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Climate change impedes plant
immunity mechanisms

Seungmin Son and Sang Ryeol Park*

National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
Rapid climate change caused by human activity is threatening global crop

production and food security worldwide. In particular, the emergence of new

infectious plant pathogens and the geographical expansion of plant disease

incidence result in serious yield losses of major crops annually. Since climate

change has accelerated recently and is expected to worsen in the future, we

have reached an inflection point where comprehensive preparations to cope

with the upcoming crisis can no longer be delayed. Development of new plant

breeding technologies including site-directed nucleases offers the opportunity

to mitigate the effects of the changing climate. Therefore, understanding the

effects of climate change on plant innate immunity and identification of elite

genes conferring disease resistance are crucial for the engineering of new crop

cultivars and plant improvement strategies. Here, we summarize and discuss

the effects of major environmental factors such as temperature, humidity, and

carbon dioxide concentration on plant immunity systems. This review provides

a strategy for securing crop-based nutrition against severe pathogen attacks in

the era of climate change.
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Introduction

Climate change is a major factor in determining where humans can live on the planet

under tolerable and safe conditions (Timmermann et al., 2022). Global warming due to

environmental destruction and excessive burning of fossil fuels is creating adverse

conditions for the continued survival of many plant and animal species and the

wellness of the human population (Román-Palacios and Wiens, 2020). The crops that

have made human settlement possible since the dawn of agriculture by providing a stable

source of dietary calories are now suffering from the effects of climate change (Challinor

et al., 2014; Rising and Devineni, 2020). Biotic stress factors such as pathogens and insect

pests reduce crop yield and quality in agricultural settings (Savary et al., 2019; Savary and

Willocquet, 2020). Indeed, damage to major crop yields is estimated to reach up to 40%

globally (Oerke, 2006; Savary et al., 2012). In warmer and wetter environments more

amenable to pathogen growth and spread, the damage they cause can be even more
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devastating (Velasquez et al., 2018). For example, bacterial blight

caused by Xanthomonas oryzae pv. oryzae (Xoo) can decrease

yield in rice (Oryza sativa) by up to 80% (Srinivasan and

Gnanamanickam, 2005). Wheat blast caused by the fungus

Magnaporthe oryzae Triticum can infect wheat (Triticum

aestivum) and completely eradicate fields (Islam et al., 2020),

as can banded leaf and sheath blight caused by Rhizoctonia

solani in maize (Zea mays) (Haque et al., 2022). Moreover, the

emergence of new pathogenic strains and the expansion of their

effective damage zones due to climate change are two of the most

serious threats to crop production and food security (Chaloner

et al., 2021). Therefore, efficient strategies are urgently needed to

reduce the impact of pathogens on crop growth and yield.

According to the disease triangle model, three factors are

required for disease development: a susceptible host, a virulent

pathogen, and a favorable environment (Scholthof, 2007). Of these,

only plant-based strategies are available to affect one side of the

triangle with current technologies. Indeed, the development of new

crop cultivars conferring innate immunity will be essential for

conservation of food resources. Plant breeding has traditionally

been performed through laborious and time-consuming genetic

crosses to introduce superior alleles into a given background

(Lusser et al., 2012). However, biotechnological innovations now

offer eight new plant breeding technologies (NPBTs): site-directed

nucleases (SDNs), oligonucleotide-directed mutagenesis, cisgenesis

and intragenesis, RNA-dependent DNA methylation, grafting,

reverse breeding, Agrobacterium-mediated infiltration, and

synthetic genomics (Lusser et al., 2011). Among them, SDNs are

themost widely usedNPBT for a broad range of crops. In particular,

developmentof the clustered regularly interspaced shortpalindromic

repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has

ushered in a new era of crop improvement (Son and Park, 2022).

Therefore, understanding themolecularmechanismsand identifying

novel genesconferringdesired traits areessential for their targetingby

NPBTs in plant breeding.

Plants have evolved varied stress responses and defense

mechanisms to overcome adverse environmental conditions, about

which we have gained a wealth of knowledge thanks to the efforts of

countless scientists. Nevertheless, how climate change affects the

molecular mechanisms related to plant immunity against pathogens

is largely unknown. Luckily, this knowledge gap is beginning to be

filled. In this review, we give an overview and discuss the negative

effects of temperature, humidity, and carbon dioxide (CO2)

concentration on plant defense mechanisms to better understand

how to design mitigation strategies.
Plant immunity system and
defense signaling

Plants employ two important immune systems known as

pathogen-associated molecular pattern (PAMP)-triggered

immunity (PTI) and effector-triggered immunity (ETI) to
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perceive and respond to pathogen attacks (Thomma et al.,

2011). PTI is activated mainly by plasma membrane–localized

extracellular pattern recognition receptors (PRRs) that can

recognize conserved PAMPs (Monaghan and Zipfel, 2012).

For example, recognition of the 22–amino acid region of

bacterial flagellin (flg22) by the leucine-rich repeat receptor

kinase (LRR-RK) FLAGELLIN SENSING 2 (FLS2) at the

plasma membrane leads to formation of a heteromer between

FLS2 and BRASSINOSTEROID INSENSITIVE-ASSOCIATED

KINASE 1 (BAK1), a member of the LRR receptor-like kinase

(LRR-RLK) and also known as SOMATIC EMBRYOGENESIS

RECEPTOR-LIKE KINASE 3 (SERK3) (Chinchilla et al., 2007).

