproducibility study was conducted, in which six equidistant

points were measured along the calyx end of each pitted and

non-pitted fruit (Figure 1A-2).
2.1.2 Study 2
To predict the occurrence of BP, apples harvested from a

commercial orchard were used. The fruit were collected during

the 2019/20 season from two orchards with previous records of

medium to high BP incidence. The orchards are located in the

Maule Region – Chile: i) San Clemente (35°30’52” S; 71°26’42.8”

W): ‘Granny Smith’/MM9 and ‘Brookfield’/MM9, planted in 2011

(3.5 x 1.2 m; NW/SE orientation); and ii) Lontue (35°15’39” S; 71°

14’32.0” W): ‘Fuji’/MM9, planted in 2007 (4.5 x 1.5 m; NW/SE

orientation). Trees were trained under Solaxe system, with three

distinguishable productive floors, having the upper third a lower

amount of fruit and leaves compared to the inferior floors (i.e.,

lower and middle); the insertion of each branch into the trunk
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determined the floor to which fruit corresponded. Given that, in

previous seasons, more than 70% of the BP (developed after

storage) was found in the upper floor of the trees in these

orchards (data not shown), during the 2019/20 season, all fruit

from the upper floor of ten homogeneous trees of each orchard and

cultivar, were collected at harvest. The fruit were transferred to the

Postharvest Laboratory of the Universidad of Talca where elemental

composition was determined with a handheld XRF device by

measuring the calyx area of each fruit (Figure 1). After this,

apples were stored for 5 months at 0°C and 90% RH to induce

BP appearance. Upon storage removal, fruit were placed at room

temperature at 20°C for 10 d to accelerate the expression of the

disorder. The incidence and severity of BP were visually scored and

classified (Figure 1B) as undamaged (i.e., without evident damage

inside and outside the fruit) and damaged fruit (i.e., mild, medium,

and severe BP, consisting of<2; 3 – 5, and >5 pits, respectively), by

peeling all fruit at the calyx end.

The operation condition of the XRF instrument (Titan S1,

Bruker Elemental portable handheld X-ray fluorometer,

Kennewick, WA, USA) was a voltage of 21 kV, amperage of 40

µA, and 15 s of exposure. As proposed by Kalcsits (2016) to ensure

that as many X-rays bombard the sample, each apple was placed

with as much contact as possible with the instrument’s surface

(Figure 1C). Since the device is sensitive to X-rays with photon

energies above 1.5 keV, it is capable of simultaneously determining

chemical elements heavier than silicon (Si). Consequently, elements

other than K and Ca were studied at the same time; between 1.5 and

8 keV. The estimated penetration depth of X-rays is approximately

1 mm, and therefore, the elemental composition of skin and flesh

was determined (Kalcsits, 2016).
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2.2 Statistical data analysis and modelling
of the XRF signature

2.2.1 Ionomics characterization of ‘Granny
Smith’ fruit with BP (Study 1)

For the exploratory analysis of the complete XRF spectra, a

Principal Component Analysis (PCA) was carried out. The main

objective of PCA is to reduce many variables to a smaller set of

factors, named principal components (PCs) while retaining most

of the information from the original dataset (Wold et al., 1987;

Bro and Smilde, 2014). Briefly, the data matrix X (with n samples

and m variables) was decomposed according to equation (1),

where T(n,A) is the score factor matrix and P(m,A) is the loading

factor matrix for A components.

X n,mð Þ = T n,Að Þ · P
T
A,mð Þ Equation (1)

In this model, the scores represent the projection of n

samples on the reduced subspace of A dimensions, where A<

m. The critical parameters to be adjusted are the number of

principal components (PCs) and the preprocessing data analysis.

In this study, the number of PCs were determinate by full-cross

validation strategy and the preprocessing procedures considered

were mean-centering and autoscaling of spectral data.

