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Germination of soybean seed is the imminent vital process after sowing. The status

of plumular axis and radicle determine whether soybean seed can emerge

normally. Epicotyl, an organ between cotyledons and first functional leaves, is

essential for soybean seed germination, seedling growth and earlymorphogenesis.

Epicotyl length (EL) is a quantitative trait controlled by multiple genes/QTLs. Here,

the present study analyzes the phenotypic diversity and genetic basis of EL using

951 soybean improved cultivars and landraces from Asia, America, Europe and

Africa. 3VmrMLM was used to analyze the associations between EL in 2016 and

2020 and 1,639,846 SNPs for the identification of QTNs and QTN-by-

environment interactions (QEIs)”.A total of 180 QTNs and QEIs associated with

EL were detected. Among them, 74 QTNs (ELS_Q) and 16 QEIs (ELS_QE) were

identified to be associated with ELS (epicotyl length of single plant emergence),

and 60QTNs (ELT_Q) and 30 QEIs (ELT_QE) were identified to be associated with

ELT (epicotyl length of three seedlings). Based on transcript abundance analysis,

GO (Gene Ontology) enrichment and haplotype analysis, ten candidate genes

were predicted within nine genic SNPs located in introns, upstream or

downstream, which were supposed to be directly or indirectly involved in the

process of seed germination and seedling development., Of 10 candidate genes,

two of them (Glyma.04G122400 and Glyma.18G183600) could possibly affect

epicotyl length elongation. These results indicate the genetic basis of EL and

provides a valuable basis for specific functional studies of epicotyl traits.

KEYWORDS

genome-wide association analysis, single nucleotide polymorphism, candidate genes,
3VmrMLM, epicotyl length
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Introduction

Epicotyl length (EL), an important complicated and

agronomically trait, was significantly related to plant density

and sowing depth of soybean (Camargos et al., 2019). EL

exhibited the higher genetic variability at the early

developmental stages of soybean, especially at V2 and V3

development stages (Matsuo et al., 2012). EL also affected

plant height and yield of soybean (Hanyu et al., 2020). As a

typical quantitative trait, EL, with relatively high heritability

(more than 95%), was controlled by a few large-effect genes and

a series of polygenes (Chaves et al., 2017). EL was significantly

affected by environment, genotype their interactions (Chaves

et al., 2017; Hanyu et al., 2020). Several studies showed that

genetic and environmental variation approximately accounted

for half of experimental observation. Although EL has been

considered as the important feature of variety during the long-

term soybean breeding, development of soybean cultivar with

reasonable and stable EL through traditional selection method

was still difficult (Chaves et al., 2017). It required evaluation in

multiple environments over several years, and traditional

selection method was expensive, time-consuming and labor-

intensive (Chaves et al., 2017).

Molecular marker could effectively improve traditional

selection efficiency by increasing the allele’s frequency of

desirable quantitative trait loci (QTLs). Presently, linkage

analysis and association analysis, were two major strategies

utilized to identify QTLs of important traits in crops (Li et al.,

2020; Liu et al., 2020; Wang et al., 2021). Segregating population

based linkage analysis strategy is a well-known approach to obtain

QTLs, followed by fine mapping using larger secondary

population or other types of population with sufficient map

resolution, then candidate genes could be cloned for functional

characterization. (Dinka et al., 2007) mapped four additive QTLs

for the length of hypocotyl in soybean. However, none of EL QTLs

of soybean has been reported to date . Based on

diversegermplasms, Genome-Wide Association Study (GWAS)

take advantages of historical recombination events offered another

strategy to effectively fine map QTL with rapid decay of linkage

disequilibrium (LD) (Flint-Garcia et al., 2003). Due to the

advances in next-generation sequencing (NGS) technologies or

Chip with high-density SNPs, GWAS has been widely extensively

utilized to dissect genetic architecture of important traits in crops

including soybean, e.g. biotic stress (Zhao et al., 2015; Zhao et al.,

2017), abiotic stress (Zhang et al., 2015; Jia et al., 2017), yield-

related trait including seed weight (Yan et al., 2017), maturity time

(Contreras-Soto et al., 2017), and seed composition including seed

oil content (Cao et al., 2017; Li et al., 2018), seed protein content

(Zhang et al., 2019), tocopherol (Sui et al., 2020) and isoflavone

concentration (Wu et al., 2020). Liang et al. (2014) identified four

additive QTLs for the length of hypocotyl in soybean using linkage

analysis. However, no EL QTLs in soybean has been reported

to date.
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Since the establishment of mixed linear model (MLM)