The FLS2/BAK1 complex phosphorylates the receptor-like

cytoplasmic kinase BOTRYTIS-INDUCED KINASE 1 (BIK1)

and mitogen-activated protein kinase (MAPK) cascade to

activate the downstream signaling pathway, resulting in

expression of PTI-related genes (Wang et al., 2020b).

Similarly, perception of a highly conserved epitope of bacterial

translation elongation factor Tu (EF-Tu) by the LRR-RK EF-Tu

RECEPTOR (EFR) also results in PTI activation through

heteromerization with BAK1 and phosphorylation of BIK1

(Lal et al., 2018). Moreover, the recognition of plant-derived

damage-associated molecular patterns (DAMPs) and

phytocytokines by LRR-RKs/RLKs is important for PTI (Hou

et al., 2021; Tanaka and Heil, 2021). PTI acts as a basal defense

mechanism against various types of pathogens through defense

responses that include the induction of defense gene expression,

reactive oxygen species (ROS) production, callose deposition,

and accumulation of antimicrobial secondary metabolites

(Naveed et al., 2020).

ETI is triggered following the recognition by intracellular

receptor resistance (R) proteins of specific pathogen effectors

that can neutralize the plant immune system in the cytoplasm

(Chisholm et al., 2006; Jones and Dangl, 2006). ETI activates a

prolonged and robust resistance response and rapid localized

programmed cell death known as the hypersensitive response

(HR) (Coll et al., 2011). Most R proteins are nucleotide-binding

leucine-rich repeat proteins (NLRs) that can be classified into

three groups based on their N terminus domain: Toll/

interleukin-1 receptor (TIR), coiled-coil (CC), and

RESISTANCE TO POWDERY MILDEW 8 (RPW8)-type CC

(CCR) domain (Monteiro and Nishimura, 2018). The ETI signal

triggered by TIR-NLRs (TNLs) relies on the three acyl

hydrolases ENHANCED DISEASE SUSCEPTIBILITY 1

(EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and

SENESCENCE-ASSOCIATED GENE 101 (SAG101) (Wiermer

et al., 2005). EDS1 interacts directly with PAD4 or SAG101 to

form exclusive heterodimers, each with distinct functions in

immunity (Wagner et al., 2013; Lapin et al., 2020). It was

recently revealed that helper CCR-NLRs such as ACTIVATED

DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT

GENE 1 (NRG1) are required for the activation of the EDS1

complex and TNL defense signaling (i.e., EDS1–PAD4–ADR1
frontiersin.org
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and EDS1–SAG101–NRG1) (Pruitt et al., 2021; Sun et al., 2021).

The EDS1 pathway is involved not only in ETI but also in basal

immunity and promotes salicylic acid (SA) biosynthesis and

signaling (Cui et al., 2017). Therefore, EDS1 signaling plays a

critical role in SA-dependent and -independent resistance. For

CC-NLRs (CNLs), the plasma membrane-localized integrin-like

protein NON-RACE SPECIFIC DISEASE RESISTANCE 1

(NDR1) appears to function downstream of CNLs, although

several do not require NDR1 to activate ETI (van Wersch et al.,

2020). Since NDR1 acts upstream of SA biosynthesis and

signaling, it is also involved in SA-dependent resistance

(Shapiro and Zhang, 2001).

Another plant immune response is referred to as

quantitative disease resistance (QDR), which is characterized

by a continuous distribution of resistance phenotypes—from

highly sensitive to highly resistant—within a population (Poland

et al., 2009). QDR is typically partial resistance conferred by

multiple small-effect loci, while qualitative disease resistance,

also referred as ETI, is complete resistance conferred by a single

large-effect gene (French et al., 2016). Since multiple genes are

involved in QDR, it is important in the context of the

evolutionary pressure imposed by pathogens and confers

broad-spectrum resistance to a wide range of pathogens

including biotrophic and necrotrophic pathogens (Anderson

et al., 2010; French et al., 2016). Most loci identified as

quantitative trait loci for QDR are associated with the

biosynthesis of the cell wall and defense compounds, thus

extending beyond simple pathogen perception (Corwin and

Kliebenstein, 2017).

Phytohormones participate in and control PTI and ETI. In

particular, the three phytohormones SA, jasmonic acid (JA), and

ethylene (ET) play critical roles in plant immunity. SA

contributes significantly to innate immunity against biotrophic

pathogens by evoking local and systemic resistance, whereas JA/

ET play critical roles in plant resistance to necrotrophic

pathogens (Glazebrook, 2005; Li et al., 2019). The SA and JA/

ET defense signals can be antagonistic or synergistic (Tsuda and

Katagiri, 2010). Abscisic acid (ABA) is also important for innate

immunity. ABA interacts with various phytohormones during

defense responses (Lee and Luan, 2012; Pieterse et al., 2012). For

example, ABA suppresses SA-dependent immunity, leading to

greater susceptibility against various pathogens (Berens et al.,

2019). However, ABA can also increase plant disease resistance

due to closure of stomata which constitutes one of the main

entry routes for pathogens (Ton Mauch‐Mani, 2004; Melotto

et al., 2006; Flors et al., 2008). In response to the stimulus, ABA is

primarily biosynthesized in vascular tissues and accumulates in

guard cells through ABA transporters (e.g., ATP-binding

cassette transporter G [ABCG]) (Merilo et al., 2015). In guard

cells, ABA binds to its cognate receptor from the pyrabactin

resistance 1/pyrabactin resistance 1-like/regulatory components

of ABA receptors (PYR/PYL/RCAR) family, leading to the

inactivation of type 2C protein phosphatases (PP2Cs). The
Frontiers in Plant Science 03
alleviation of PP2C-mediated repression of SUCROSE NON-