For a quantitative understanding of such differences between

both BP groups the signal intensities of each element were

compared by ANOVA, cumulative frequency distribution and

box-and-whisker plots. For the particular case of K/Ca, two

approaches were developed: i) deconvolution of the K and Ca

peaks and subsequent calculation of the ratio (Kalcsits, 2016); and
FIGURE 1

Section of the fruit calyx (dashed red line) where the bitter pit is usually located (A-1) and where the reproducibility XRF study was performed at six
equidistant points (A-2); details of XRF measurement (B); bitter pit in fruit with no external symptoms, before (C-1) and after fruit peeling (C-2).
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ii) simple ratio, where the values measured by the equipment were

used directly (i.e., K and Ca without deconvolution).
2.2.2 Prediction of BP by multivariate XRF
signature modeling (Study 2)

For classification purposes of the fruit coming from orchards

with previous records of medium to high BP incidence, Partial

Last Squares Discriminant Analysis (PLS-DA) was considered.

The principal advantage of this method is to combine the

dimensionality reduction and discriminant analysis into one

algorithm, being especially useful to analyze high dimensional

data (Lee et al., 2018). Basically, a PLS-calibration model is built

between one X(n,m) data matrix and the Y(n,1) vector containing

the class labels of samples. The X(m,n) data matrix is decomposed

through the PLS algorithm that searches for latent variables

(LVs) with a maximum covariance with the Y-variable. Since

predicted values are quantitative, then samples can be classified

according to a rule, such as the labelling to the class

corresponding to the highest prediction. More detailed and

formal description of the algorithm is presented in a previous

publication (Barker and Rayens, 2003).

All data were analyzed by using commercial software

(Matlab, Mathworks Inc., MA, USA). For PCA and PLS-DA,

procedures were calculated by means of Guide to User Interface

(GUI) available in internet (https://michem.unimib.it/, last

revision: 30 March 2022) and written in MATLAB language

(Ballabio and Consonni, 2013; Ballabio, 2015).

Prior to supervised classification, data were explored by

means of PCA to remove anomalous samples, which were

identified based on extreme values of Q residuals and Hoteling

T2 (Bro and Smilde, 2014). The retained spectra were subjected

to PLS-DA models on autoscaling data and applied to

classification of samples classified in two groups: affected and

non-affected by BP. The best classification models were obtained

when fruit on the affected group excluded the mild category (i.e.,

only apples classified as moderate and severe incidence

were considered).

The performance to distinguish BP and non-BP fruits was

evaluated using the following classification measures (Ballabio

et al., 2018): sensitivity (Sn, ratio of correctly classified non-BP

samples), specificity (Sp, ratio of correctly classified BP samples),

and balanced accuracy (BA), which is the average of sensitivity

and specificity. Classification models were validated through two

different approaches: i) internal cross-validation (5 groups split

with the venetian blinds procedure); and ii) Montecarlo

validation based on 100 iterations (in each iteration 20% of

samples were randomly selected and used to test the

classification models).
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3 Results

3.1 Study 1: Determination of the K/Ca
ratio by XRF on fruit with and without
bitter pit

When the balanced data base of ‘Granny Smith’ apples with

and without BP was studied, the X-ray spectra (Figure 2) showed

that the most significant peaks corresponded to potassium (K:

3.31 and 3.59 keV), calcium (Ca: 3.69 and 4.01 keV), and

chloride (Cl: 2.68 and 2.82 keV); less intense peaks were found

for silicon (Si: 2.02 and 2.46 keV), phosphorus (P: 2.02 and 2.14

keV), and sulfur (S: 2.31 and 2.46 keV). For these spectra, the

most affected samples exhibited higher K intensity, while non-

affected apples showed higher Ca intensity (Figure 2).

Effectively, the analyzed spectra by a PCA model showed

that K (3.31 keV) and Ca (3.69 keV) peaks contributed with the

maxima variability for each component (Figure 3A). The

dispersion of these two signals, evaluated as standard deviation

and coefficient of variation, are shown in Supplementary Table 1.

The results evidenced that the random error for K and Ca

responses varied in the range of 10 to 25% (data not shown);

considering that instrument variation is lower than 10%, this

dispersion could be associated to heterogeneity within the apple

composition. Additionally, the score plot (Figure 3B) obtained

after PCA analysis shows a severe overlapping between samples

with and without BP, suggesting an important similarity

between spectral signature of the fruits.