method in genome-wide association studies (GWAS) (Zhang

et al., 2005; Yu et al., 2006; Kang et al., 2008), these methods

have proven to be useful in controlling for population structure

and relatedness of individuals. However, these methods are

computationally challenging for large datasets. Thus, a series

of fast MLM-based algorithms have been developed and widely-

used, such as CMLM (Zhang et al., 2010), EMMAX (Kang et al.,

2010), FaST-LMM (Lippert et al., 2011), and GEMMA (Zhou and

Stephens, 2012). In these methods, single marker genome

scanning was used to identify significant QTNs. This is involved

in multiple tests. To control false positive rate, Bonferroni

correction is frequently adopted. The stringent significant

criterion frequently results in the missing of some important

loci, especially in crop GWAS. To overcome this issue, several

multi-locus mixedmodel methods have been proposed and widely

used (Segura et al., 2012; Wang et al., 2016; Wen et al., 2017). As

we know, there are frequently three genotypes for each marker in

GWAS. Two effects should be estimated, while their polygene

backgrounds should be controlled. In most GWAS methods,

however, only one confound effect is estimated, while

its polygene background is controlled. To solve this issue,

recently, Li et al. (2022b) established a three-variance-

component mixed linear model framework, 3VmrMLM, to

identify QTNs, QTN-by-environment interactions (QEIs), and

QTN-by-QTN interactions under controlling all the possibly

polygene backgrounds.

Cytokinins and light can sometimes elicit similar

morphological and biochemical responses. In the absence of

light plant seedlings have long epi- or hypocotyls and appressed

leaves with the plastid development blocked at the stage of

etioplasts or amyloplasts. The l6 ight-i6 ndependent p6

hotomorphogenesis (lip1) mutant of pea shows many of the

characteristics normally associated with light-grown seedlings

when grown in complete darkness, such as expanded leaves, a

short epicotyl and partially developed chloroplast (Frances et al.,

1992). Chory et al. the effects of cytokinin treatment on epicotyl

growth inhibition of lip1 i n darkness are comparable to a

hypocotyl growth inhibition observed in Arabidopsis(Chory

et al., 1994), It appears that the effect of cytokinin on the

growth of the axis of young hypogeal (e.g., Arabidopsis) and

epigeal (e.g., pea) seedlings is similar. The phenotype of wild-

type Arabidopsis plants following cytokinin treatment is similar

to that of the amp1 mutant of Arabidopsis, suggesting that light

and cytokinin act through a common signaling pathway (Chory

et al., 1994; Seyedi et al., 2001). genetic analysis of Arabidopsis

has provided unequivocal evidence that the brassinosteroids

(BRs) are essential phytohormones (He et al., 2003).

Brassinolide (BL), an end product of campesterol oxidationis

is required for the regulation of cell elongation, stress response,

male fertility, pigment biosynthesis, and numerous other

developmental and physiological responses in higher plant

(Grove et al., 1979), The Arabidopsis CYP90A1 (constitutive
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photomorphogenesis and dwarfism, CPD) has been identified to

functions as the C-23 hydroxylase in the biosynthetic pathway of

brassinosteroids, and cpd mutant exhibited the most

pronounced effect in dwarf phenotype than another five

cytochrome P450 mutants. The biosynthetic model of BRs has

been clearly identified in Arabidopsis, we supposed a similar

model, It has been proved in 1998 that the transcription of

Arabidopsis CYP90A1 was negatively controlled by exogenous

brassinolide (Mathur et al., 1998).

To address above mentioned issues, 951 landraces and

cultivarsselected from Chinese primary core collection in the

Chinese National Soybean GeneBank (CNSGB), were

phenotyped for EL in 2016 and 2020, and genotyped by

1,639,846 SNPs in order to identify QTNs, QEIs, and their

candidate genes for EL in soybean.
Materials and method

Plant materials, filed trials and epicotyl
length evaluations

To construct a diversity panel of EL, a total of 951 landraces

was selected from more than 20,000 samples, which delegated

much of the representatives of diversity of the collection at the

Chinese National Soybean GeneBank (CNSGB). These tested

materials were planted with the single row plots (3-m long and

0.35-m between rows), which was performed with the

completely randomized design and three replications in Sanya,

Hainan China in 2016 and 2020.