FERMENTING 1 (SNF1)-related protein kinase 2s (SnRK2s)

results in activation of the downstream ABA signaling cascade

(Hsu et al., 2021). For example, the PP2Cs ABA INSENSITIVE 1

(ABI1) and ABI2 inactivate OPEN STOMATA 1 (OST1), also

known as SnRK2.6, thus preventing the phosphorylation of

SLOW ANION CHANNEL 1 (SLAC1), which releases anions

for stomatal closure. However, perception of flg22 by PRRs

increases ABA levels in guard cells to inactivate ABIs, and it

results in rapid stomatal closure through the activation of the

OST1/SnRK2.6–SLAC1 module (Guzel Deger et al., 2015).

Therefore, ABA promotes stomatal closure and prevents

pathogen entry into the host plant.

ROS signaling is also important for plant immunity. ROS are

highly oxidative agents, but they also act as signaling molecules

that regulate biotic stress responses (e.g., systemic acquired

resistance [SAR] and cell death) (Waszczak et al., 2018). ROS

are generated via metabolic and stress signaling pathways.

Metabolic ROS are produced in several intracellular

compartments (e.g., chloroplast, mitochondria, peroxisomes,

and apoplast) during photosynthesis and photorespiration,

while signaling ROS are produced mainly by plant NADPH

oxidases, mostly from members of the plasma membrane–

localized respiratory burst oxidase homolog (RBOH) family

(Kangasjärvi et al., 2012; Chapman et al., 2019). Pathogen

recognition is accompanied by ROS production through both

the metabolic and stress signaling pathways. Recognition of

PAMPs by PRRs induces an initial oxidative burst that

activates plant basal defenses within the infected cells; effector

perception by R proteins then promotes a second oxidative burst

that results in HR (Nanda et al., 2010; Torres, 2010). Therefore,

ROS play a key role linking pathogen perception and plant

defense responses.

However, these various plant defense systems may be

adversely affected significantly by climate change, as

discussed below.
The effects of temperature on PTI

Environmental factors influence not only pathogenicity but

also plant disease resistance (Elad and Pertot, 2014).

Temperature is perhaps the most studied climate factor

modulating plant–pathogen interactions. Higher average

temperatures brought upon by climate change can increase the

pathogenicity of phytopathogens by raising their virulence,

active geographical regions, fitness, reproduction period/rate,

and epidemic risks (Agrios, 2005; Deutsch et al., 2008; Caffarra

et al., 2012; Vaumourin and Laine, 2018). Temperature is also

one of the most important environmental factors that shapes

plant immunity against bacteria, fungi, viruses, and insects

(Garrett et al., 2006). Since different host–pathogen

interactions behave differently over different temperature
frontiersin.org
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ranges, higher temperatures will sometimes work in favor of

plant immunity. In many cases though, higher temperature will

benefit the pathogen to the detriment of the host (Desaint

et al., 2021).

In Arabidopsis (Arabidopsis thaliana), higher temperature

increases early PTI signaling (through BIK1 and MAPKs) and

decreases the occupancy of nucleosomes containing the histone

variant H2A.Z, which modulates the plant transcriptome in

response to changes in temperature (Kumar and Wigge, 2010;

Cheng et al., 2013). Moderately high temperatures (23°C–32°C)

will therefore activate PTI-dependent gene expression at the

expense of ETI (Cheng et al., 2013). Cysteine-rich receptor-like

kinases (CRKs) are one of the largest RLK subfamilies that

recognizes pathogens and activates downstream signaling

cascades. Recently, Wang et al. identified a CRK from wheat

cultivar ‘XY 6’ conferring high-temperature seedling-plant

resistance (Wang et al., 2021). The expression level of this

gene, TaCRK10, was induced significantly by infection with

the fungal pathogen Puccinia striiformis f. sp. tritici causing

strip rust at high temperature. TaCRK10 was shown to directly

phosphorylate histone H2A in wheat (TaH2A.1) and activate the

SA signaling pathway, resulting in enhanced high-temperature

seedling-plant resistance to P. striiformis f. sp. tritici (Wang et al.,

2021). However, several studies have also indicated that PTI can

be compromised at high temperature upon inhibition of flg22-

and SA-induced defense responses (Rasmussen et al., 2013; Huot

et al., 2017; Janda et al., 2019). Therefore, further studies are

needed to understand the effect of temperature on PTI in detail.
The effects of temperature on ETI
and SA-dependent immunity

Unlike PTI, much work has shown that high temperature

decreases immunity evoked by ETI and QDR; this topic was well

covered by a previous review (Desaint et al., 2021). Therefore, we

focus here on recent important discoveries that illustrate how

plant defense mechanisms are affected by high temperature.