Especially for the K/Ca ratio calculated after the element

deconvolution of the data matrix of ‘Granny Smith’, the results

showed a high variability in sound fruits (~5 – 23), differences

that almost doubled in the case of affected ones (the ratio ranged

from ~4 – 41) (Supplementary Table 1). Globally, 80% of the

fruit without BP had a K/Ca ratio of less than ~7, while in those

with BP, for the same ratio, the proportion was less than 24%

(Figure 4A); although with different scales, similar results were

found for K/Ca (Supplementary Table 1, and Figure 4B). From

same data base, the analysis of variance (Supplementary Table 1)

the cumulative frequency distribution and the box-and-whisker

plots (Figures 4C–H) of all potential identified elements

indicated that, except for Cl and partially for P (p=0.0931), the

rest of the elements differed between BP groups (p≤ 0.00001).

On the other hand, from a methodological point of view, no

differences were found among the six equidistant points at the

calyx-end for any of the elements demonstrating that

measurements at the calyx is consistent. Furthermore, no

significant interactions were found between the two factors,

indicating that the main difference between samples was due

to the BP presence/absence (Supplementary Table 1). K/Ca ratio
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significance was the same regardless of the way in which they

were calculated (deconvolution method vs direct ratio from

maximum K and Ca signals); also, a high association (R2 =

0.98) was found between both (Supplementary Figure 1).

The best PCA models were obtained after mean-centering

and using 4 or 5 components to reach explained variances higher

than 90%. As observed in Figure 3, the score plot resulted in

69.8% of explained variance for PC1 and 14.1% for PC2

(Figure 3A) and ~90% when PC3 was included. The more

explicative spectral region considers the characteristic region

of K, Ca, and Cl (i.e., 2.6 to 3.7 keV). Nevertheless, a significant

influence is observed for lower energy signals between 1.7 and

2.5 keV, typical for Si, S, and P.
3.2 Study 2 (field trials): Multivariate
classification of bitter pit disorder
by using XRF spectra on three
apple cultivars

All fruit from the upper section of the tree was harvested and

initially measured by XRF; from these samples BP developed on

18.4, 3.6, and 2.4% of ‘Granny Smith’, ‘Brookfield’ and ‘Fuji’

apples, respectively (average of ten trees), as detailed on Table 1.

For the XRF analyses, the spectra of the apples harvested in the

field (‘Brookfield’ and ‘Fuji’) (Supplementary Figure 2) were

similar to those of the records generated by the ‘Granny Smith’

balanced database (section 3.1), so they would provide similar

information and therefore be consistent with the objectives of

the multivariate modeling.
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In the same way as described for ‘Granny Smith’ apples on

section 3.1, the classification between samples (BP vs. non-BP fruit)

was not possible by univariate analysis (individual elements or the

K/Ca ratio). Therefore, multivariate approaches, using a selected

spectra region (1.5 to 4.95 keV), were evaluated. A preliminary

estimation showed that the classification of the different damage

levels on apple samples was not possible by using linear (LDA,

SIMCA and PLS-DA) and nonlinear (QDA and NNA)multivariate

models due to severe overlapping of the different classes. For this

reason, the classification between two groups: damaged- (including

moderated and severe damage) vs. undamaged-fruit was considered

for further analysis. This approach allowed to increase the balance

of data set (samples with severe BP are less abundant) and

improved the evaluated classification models. From the several

multivariate tested methods, the best results were obtained with

PLS-DA. For this, auto scaled preprocessing and 3 to 4 components

were required to explain over 80% of the variance. The PLS-DA-

scores obtained for ‘Granny Smith’ suggest a better separation

between sound and affected fruit (Figure 5A). In addition, the

higher PLS-DA-regression coefficients are obtained for first 300

channels, corresponding from 1.5 up to 4.95 keV (Figure 5B).

As expected, the more explicative spectral region considers the

characteristic section of K, Ca, and Cl (i.e., 3.0 to 4.0 keV).

Nevertheless, a significant influence is observed for lower energy

signals between 1.5 and 2.5 keV, typical for Si, S, and P. The same

consideration can be extended to the other cultivars because similar

results were obtained. Sensitivity, specificity, and balanced accuracy

of PLS-DA models for all cultivars, evaluated on the full training

samples and with both validation procedures (venetian blinds and

Montecarlo), ranged from 0.76 to 0.92 (Table 2).
FIGURE 2

General XRF spectra for ‘Granny Smith’ apple epidermis for fruit with (red) and without (blue) bitter pit; K and Ca peaks details in small graphic.
Similar spectra were found in the other cultivars.
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4 Discussion

Establishing a fruit orchard implies many agronomic decisions

(e.g., site selection, rootstock, cultivar, planting density, row

orientation, training system, irrigation system) that, along with

practical managements (nutrition, crop load, pruning, pollination),

will affect both, the vegetative and reproductive expression of the

plant; thus, also the incidence of physiological disorders as BP. In

the orchards of the present experiment, the BPwas foundmainly on

the upper production floor, where there was a lower amount of fruit

and leaves compared to the lower floors.