A total of 3 randomly selected plants from each plot were

phenotyped for EL by measuring the distance between the

cotilenodary knot and the unifoliate leaves pair knot using

vernier caliper.
DNA isolation and genome sequencing

The genomic DNA of each tested samples were isolated from

fresh leaves of a single plant, and then resequenced. Sequencing

libraries were constructed based on TruseqNano® DNA HT

sample preparation Kit (Illumina USA), and index codes were

added to attribute sequences to each accession according to the

method described by (Li et al., 2020a). The Illumina Hiseq X

platform was used to analyze the libraries of these samples. A

total of 10.58 Tb raw sequences with 150-bp read length, were

obtained. After sequence quality filtering, the clean read of all

tested samples, were aligned to soybean reference genome via

Short Oligonucleotide Alignment Program 2 (SOAP2) software.

The SNPs were calling based on MAF ≥ 0.05. The genotype was

regarded as heterozygous if the depth of minor allele/the total

depth of the sample was more than 1/3.
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Population structure evaluation and
linkage disequilibrium (LD) analysis

The population structure of GWAS panel were evaluated

based on principle component analysis (PCA) programs of

Software package GAPIT (Lipka et al., 2012). LD was called

with SNP (MAF ≥ 0.04 and missing data ≦ 10%) based on

TASSEL version 3.0 (Bradbury et al., 2007).
Association analysis of epicotyl
length of soybean

A total of 1,639,846 SNPs from 951 landraces samples were

utilized to detect association signals of EL in soybean. Imputed

genotype of total sample panel was first transformed in to *.fam,

*.bed, and *.bim format, ELS and ELT in two different

environments were adopted as phenotype, evolutionary

population structure encoded as B (Landrace) and C (Improved

cultivar), and kinship were employed as covariates for multi-

environment joint analysis with significant level of 0.01 using

IIIVmrMLM software of Li et al. (2022b); Li et al. (2022c).

Linkage disequilibrium (LD) of 250kb up- and down-stream of

significantly associated SNP were calculated by PLINK1.9, and

threshold of regional average LD > 0.9 was used to define

credible associated region. Functional annotation of candidate

genes was performed based on annotation by phytozome (https://

phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1).
Definition and verification of
candidate genes

Then SNP variations in the coding region of candidate genes

were analyzed to screen candidate genes with mutation type of

nonsynonymous, stoploss, stopgain, or alternative splicing. To

further screen candidate genes, fixation index (FST) was

calculated by published genome sequences data of 2214

soybeans (Li et al., 2022d) using vcftools (0.1.13) with window

size of 100bp, and coding regions with FST ≥ 0.6 were regarded as

potential domestication gene (Song et al., 2013). Subsequently,

spatial and temporal expression of candidates were analyzed

using publicly available soybean transcriptome integration

dataset (Yu et al., 2022). Functional annotations of all

candidate genes were performed based on the SoyBase

database (http://www.soybase.org) and the Kyoto Encyclopedia

of gene and genomes (KEGG).
Haplotype analysis

Gene region were defined using *.gff, regional genotype of

hapmap diploid were extracted from imputed genotype,
frontiersin.org
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then haplotypes were inferred based on regional genotype

classified according to its location relative to the gene

structure. Significance of traits between different haplotypes

were performed by Kruskal-Wallis (P<0.01) (Theodorsson,

1986). Haplotype TCS network was inferred using PopART

(Bandelt et al., 1999; Clement et al., 2002; French et al., 2014).

Geographic mapping of different haplotypes was performed

using R scripts.
Results

Distribution of the landraces used
in the experiment

Globally, the improved cultivars selected for the experiment

mainly comes from America and Asia, with few from Europe

and Africa. Landraces were all obtained from Asia (Figure 1). To

better understand the genetic architecture of these germplasms,

geographical distribution and ecological types were taken into

account for classification. Both domestic and foreign varieties

can be divided into southern (SR), northern (NR) and central

(HR) varieties, namely domestic varieties (SR, HR, NR) and

foreign varieties (WDD_SR, WDD_HR, WDD_NR). Domestic

NR sources are the maximum, and foreign WDD_HR varieties

account for more than half of the total foreign varieties

(Figure 2A and Table S1). According to ecological types,

domestic cultivars can be divided into northeast spring type

(NESp), northern spring type (NSp), Huang-huai spring type

(HSp), Huang-huai summer type (HSu), Southern spring

type (SSp), Southern summer type (SSu) and Southern

autumn type (SAu), with NESp ranking the first place. The

selected foreign varieties were mainly divided into spring type

(WDD_Sp) and summer type (WDD_Su), and the quantity of

WDD_Sp was twice as much as WDD_Su (Figure 2B and Table

S2). These results demonstrated that nearly 80% of the varieties
Frontiers in Plant Science 04
used in the experiment came from China, and 60% of the

varieties obtained abroad were spring varieties in the

central region.
Statistical analysis for inflorescence
length of the association panel