Disruptions of NLR- and SA-mediated defense signaling by

high temperature are thought to be the main reason behind

diminished plant innate immunity against pathogens under

these conditions. In Arabidopsis, the photoreceptor

phytochrome B (phyB) also acts as a thermosensor, whereby

far-red light and high temperatures lead to its inactivation (Jung

et al., 2016; Legris et al., 2016). DE-ETIOLATED 1 (DET1) and

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1),

which are two key negative regulators of photomorphogenesis,

promote the transcription of PHYTOCHROME INTERACTION

FACTOR 4 (PIF4), which encodes a basic-helix-loop-helix

(bHLH) transcription factor acting as a positive regulator of

growth and negative regulator of immunity (Gangappa et al.,

2017; Gangappa and Kumar, 2018). phyB inhibits COP1 and
Frontiers in Plant Science 04
PIF4 to modulate the trade-off between growth and defense.

However, inactivation of phyB by high temperature results in the

activation of the DET1/COP1–PIF4 module. As a result, PIF4

represses the expression of SUPPRESSOR OF NPR1-1,

CONSTITUTIVE 1 (SNC1), which encodes a TNL initiating

ETI through the EDS1-PAD4 signaling pathway at high

temperature (Gangappa et al., 2017). Since SNC1 and EDS1

play a critical role in plant defense responses such as SA

biosynthesis (Zhang et al., 2003; Garcıá et al., 2010), the

inhibition of SNC1 expression at high temperature also

significantly hinders SA-dependent resistance. Moreover, the

SUMO E3 ligase SIZ1 (SAP and MIZ1 DOMAIN-

CONTAINING LIGASE1) not only inhibits SNC1-dependent

immune response but also enhances COP1 function at elevated

ambient temperature (Hammoudi et al., 2018). Therefore, the

activation of negative regulators (e.g., PIF4 and SIZ1) of SNC1

lead to impaired ETI and SA-dependent immunity. Recently, the

transcription factor bHLH059 was identified as a temperature-

responsive regulator for SA-dependent immunity acting

independently of PIF4 (Bruessow et al., 2021). Relative

bHLH059 transcript level increased at 22°C compared to 16°C

in Arabidopsis ecotype Columbia (Col-0). Total SA contents and

resistance to Pseudomonas syringae pv. tomato (Pst) DC3000

decreased at 22°C relative to 16°C in Col-0, but remained similar

in the bhlh59 mutant regardless of ambient temperature.

Moreover, bHLH059 has the potential to be a negative

regulator involved in a defense hub associated with multiple

NLRs (Mukhtar et al., 2011), hinting at a new mechanism for the

temperature-mediated vulnerability of plant immune responses

that should be explored in more detail.

SA is major defense phytohormone involved in PTI, ETI,

and SAR; importantly, SA-dependent immunity is repressed by

high temperature (Velásquez et al., 2018; Zhang and Li, 2019;

Castroverde and Dina, 2021), whereas JA/ET defense signaling

are enhanced under elevated temperature (Havko et al., 2020;

Huang et al., 2021a). Therefore, any susceptibility to

temperature in the context of plant disease resistance is mainly

associated with SA signaling. SA is synthesized through the

isochorismate synthase (ICS) and phenylalanine ammonia-lyase

(PAL) pathways in plants (Lefevere et al., 2020). Especially,

pathogen-induced SA production takes place in chloroplasts,

from which it is exported to the cytoplasm via the SA transporter

EDS5 (Serrano et al., 2013). SA activates NONEXPRESSOR OF

PATHOGENESIS-RELATED GENES 1 (NPR1), the master

regulator of SA signaling in the cytosol, resulting in the

nuclear translocation of NPR1 to induce the expression of

pathogenesis-related (PR) genes conferring disease resistance

and SAR (Backer et al., 2019). Moreover, although ETI

activates SA signaling, SA and NPR1 repress ETI-induced cell

death via the formation of SA-induced NPR1 condensates to

promote the degradation of proteins (e.g., NLRs, EDS1,

WRKY54, and WRKY70) involved in HR (Zavaliev et al., 2020).
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Huot et al. showed that inhibition of ICS1, which is also

called SALICYLIC ACID-INDUCTION DEFICIENT 2 (SID2),

under high-temperature conditions raised the susceptibility of

Arabidopsis to Pst DC3000 due to the loss of SA biosynthesis

and SA defense signaling (Huot et al., 2017). Furthermore,

Arabidopsis disease resistance to Pst DC3000 increased at low

temperature due to greater SA signaling that can itself be

repressed by JA/ET defense signals (Li et al., 2020). However,

the molecular mechanisms determining the temperature

sensitivity of the SA defense signaling pathway were unknown.

Recently, two groups demonstrated different mechanisms by

which the SA-mediated immune system is modulated under high

temperature (Figure 1). Kim et al. showed that the expression of SA

response genes is decreased under elevated temperature in various

dicot (e.g., Arabidopsis, rapeseed [Brassica napus], tobacco

[Nicotiana tabacum], and tomato [Solanum lycopersicum]) and

monocot (rice) plants, with the downregulation ofCALMODULIN

BINDING PROTEIN 60g (CBP60g) being key for the temperature

vulnerability of SA defense signaling in Arabidopsis (Kim et al.,

2022). GUANYLATE BINDING PROTEIN-LIKE GTPase 3

(GBPL3) binds to the promoter region of genes involved in the

plant immune system and recruits theMediator complex andRNA

polymerase II to form GBPL defense–activated condensates

(GDACs) (Huang et al., 2021b). The recruitment of GBPL3 and

the formation of the GDAC at the CBP60g and SYSTEMIC

ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) loci, which

have partially redundant functions, were necessary for their

transcription, and these were attenuated by heat stress (Kim et al.,

2022). Therefore, the expression of various genes (e.g., ICS1, EDS1,
Frontiers in Plant Science 05
andPAD4) thatwouldnormally induceTNL-mediatedETI andSA