In older orchards, with planting frames such as the one studied

(i.e., 3.5 – 4.5m x 1.2 – 1.5 m), if there is no reasonable control of

vegetative expression, it is common to find an excess of leaves and

an uneven distribution of the leaf/fruit ratio within the plant. Since

Ca movement within the plant occurs through transpiration flow,

the number and distribution of leaves within the canopy should also

influence the location and accumulation of the element. Thus,

because microclimatic characteristics at each plant floor or branch

section vary between days (e.g., maximum water pressure deficit,

cloudiness, and incident radiation) and throughout the season (e.g.,

translational effects of the sun), the location of the clutter is difficult

to predict (Baugher et al., 2017). In the present study, the upper part

of the tree would be subjected to a more prolonged daily radiative

stress than in the lower floors, making Ca supply to that section of

the tree even more challenging, thus predisposing its fruits to

develop the disorder.

In the present study for all cultivars, the strongest signals in the

XRF spectrum (Figure 2) corresponded to K and Ca. Although the

K/Ca ratio is the most cited proxy related to the disorder, BP has

been characterized as an alteration of a more complex ionic content

of the damaged tissues, affecting other elements that are involved in

essential physiological processes (Simons and Chu, 1980; Chamel

and Bossy, 1981; Garrec, 1983; Baugher et al., 2017). Probably

because of that, quite often, predictions based on such ratio can be

erratic, as lots with relatively high Ca concentration (above 5 mg Ca

100 g-1 FW) may end up developing BP, whereas fruit below that
Frontiers in Plant Science 07
threshold don’t always do (Terblanche et al., 1980; Le Grange et al.,

1998; Lötze and Theron, 2006). The range of values on the elements

found in fruit with and without BP (both as cumulative frequency

distributions and box-plots, Figure 3), also evidenced this trend,

indicating that classification of the disorder is not possible using an

univariate approach (Figure 3B). Nevertheless, because of all above

discussed, more than the known relevance of the relationship

between K and Ca (i.e., fruits with BP symptoms use to have

higher K/Ca than those without BP), there is a need to study the

ionomics of the disorder, but at the individual fruit level.

In this sense, along with K and Ca, other four elements proved

to be involved in the occurrence of BP (i.e., Cl, Si, P, and S)

(Figure 3A). As it can be seen from PCA the first component (i.e., K,

Ca, and Cl peaks) indicates that all the samples with severe BP show

a major content of these elements. In contrast, the second

component has a negative influence of Cl and a positive influence

of Ca and K. In addition, the influence of less abundant elements,

such as Si (1.74 and 1.83 keV) and S (2.31 and 2.46 keV) appear

significant for the second and third components, suggesting a more

complex relationship between BP and fruit mineral composition.

Similar, Chamel and Bossy (1981) reported a high variability of P

and Cl in apples with and without BP, and a lower impact of S.

Likewise, Ca, K, Mg, and P concentrations were higher in those

apples that presented the disorder (Garrec, 1983; Al Shoffe et al.,

2014). Baugher et al. (2017) developed multiple regression models

for BP prediction in ‘Honey Crips’ apples, indicating that the best

two-variable-model included N/Ca ratio and shoot length (R2 =

0.68); when P, boron (B), S, Ca, and Mg/Ca were added to the

model, the coefficient of determination improved (R2 = 0.71). More

recently, Marini et al. (2020) evaluated different models to predict

BP on 17 `Honeycrisp´ apple orchards, concluding that the two-

variable model including B and Mg/Ca ratio was the best (R2 =

0.83), however, it seems to be not conclusive since in previous

season the best model containing N/Ca ratio and the shoot length

underestimate the BP incidence.