The EL of 951 landraces in Sanya, Hainan China in 2016 and

2020, were evaluated, respectively. The skewness and kurtosis of

EL the three environments were less than ±1, which exhibited a

continuous variation and the near normal distribution (Table

S3). Therefore, EL of the association panel in this study,

were appropriate.
Distribution of SNPs and analysis of
mapping population

Based with the frequency > 0.05 as the minor allele and the

missing data less than 0.03, a total of 1,639,846 single nucleotide

polymorphisms (SNPs) were unevenly distributedon 20

chromosomes of soybean genome. with a density of578.8 bp

per SNP on average, and varied from 337.3bp~1334.4bp per

SNP. In detail, there were 168,498 SNPs on Chr1 with the

highest density (337.3bp/SNP), 31,650 SNPs on Chr5 with

lowest density (1334.4bp/SNP). (Figure 3). Based on these

SNPs, principal component analysis and phylogenetic analysis

were performed on the association panel. The results showed

that the first PCs explained 24.52% of the genetic variation, the

951 varieties were divided into two categories with apparent

discrepancy of genetic relatedness (Figure 4). For a preferably

clearer study of epicotyl traits, they were also divided into two

categories, ELS and ELT. Statistical methods were used to test

that ELS and ELT showed normal distribution in different

environments among varieties (Figure 5).
FIGURE 1

The geographical distribution of the tested accessions.
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Quantitative trait nucleotide associated
with epicotyl length-related traits
by GWAS

QTN (Q) and QTN-by-environment interaction (QEI)

detection method in the 3VmrMLM was used to analyze SNP-

trait associations in two EL two-environment datasets, ELS

(2016 and 2020) and ELT (2016 and 2020). A total of 180

QTNs and QEIs associated with epicotyl length were detected.

Among them, 74 QTNs (ELS_Q) and 16 QEIs (ELS_QE) were

identified to be associated with ELS, and 60 QTNs (ELT_Q) and

30 QEIs (ELT_QE) were identified to be associated with ELT.
Frontiers in Plant Science 05
Figure 6 Of these , three s i tes (Gm_09_28400545,

Gm_11_31100989, Gm_19_557643) could be found in all

these four result datasets (Table S4).
Prediction of candidate genes for
epicotyl length traits

We performed candidate gene prediction analyses with peak

SNP of ±100 kb based on the physical locations of 180 SNPs

associated with epicotyl length. A total of 1945 genes were

included in these regions (Table S4). Functional annotation of
FIGURE 3

Distribution of SNP markers among 20 chromosomes.
BA

FIGURE 2

951 species construct phylogenetic tree according to geographical distribution and ecological type. (A) Variety Geographical Distribution
Evolutionary Tree. WDD_: Oversea_; NR: Northern Region; HR: Central Region; SR: Southern Region (B) Variety Ecotype Evolutionary Tree. SAu,
Southern autumn soybean; SSp, Southern spring soybean; HSp, Huanghuai summer soybean; SSu, Southern summer soybean; HSu, Huanghuai
summer soybean; NSp, Northern spring soybean; NESp, Northeast Spring Soybeans; WDD_Su, Oversea summer soybean; WDD_Sp, Oversea
spring soybean.
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1945 genes were completed by using Arabidopsis annotation

information. site contribution rate, Transcription abundance of

candidate genes in epicotyl of two representative soybean

germplasms including cultivar Williams 82 with a long

epicotyl of 3.93 cm and cultivar Jack with a short epicotyl of

2.13 cm were analyzed using publicly available soybean

transcriptome integration dataset (Yu et al., 2022). By

comparing the epicotyl lengths of Williams 82 and Jack, a very

significant difference was found (Figures 7A, B). Based on the

transcriptome data of epicotyls from Williams 82 and Jack, 585

out of 1945 genes were not expressed in both epicotyls of

Williams 82 and Jack, 94 genes were expressed only in the

epicotyl of Jack and 60 genes were expressed only in the epicotyl

of Williams 82. A total of 1206 genes were expressed in both

epicotyls of Williams 82 and Jack, of them, 157 genes were

significantly differentially expressed in Williams 82 and Jack.