biosynthesis downstream of CBP60g and SARD1 was suppressed

under elevated temperature. However, and surprisingly, optimized

CBP60g expression was sufficient to restore SA accumulation and

plant immune responses at high temperature without growth or

developmental penalty (Kimet al., 2022). Another groupunraveled

themolecularmechanism explaining the temperature vulnerability

of CNLs and SA defense signaling in Arabidopsis (Samaradivakara

et al., 2022).RESISTANCETOP. SYRINGAEPV.MACULICOLA1

(RPM1) andRESISTANCE TOP. SYRINGAE 2 (RPS2) encode two

CNLs that recognize type III bacterial effectors indirectly through

RPM1-INTERACTING PROTEIN 4 (RIN4) (Mackey et al., 2002;

Mackey et al., 2003).P. syringaebacterial effectors suchasAvrRpm1

and AvrB ac t i v a t e RPM1-med i a t ed ETI th rough

hyperphosphorylation of RIN4, while AvrRpt2 activates RPS2-

mediated ETI via the degradation of RIN4 (Axtell and Staskawicz,

2003; Zhao et al., 2021). Plasma membrane–localized NDR1

interacts with RIN4 and is required for the activation of RPS2-

basedETI in response toAvrRpt2 (Belkhadir et al., 2004;Coppinger

et al., 2004; Day et al., 2006). Samaradivakara et al. showed that

overexpression of NDR1 rescues the transcript levels of RPS2 and

SA-associatedgenes including those of ICS1 andCBP60g, which are

repressed by high temperature, thus resulting in enhanced

resistance to Pst DC3000 by maintaining ETI and SA defense

signaling under elevated temperature (29°C) (Samaradivakara

et al., 2022). In wheat, CNLs such as TaRPM1 and TaRPS2 also

positively regulate disease resistance to P. striiformis f. sp. tritici at

high temperature through the SA signaling pathway (Wang et al.,

2020a; Hu et al., 2021a).
FIGURE 1

Molecular mechanisms demonstrating the negative effect of high temperature on SA-dependent immunity and ETI. In Arabidopsis, the induction
of CALMODULIN BINDING PROTEIN 60g (CBP60g) and NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) is necessary for innate immunity
against Pst DC3000. However, under high temperature, the formation of guanylate binding protein-like GTPase (GBPL) defense-activated
condensate (GDAC), consisting of GBPL3, Mediator, and RNA polymerase II, at the CBP60g loci (Kim et al., 2022) and the expression of NDR1
which can increase the transcript levels of RESISTANCE TO P. SYRINGAE 2 (RPS2) and SA-associated genes (Samaradivakara et al., 2022) are
repressed significantly, resulting in temperature vulnerability of SA-dependent immunity and ETI.
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The effects of temperature on
cytokinin-dependent immunity

A recent study revealed that the phytohormone cytokinin

(CK) also plays an important role in plant immunity at high

temperatures (Yang et al., 2022). The trade-off between growth

and defense modulated by CK can result in opposite effects on

plant–pathogen interactions (Choi et al., 2011). Exogenous and

endogenous CK both enhance plant resistance against

biotrophic pathogens through SA-dependent and -independent

immune responses, therefore exerting a potentiation (or

priming) defense response activated upon pathogen attack

(Conrath et al., 2015; Albrecht and Argueso, 2017). Although

CK displays a synergistic effect with SA, increased SA levels can

inhibit CK signaling via a negative feedback (Argueso et al.,

2012). In addition, high concentrations of CK enhance disease

resistance against biotrophic oomycetes in Arabidopsis, while

low concentrations raise susceptibility (Argueso et al., 2012). CK

can also increase susceptibility to pathogens not only by

inhibiting the plant immune system (i.e., PTI and ROS) but

also by establishing source-sink relationships (Albrecht and

Argueso, 2017; McIntyre et al., 2021). In pepper (Capsicum

annuum), Yang et al. showed that infection with Ralstonia

solanacearum, a hemibiotrophic pathogen causing bacterial

wilt, activates SA signaling at an early stage and JA signaling

at a later stage in roots at ambient temperature, but these

responses are both impaired at high temperature (Yang et al.,

2022). Instead, isopentenyltransferase (IPT) genes, including

CaIPT5, encoding a critical enzyme in cytokinin biosynthesis,

were upregulated by R. solanacearum infection under high

temperature. Surprisingly, exogenous treatment with trans-

zeatin (tZ), the bioactive CK, significantly enhanced disease

resistance to R. solanacearum in pepper, tomato, and tobacco

(Nicotiana benthamiana) under high temperature, while SA and

JA did not (Yang et al., 2022). Moreover, the authors suggested

that CK triggers chromatin remodeling, resulting in the

upregulation of genes encoding glutathione S‐transferase (e.g.,

CaPRP1 and CaMgst3) and downregulation of genes involved in

SA and JA signaling (e.g., CaSTH2 and CaDEF1 (Yang

et al., 2022).
The effects of temperature on
calcium ion–dependent immunity

Recently, the molecular mechanisms by which high temperature

affects the calcium ion (Ca2+)–mediated immune system have also

been reported. Ca2+ is an important second messenger modulating

various signaling pathways, including the plant immune response

(Yang and Poovaiah, 2003). Biotic/abiotic stresses increase Ca2+ levels

in plant cells; Ca2+ then binds to calcium-binding proteins (CBPs)
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and Ca2+ sensors (e.g., calmodulin [CaM], calmodulin-like proteins