Despite the ability of the multivariate PCA model to

identify Si, P, S, Cl, K and Ca as potential elements involved
A B

FIGURE 3

Loading (A) and score (B) plots obtained with XRF-spectra of ‘Granny Smith’ apples with (blue) and without (red) bitter pit.
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FIGURE 4

Comparison of the cumulative frequency distributions and box-and-whisker plots of K/Ca ratio calculated by the deconvolution method
(decon) (A) and direct ratio (dr) (B) from maximum K and Ca signals, and the signal insensitivity of the mineral elements with the greatest
preponderance in ‘Granny Smith’ fruit with (red) or without (green) bitter pit: Si (C), P (D), S (E), Cl (F), K (G), and Ca (H).
TABLE 1 Number of total fruits used for ‘Granny Smith’-GS, ‘Brookfield’-BF and ‘Fuji’-FJ apples coming from commercial orchards for BP prediction.

Cultivar Total number of harvested fruits Fruit within each class after storage

Without BP With BP % of BP fruit

GS 5267 4296 971 18.4

BF 4375 4126 159 3.6

FJ 2899 2828 71 2.4
Frontiers in Plant Scienc
e 08
 frontiersin.org

https://doi.org/10.3389/fpls.2022.1033308
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Moggia et al. 10.3389/fpls.2022.1033308
in the disorder, there was no clear differentiation (i.e., strong

data overlapping) between BP severity samples (none,

moderate and severe symptoms, Figure 3B). Nevertheless,

when multivariate classification approaches (i.e., contrasting

fruit with vs. without BP) were considered, discrimination

between sound and BP affected fruit improved significantly;

for all cultivars, the sensitivity and specificity were higher than

0.76 for the training set, demonstrating that the models allowed

to correctly recognize at least 78% of the samples affected by BP

and reject the class “damaged” for at least the 76% of non-

affected samples. In addition, the balanced accuracy showing a

similar result, evidenced that the calibration model classifies

correctly over 77% of analyzed samples.

Finally, to improve the level of BP prediction, using this non-

destructive method, fruit could be examined periodically during

the season to determine their elemental content. This is special

important to supervise the effectiveness of Ca foliar applications.

In addition, due to the advancement of XRF technologies, new

instruments allow determining lighter elements such as N, B and

Mg (micro-XRF) which could further improve the predictive

power, considering their potential role on BP development.
Frontiers in Plant Science 09
5 Conclusions

The XRF reproducibility study in the calyx area of apple

shows the potential of this tool for the development of ionomics

at the individual fruit level. As a practical example, the easy

calculation of K/Ca compared to the deconvolution process of K

and Ca peaks would allow simplified monitoring of the K/Ca

ratio under field conditions.

As discussed, given the infinite combinations of factors that

influence the occurrence of BP (i.e., plant, climate, and

management), it isn’t easy to venture which branch or part of

it will produce fruit with more or less BP. Given the potential

that classification methods would have for BP prediction,

combining other databases that allow a more holistic

understanding of the problem (e.g., plant reflectance) is relevant.
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FIGURE 5

Score (A) and normalized intensity (B) plots for ‘Granny Smith’ apples coming from field trials, comparing non affected (blue) and affected (red) fruit.
TABLE 2 Classification measures (balanced accuracy, specificity, and sensitivity) obtained in fitting, cross validation (with 5 groups split in
Venetian blinds and Montecarlo approach) for the three apple cultivars (‘Granny Smith’-GS, ‘Brookfield’-BF, and ‘Fuji’-FJ).

Training samples Cross validation(5-fold) Montecarlo validation(20% out)

Cultivar LVs BA Sn Sp BA Sn Sp BA Sn Sp

GS 4 0.78 0.77 0.79 0.77 0.76 0.77 0.76 0.77 0.76

BF 4 0.84 0.82 0.87 0.82 0.82 0.82 0.81 0.82 0.80

FJ 3 0.87 0.83 0.92 0.81 0.84 0.77 0.81 0.83 0.79
fro
PCs, PLS-DA Latent variables. BA, average of sensitivity and specificity; Sn, Sensitivity; Sp, Specificity.
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Jarolmasjed, S., Zúñiga Espinoza, C., and Sankaran, S. (2017). Near infrared
spectroscopy to predict bitter pit development in different varieties of apples. J.
Food Meas Charact 11, 987–993. doi: 10.1007/s11694-017-9473-x
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