Combined with Arabidopsis annotation information, 103 genes

were identified as potentially candidate genes for epicotyl length
Frontiers in Plant Science 06
(Table S5, Figure 7C). These differentially expressed genes in

long and short epicotyl cultivars might be related to the length of

epicotyl of soybean.

To further elucidate whether the differentially expressed genes

were related to the length of the epicotyl, GO enrichment analysis

was performed (http://amigo.geneontology.org/). GO enrichment

analysis showed all genes were assigned to one of three GO

categories: biological process (BP), molecular function (MF),

and Cellular component (CC) (Figure 8).

Further, haplotype analysis was performed for 103 potentially

candidate genes screened by the above analysis. epicotyl

In order to determine the role of the selected potential genes

in soybean epicotyl growth, 22 potential candidates were screened

by combining gene GO annotation and transcriptome differential

expression analysis, and referring to Arabidopsis annotation

information. Haplotype analysis identified 10 significantly

different genesepicotyl. The Hap1 and Hap2 of Glyma.01G005900

in different years of ELS(P=0.0039) and ELT (P=0.039)showed
BA

FIGURE 5

ELS and ELT phenotype distriution. (A) ELS phenotypes at different ages (B) ELT phenotypes at different ages.
BA

FIGURE 4

(A) Population structure of soybean germplasm. (B) Heatmap of the kinship matrix of the 951 soybean accessions.
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extremely significant differences (P<0.01). The Hap1 and

Hap3 of Glyma.18G183600(2016_ELS P=1.1e-09; 2020_ELS

P=0.00013; 2016_ELT P=3.4e-06; 2020_ELT P=0.69),

Glyma.18G185300(2016_ELS P=0.0083; 2020_ELS P=1.2e-08;

2016_ELT P=0.02; 2020_ELT P=0.0031), exhibited extremely

significant differences (P<0.01), while the Hap1 and Hap3

of Glyma.01G050100(2016_ELS P=4.4e-05; 2020_ELS P=0.0021),

Glyma.04G122400(2016_ELS P=1.6e-08; 2020_ELS P=0.0006),

Glyma.18G183600(2016_ELS P=1.1e-09; 2020_ELS P=0.00013) in

different years of ELS had a very significant difference in 2016

(P<0.01), but there was no significant difference in 2020. The

candidate gene Glyma.18G185300 showed a very significant

difference in the two years of EL (P<0.01), and the ELT revealed

a significant difference in 2016(2016_ELT P=0.02) and showed a

very significant difference in 2020(2020_ELT P=0.0031) (Figure 9).

Meanwhile, we counted the variation sites of 10 gene

haplotypes (Table S7). The results demonstrated that

Glyma.04G122400, Glyma.10G031900 and Glyma.18G183600 exist

in exon variation sites, of which Glyma.04G122400 and

Glyma.18G183600 exist non-synonymous mutations, hence, we

speculate that Glyma.04G122400 and Glyma.18G183600 are

candidate genes for epicotyl differences. At the same time, we

combed the geographical origin of the two gene haplotypes

and the distribution of variety characteristics. From the

geographical distribution, we could see that Hap1, Hap2, Hap3

and Hap4 haplotypes of the two candidate genes were absolutely

dominant in the selected varieties. In terms of ecological

characteristics of cultivars, Hap1 and Hap2 haplotypes of the two

genes accounted for more than Landrace haplotypes in improved

cultivars (Figure 10).

We predicted ten plant growth-related genes, namely

Glyma.03G142200 (Ribosomal protein S10p/S20e family
Frontiers in Plant Science 07
protein), Glyma.04G122400 (DCD domain protein),

Glyma.04G145000 (nuclear factor Y, subunit B13),

Glyma.10G0319000 (indole-3-acetic acid 7), Glyma.10G056000

(SAUR-like auxin-responsive protein family), Glyma.13G270800

(ubiquitin-conjugating enzyme 35), Glyma.17G005900

(Pollen Ole e 1 allergen and extensin family protein),

Glyma.17G18500 (NAC domain containing protein

83), Glyma.18G183600 (far-red elongated hypocotyl 1),

and Glyma.18G255300 (thioredoxin H-type 5). These

results suggest that soybean epicotyl length may be regulated

by multiple signaling pathways (Table 1).Additionally,

none of these 10 cadidates were identified to be differentiated

among wild soybean, landrace and improved cultivar

(Figure S1).
Discussion

As an important feature of soybean variety, many studies

indicated that EL affected 43.12% of seeds germination

and 57.12% of seedlings emergence for soybean (Hanyu et al.,

2020) estimated the genotypic determination coefficient

of EL was more than 80% regardless of the evaluation

period. (Matsuo et al., 2012) also obtained similar results.