[CMLs], calcineurin B-like proteins [CBLs], and calcium-dependent

protein kinases CDPKs]) (Bose et al., 2011). The Ca2+/CBP complex

activates Ca2+ signaling by regulating the activity of signaling

components such as kinases and transcription factors (Iqbal et al.,

2020; Junho et al., 2020; Ma et al., 2020). Arabidopsis SIGNAL

RESPONSIVE 1 (AtSR1), also known as CALMODULIN-

BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), plays

a central role in Ca2+ signaling–mediated immunity (Yuan et al.,

2021a). AtSR1 acts as a negative regulator of the plant immune

response by decreasing the expression of genes involved in ETI and/

or SA signaling (e.g., EDS1, NDR1, CBP60g, SARD1, and NPR1)

directly or indirectly (Du et al., 2009; Nie et al., 2012; Sun et al., 2020;

Yuan et al., 2021b). Recently, Yuan and Poovaiah showed that the

Ca2+ influx induced by PstDC3000 is blocked in Arabidopsis at high

temperature (30°C) compared to ambient temperature (18°C). In

addition, the susceptibility to Pst DC3000 was reduced in the atsr1

mutant plant compared to the wild type at both 18°C and 30°C

(Yuan and Poovaiah, 2022). Moreover, the authors suggested that

AtSR1 increases plant vulnerability to temperature by acting on

stomatal and apoplastic immunity in an SA-dependent manner. In

pepper, the expression of the WRKY transcription factor gene

CaWRKY40 is induced by Ralstonia solanacearum infection, high

temperature, and major defense phytohormones (e.g., SA, JA, and

ET), and CaWRKY40 enhances both R. solanacearum resistance and

heat tolerance (DANG et al., 2013). CaWRKY40 forms positive

feedback loops with CaWRKY6, BASIC LEUCINE ZIPPER 63

(CabZIP63), and CaCDPK15, all positive regulators of resistance

against R. solanacearum and/or heat stress tolerance (Cai et al., 2015;

Shen et al., 2016a; Shen et al., 2016b). Recently, two signaling

components controlled by CaWRKY40 were identified as positive

and negative regulators of R. solanacearum resistance, respectively.

CaCBL1 contributes to disease resistance against R. solanacearum at

high temperature and participates in the positive feedback loop with

CaWRKY40 (Shen et al., 2020). However, pepper MILDEW-

RESISTANCE LOCUS O5 (CaMLO5) has the opposite function in

plant immunity and heat resistance (Yang et al., 2020). CaWRKY40

induces the expression of CaMLO5 at high temperature, while

CaWRKY40 represses it after R. solanacearum inoculation.

CaMLO5 increases tolerance to heat stress but reduces the plant

immune response against R. solanacearum. Moreover, the NAM/

ATAF/CUC (NAC) transcription factor CaNAC2c was recently

identified as being involved in temperature-responsive immunity

(Cai et al., 2021). Expression of CaNAC2c was induced by both high

temperature and R. solanacearum inoculation, resulting in positive

effects on both thermotolerance and resistance against R.

solanacearum but negative effects on pepper growth. CaNAC2c

modulated the thermotolerance/immunity trade-off through

differential and context-specific interactions with HEAT SHOCK

PROTEIN 70 (CaHSP70) and CaNAC029. However, CaNAC2c/

CaNAC029-mediated R. solanacearum resistance was impaired by

ABA at high temperature, suggesting that the observed

thermotolerance/immunity trade-off might be modulated by an
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antagonistic interaction between ABA and JA signaling (Cai

et al., 2021).
The effects of humidity on
stomatal immunity

Along with temperature, humidity is an influential

environmental factor during plant–pathogen interactions. In

general, high humidity conditions (e.g., rainfall, high

atmospheric humidity, and high soil moisture) are favorable

for plant infections not only by phyllosphere pathogens but also

by rhizosphere pathogens. Indeed, high humidity increases the

incidence of bacterial disease and the potential threat to yield in

various crops (Xin et al., 2016). In fact, humidity can be more

important than temperature in predicting fungal disease

outbreaks (Romero et al., 2021). Since air can maintain more

water vapor at high temperature, climate change is frequently

accompanied by high humidity. Therefore, understanding the

effect of humidity on plant immune mechanisms will be

important for ensuring food security.

By far, the main target of humidity affecting plant immunity

is associated with stomatal control. Stomata consist of two guard

cells that play a central role in modulating water transpiration

and gas exchange between the plant and the atmosphere to

balance the needs of photosynthesis while minimizing drought

stress. Therefore, stomatal movements are tightly regulated in

response to various environmental stimuli (e.g., humidity and

CO2) (Driesen et al., 2020). However, stomata also offer

convenient portals through which pathogens can penetrate

inner leaf tissues. To mitigate this threat, plants have

developed sophisticated signaling networks conferring so-

called stomatal immunity (Arnaud and Hwang, 2015; Murata

et al., 2015). Guard cells recognize various PAMPs, resulting in

PAMP-triggered stomatal closure through the activation of

downstream signaling components (Figure 2A). However,

according to a coevolutionary model between plants and their

pathogens known as the zigzag model, some adapted pathogens

have developed phytotoxins (e.g., coronatine and syringolin A)

and effectors (e.g., avirulence protein B [AvrB], hrp-dependent

outer protein F2 [HopF2], HopM1, HopX1, and HopZ1) to

overcome stomatal immunity and use open stomata as their

entry point into the leaf apoplast space (Melotto et al., 2017).

Recently, Lie et al. also revealed that Xanthomonas oryzae pv.

oryzicola (Xoc) secretes the bacterial effector AvrRxo1 to impair

stomatal immunity by inducing the degradation of rice

PYRIDOXAL PHOSPHATE SYNTHASE 1 (OsPDX1)

involved in ABA biosynthesis (Liu et al., 2022a). Mechanisms

of immunity by stomatal closure and their relationship with

humidity have been covered in previous reviews (Melotto et al.,

2017; Aung et al., 2018). Notably, after pathogens invade internal

plant tissues, stomatal closure can support conditions of

apoplast hydration auspicious for pathogen colonization.
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Therefore, we focus here on the most recent mechanisms

regulating stomatal conductance after pathogen entry.

Since water is essential for the survival of pathogens as well

as plants, pathogens have to work hard to obtain water when

inside their host plants (Beattie, 2016). Water soaking is a

common disease symptom visible as leaf spots caused by

virulent bacterial pathogens (Davis et al., 1991; Reimers and

Leach, 1991). Bacterial pathogens (e.g., Pst DC3000) induce

water soaking to establish a favorable colonization milieu by

using their effectors (e.g., WtsE, AvrHah1, HopM1, and AvrE1)

(Ham et al., 2006; Schornack et al., 2008; Xin et al., 2016). For

instance, Xin et al. identified two effectors (HopM1 and AvrE1)

that induce water soaking in Arabidopsis and demonstrated the

molecular mechanism by which HopM1 promotes apoplast

hydration for bacterial proliferation (Xin et al., 2016).

Arabidopsis HopM1 INTERACTOR 7 (AtMIN7), which is an

ADP ribosylation factor–guanine nucleotide exchange factor

(ARF-GEF) localized to the trans-Golgi-network/early

endosome and involved in vesicle trafficking, is identified as a

binding partner of HopM1 during a yeast two-hybrid (Y2H)

screen and confirmed by pull-down assay (Nomura et al., 2006).

AtMIN7 contributes to PTI and ETI, and the Pst DC3000

effector HopM1 induces its degradation through the host 26S

proteasome to suppress plant innate immunity (Nomura et al.,

2011). Since AtMIN7 also plays a critical role in limiting fluid

loss from plant cells, HopM1-mediated AtMIN7 degradation

results in apoplast hydration and provides the favorable water

condition needed for Pst DC3000 colonization; notably, high

ambient humidity is required for water soaking (Beattie, 2016;

Xin et al., 2016). Moreover, HopM1 and AvrE1 increase the

expression of ABA-associated genes through transcriptome

reprogramming and by raising ABA contents in guard cells

(Roussin-Léveillée et al., 2022). The guard cell–specific ABA

transporter ABCG40 is necessary for HopM1-mediated water

soaking (Roussin-Léveillée et al., 2022), while AvrE1 activates

ABA signaling through the inhibition of type one protein

phosphatases (TOPPs), thereby suppressing SnRK2s (Hu et al.,

2022). Therefore, Pst DC3000 utilizes HopM1 and AvrE1 to

activate ABA signaling, inducing stomatal closure for water

soaking after having invaded the plant inner space.

To prevent water soaking, plants promote stomatal reopening to

establish a drier apoplast environment in pathogen-infected cells

(Figure2B). In rice, theosaba1mutantprovidedgenetic evidence that

increased stomatal conductance can enhance disease resistance to

Xoo (Zhang et al., 2019). OsWRKY114 negatively regulated stomatal

closure and conferred innate immunity against Xoo by repressing

ABA signaling (Son et al., 2022; Song et al., 2022). Finally, in

Arabidopsis, Lie et al. elucidated the molecular mechanism of

stomatal immunity by which stomata reopen following effector-

triggered stomatal closure (Liu et al., 2022b).They identifieda class of

small peptides, named the SMALL PHYTOCYTOKINES

REGULATING DEFENSE AND WATER LOSS (SCREWs), and

their receptor, the PLANT SCREWUNRESPONSIVE RECEPTOR
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(NUT), a member of the LRR-RK family. Flg22 treatment increases

the expressionof SCREWs andNUT, and recognition of SCREWsby

NUT promotes the heterodimerization of NUT with BAK1. The

NUT/BAK1 complex phosphorylates and enhances the phosphatase

activity of ABI1 and ABI2, thus inhibiting the OST1/SnRK2.6-

SLAC1 module whose activity promotes stomatal closure. As a

result, plants can increase stomatal conductance to prevent water

soaking through apoplast dehydration.
The effects of carbon dioxide levels
on stomatal immunity

Since the industrial revolution in the second half of the 18th

century, the concentrationof atmosphericCO2has begun to increase

at an alarming rate. The Mauna Loa Observatory forecasts that the

2022 annual average CO2 concentration will be 418.3 ± 0.5 parts per

million (ppm). This trend is expected to continue and reach 730–

1000 ppm by the end of the 21st century (Alley et al., 2007). Elevated

CO2 levels can increase the yield of C3 plants by enhancing

photosynthesis, but will not benefit C4 plants (Long et al., 2006).