The genotypic determination coefficient was significantly

related to inheritability, thus, it made the inference

about genotypes possible (Vasconcelos et al., 2012; Hanyu

et al., 2020). Through screening a large enough and

reasonable gene database from more than 20,000 varieties,

the SNPs and potential genes related to epicotyl traits

were analyzed by GWAS technology. By elucidating

the epicotyl related loci, it has a potential role in the study of
BA

FIGURE 6

Results of association mapping of soybean epicotyl length traits. (A) Manhattan plot of locus distribution; (B) phenotype fitting results.
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FIGURE 8

Functional categories of the genes in 100kb flanking regions around peak SNPs.
B

C

A

FIGURE 7

Epicotyl length of Williams82 and Jack and expression analysis of 103 candidate genes. (A) Epicotyl phenotype of W82 and Jack (B) Epicotyl
Length Analysis of W82 and Jack (C) Transcriptome alignment of 103 candidate genes.
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early seed germination, seedling germination and stem strength

of soybean.

To date, many seedling crop traits have been studied and

elucidated, but epicotyl traits have been largely ignored and

poorly studied. Four of Chr.2, Chr.4, Chr.7 and Chr.10 were

identified in the F2 population of adzuki bean “Tokei1121”

(T1121, long epimorph) and cultivar “Erimo167” (ordinary

ectomorph) with EL associated SNP) (Mori et al., 2021). There

are no reports on EL-related SNP sites in other plants. The

genetic mechanism of the hypocotyl length trait (HL) has been
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extensively studied. SNP mapping of soybean root-related traits

at seedling stage revealed that HL is regulated by multiple

additive genes. Seven QTLs in HL associated with seedling

photomorphology were identified by using recombinant inbred

(RIL) populations obtained from biparental crosses between

Patagonia (Pat) and Colombia (COL0) (Matsusaka et al.,

2021). Compound spacer and epitaxial array localization

methods were also used to identify HL loci associated with

light-responsive quantitative traits (Wolyn et al., 2004). To

pinpoint trait-associated loci, the combination of GWAS and
FIGURE 9

Genotyping of potential gene.
BA

FIGURE 10

Haplotype analysis of candidate genes (A) distribution of geographical origin (B) distribution of cultivar characteristics.
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transcriptome can be used to identify major genes affecting HL

(Luo et al., 2017). These studies suggest that hypocotyl play a

role in root growth and photomorphological responses. (Huang

et al., 2006) studied the regulatory effect of brassinolide on

epicotyl under low temperature conditions by proteomics. How

xylan content in the gravitational bending direction of the

epicotyl of adzuki bean affects its internal xylan content

(Ikushima et al., 2008). Inhibitory effect of red light of the

active form of phytochrome (Pfr) on epicotyl elongation in

pea seedlings (Okoloko et al., 1970). These indicate that

epicotyl play a non-negligible role in a variety of crops,

especially dicotyledonous crops. Faced with this situation, this

study used the soybean EL association panel to analyze the

natural variation of epicotyl length and the related genetic

structure, and analyzed the Hypothetically revealing a set of

candidate genes controlling epicotyl development by GWAS

analysis is undoubtedly a key step in filling in the relevant loci

for epicotyl trait mapping.
Putative genes involved in
epicotyl length

Through the Arabidopsis annotation information, candidate

gene phenotype contribution rate, and combining with Yu et al.

(2022) Williams 82 and Jack transcriptome results of extremely

different genes, we screened 22 potential genes from 103

hypothetical genes. These genes are located in SNP peak

within 100Kb.10 significantly different candidate genes were

identified by haplotype analysis, these genes were genotyped

significantly and distinctly of ELS and ELT. Glyma.03G142200 is

a Ribosomal protein S10p/S20e family protein, proteins involved

in photosynthesis (Bah et al., 2010). Wycoff found that a lectin

protein, analogous to ribosomal proteins, is detected in roots,

hypocotyls and leaves and involved in soybean nodule formation

(Wycoff et al., 1997).

Glyma.04G122400 DCD (Development and Cell Death)

domain protein, thought to be involved in the hypersensitive
Frontiers in Plant Science 10
response and programmed (Ludwig and Tenhaken, 2001,

Enhaken et al., 2005), In previous studies, DCD domain

proteins was believed to be involved in extracellular matrix or

cytoskeleton proteins involved in growth and differentiation

processes (Ichinose et al., 1990, Massimiliano et al., 2007).

Glyma.04G145000 nuclear factor Y, subunit B13, Nuclear

factor Y is one of the largest transcription factor gene families in

plants, The NUCLEAR FACTOR Y (NF-Y) transcription factors

are heterotrimeric complexes composed of NF-YA and histone-

fold domain (HFD) containing NF-YB/NF-YC (Siriwardana

et al., 2016), NF-Y subunits are emerging as transcriptional

regulators with essential roles in diverse plant processes (Zanetti

et al., 2010). playing key roles in development and in response to

adverse environmental conditions (Nelson et al., 2007; Li et al.,

2008)AtNF-YB6 (L1L) and AtNF-YB9 (LEC1) are involved in

embryo development in seeds (Yamamoto et al., 2009).

Overexpression of PdNF-YB7 in Arabidopsis exhibited earlier

seedling establishment, longer primary roots, larger leaf areas,

and increased photosynthetic rate that conferred drought

tolerance and improved WUE in transgenic plants. In

Arabidopsis, AtNF-YB3 plays an important role in the pro-

motion of flowering specifically under inductive long-day

photoperiodic conditions. Consistent with this, the

overexpression of PdNF-YB7 in Arabidopsis caused earlier

seedling germination time and enhanced the development of

both vegetative and reproductive organs (Xiao et al., 2013), also

found that overexpression of AtNF-YB2 enhanced primary root

elongation due to a faster cell division and/or elongation(Ballif

et al., 2011)

The soybean epicotyl is the basis for the formation of true

leaves after seed germination, which ensures the normal

development of seedlings, and the synthesis of related

hormones is also important. The Glyma.10G056000 and

Glyma.17G005900 encoding SAUR-like auxin-responsive

protein and allergen and elongation protein, respectively, are

annotated through multiple omics networks in the Arabidopsis

genome (Depuydt and Vandepoele, 2021). Glyma.10G031900

encodes an indole-3-ACID 7 protein that functions as the
TABLE 1 Gene based association of candidate genes.

Chr. Physical position (bp) Gene model Trait R2 (contribution rate) Pvalue Functional annotation

3 35863419 Glyma.03G142200 ELT_Q 0.5768 6.09167E-21 Ribosomal protein S10p/S20e family protein

4 15439303 Glyma.04G122400 ELT_Q 0.4336 8.01377E-07 DCD (Development and Cell Death) domain protein

4 26351924 Glyma.04G145000 ELS_Q 0.2279 4.20387E-22 nuclear factor Y, subunit B13

10 2738580 Glyma.10G031900 ELS_Q 0.5234 1.14306E-11 indole-3-acetic acid 7

10 5143580 Glyma.10G056000 ELT_Q 0.5294 5.84009E-32 SAUR-like auxin-responsive protein family

13 37284883 Glyma.13G270800 ELT_Q 1.5012 7.02497E-35 ubiquitin-conjugating enzyme 35

17 637613 Glyma.17G005900 ELT_Q 0.5942 5.10164E-10 Pollen Ole e 1 allergen and extensin family protein

17 23689587 Glyma.17G185000 ELS_Q 0.7863 4.96905E-13 NAC domain containing protein 83

18 44381201 Glyma.18G183600 ELS_QEI 2.1064 1.12718E-32 far-red elongated hypocotyl 1

18 44381201 Glyma.18G185300 ELS_QEI 2.1064 1.12718E-32 one helix protein
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principal component of the ABA-and auxin dependent reactions

during post-germination seed growth (Belin et al., 2009).

Glyma.13G270800 ubiquitin-conjugating enzyme 35, Previous

studies have shown that ubiquitination plays important roles in

plant abiotic stress responses, Protein ubiquitinations play

crucial roles for numerous cellular processes such as cell

growth, development, and response to diverse biotic and

abiotic stresses. (Takahashi et al., 2009; Zhou et al., 2010), The

ubiquitin-depen-dent protein degradation pathway is involved

in photo-morphogenesis, hormone regulation, floral homeosis,

senescence, and pathogen defense (Suzuki et al., 2002; Devoto

et al., 2003).

Glyma.17G185000 NAC domain containing protein 83, The

NAC (for NAM-ATAF1/2-CUC2) transcription factors constitute

one of the largest transcription factor families in plant genomes

(Ooka et al., 2004; Olsen et al., 2005b). Roles of many NAC

transcription factors have been demonstrated in diverse develop-

mental processes and plant responses to biotic and abiotic stresses,

such apical meristem formation (Hibara et al., 2003), cell cycle

control (Kim et al., 2006), AtNAC2 functioning in root

development (He et al., 2005). cell divi-sion (Riechmann et al.,

2000; Kim et al., 2006), NTM2 inte- grates auxin and salt signals in

regulating Arabidopsis seed germination (Park et al., 2011), In

Arabidopsis thaliana, 105 genes are predicted to encode NAC

proteins (Ooka et al., 2004). Song et al. study found The highly

homologous NAC transcription factors ANAC060, ANAC040 and

ANAC089 regulate important transitions in the early phases of plant

development. All three genes play a role in the interplay between the

environment and the developmental switch that results in

germination and/or seedling development (Song et al., 2022). For

germinationandseedlingdevelopment tooccur, theproteinhas tobe

released from the membrane, which for ANAC089 was shown to be

directly affected by changes in the cellular redox status (Albertos

et al., 2021).

Glyma.18g183600 far-red elongated hypocotyl 1,

Phytochrome A (phyA) is the primary photoreceptor for

mediating the far-red high irradiance response in Arabidopsis

thaliana.FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and

its homolog FHY1-LIKE (FHL) define two positive regulators in

the phyA signaling pathway (Shen et al., 2009). Most abundant in

young seedlings in the dark.encodes FHY1 protein that mediates

the transfer of phytochrome A (phyA) to the nucleus.

Phytochrome A (phyA) acts as red and far red (FR) sensing

photoreceptors to regulate plant growth and development

(Helizon et al., 2018). Multiple metabolic pathways are required

to regulate the length of soybean epicotyl (Clouse et al., 1992; Hao

et al., 2014).

Glyma.18G185300 one helix protein, The cellular functions of

two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1

and OHP2 (also named LIGHTHARVESTING-LIKE2 [LIL2] and

LIL6, respectively, because they have sequence similarity to light-

harvesting chlorophyll a/b-binding proteins), OHP1 and OHP2

play an essential role in chloroplast development as well as in
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vegetative growth, The photosynthetic capacity of ohp1-1 and

ohp1-2 mutants also was decreased significantly (Myouga et al.,

2018).The protein is localized to the thylakoid membrane and its

transcript is transiently induced by exposure to high light

conditions. increased expression of OHP1 is observed under

light stress (Jansson et al., 2000). may constitute a novel

mechanism of photoprotection in the plant photosynthetic

apparatus (Psencik et al., 2020).

We speculate that traits during soybean domestication are

gradually selected, and the priority traits are yield-related traits,

such as seed size, oil content, and protein content (Wang et al.,

2020). The epicotyl length involved in this study is not a major

direct yield trait and therefore demonstrated weak signal of

domestication selection.

In general, It is certain thatmost of the above candidate genes are

related to the regulation of light and temperature, For example, the

candidate gene Glyma.18G183600 is a phytochromeA (phyA) gene,

which is the main photoreceptor mediating the far-red high-

irradiation response in Arabidopsis. Cellular function of

Glyma.18G185300 with sequence similarity to light-harvesting

chlorophyll a/b binding protein, Glyma.03G142200 is a protein

involved in photosynthesis, and the analysis results show that they

are all involved in the growth and development of soybean epicotyl.

This is consistent with the results that soybean epicotyl length is

greatly affected by different environments. These results can be

reflected from the haplotype analysis of ten candidate genes, which

can be reflected in the significant differences in different

environments (Figure 9).epicotyl However, further functional

verification is needed to clarify the whole mechanism of action.

More importantly, since the epicotyl is located in the country of

cotyledons and true leaves, it is not only involved in seed germination

and seedling growth, but also affects early morphogenesis of

seedlings. Understanding and regulating the molecular regulatory

network of epicotyl length has important guiding significance for

crop breeding.
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