High CO2 levels will also affect plant–pathogen interactions.

However, the effects of CO2 concentrations on plant defense

mechanisms depend on specific plant–pathogen interactions and

are complex (Noctor and Mhamdi, 2017). Moreover, the detailed

underlying molecular mechanisms are not yet well known.

Therefore, we provide below an overview of the best-documented

effects of high CO2 on plant defense mechanisms related to stomata

and photorespiration.
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Like humidity, atmospheric CO2 concentrations control

stomatal immunity. CO2 promotes stomatal closure through

complex signaling networks (Zhang et al., 2018). First,

atmospheric CO2 enters guard cells via the PLASMA

MEMBRANE INTRINSIC PROTEIN (PIP) aquaporins,

followed by the conversion of CO2 to bicarbonate (HCO3
−)

by beta carbonic anhydrases (bCAs) to activate downstream

signaling events. Indeed, several studies have shown that the

ubiquitous bCA enzymes are involved in the plant defense

response. In Arabidopsis, genetic evidence demonstrated that

bCA1 and bCA4 contribute to CO2-induced stomatal closure by

converting CO2 into HCO3
− (Hu et al., 2010). The CA activity of

bCA1 is required for a full defense response against avirulent Pst

DC3000 carrying the effector AvrB (Wang et al., 2009). In

addition, the quintuple mutant bca1 bca2 bca3 bca4 bca6
exhibited a partial reduction in SA sensitivity (Medina-Puche

et al., 2017). However, Zhou et al. showed that, despite impaired

stomatal closure preventing pathogen entry, PTI-mediated SA-

dependent immunity against virulent P. syringae was enhanced

in the bca1 bca4 double mutant (Zhou et al., 2020).

Furthermore, they revealed that the PRR-mediated

downregulation of bCA1 and bCA4 expression was attenuated

by high CO2. These results suggest that CO2 concentration and

bCAs regulate plant immunity positively or negatively as a

function of compatible and incompatible interactions with the

incoming pathogen. In tobacco (N. tabacum), bCA SA-

BINDING PROTEIN 2 (SABP2) exhibits lipase activity and

confers SA-dependent immunity against tomato mosaic virus

(Kumar and Klessig, 2003). Similarly, SABP3 has antioxidant

activity and confers HR triggered by Pto-mediated recognition
FIGURE 2

Stomatal immunity restricting pathogen entry or water soaking. (A) Pattern recognition receptors (PRRs)-triggered stomatal immunity.
Recognition of pathogen-associated molecular patterns (PAMPs) by PRRs in guard cells promotes stomatal closure to prevent pathogen entry
through activation of various signaling pathways such as ABA, SA, ROS, and Ca2+ (Arnaud and Hwang, 2015; Murata et al., 2015). (B) Stomatal
immunity preventing water soaking. After pathogens invade internal plant tissues, stomatal closure can confer apoplast hydration inducing
pathogen colonization. To prevent it, the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and
the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) are induced in Arabidopsis. Recognition of SCREWs by NUT
increases the activity of the protein phosphatases type 2C (PP2Cs) such as ABA INSENSITIVE 1 (ABI1) and ABI2, and it results in stomatal
reopening through inhibition of OST1/SnRK2.6-SLAC1 module (Liu et al., 2022b).
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of the effector AvrPto (Slaymaker et al., 2002). In addition,

silencing of SABP3 increases susceptibility to Phytophthora

infestans (Restrepo et al., 2005). The expression of CA

(accession number BQ113997) increased in potato (Solanum

tuberosum) inoculated with an incompatible P. infestans strain,

while it was downregulated in potato inoculated with a

compatible P. infestans strain. Recently, Hu et al. also showed

that bCA3 confers plant basal immunity in tomato (Hu et al.,

2021b). High CO2 and Pst DC3000 increases the induction of

bCA3 expression by the transcription factor NAC43, while the

phosphorylation of the serine 207 residue of bCA3 by GRACE1
(GERMINATION REPRESSION AND CELL EXPANSION

RECEPTOR-LIKE KINASE 1) results in the activation of plant

basal immunity related to the cell wall regardless of stomatal

movement or SA signaling.

After converting CO2 into HCO3
−, ABA signaling has a central

role downstream of the convergence point of CO2 for stomatal

closure (Webb and Hetherington, 1997; Negi et al., 2008). Dittrich

et al. argued that PYL4 and PYL5 are essential for CO2-induced

stomatal closure in Arabidopsis (Dittrich et al., 2019). However,

CO2-induced stomatal closure appears to be triggered by an ABA-

independent pathway downstream of OST1/SnRK2.6 without

direct activation of OST1/SnRK2.6 (Hsu et al., 2018). Another

group also reported results in support of this idea. They developed a

SnRK2 activity sensor called SNACS based on Förster resonance

energy transfer (FRET) and showed that, although basal ABA levels

and SnRK2 signaling are essential for CO2-induced stomatal

closure, CO2 signaling did not activate SnRK2s including OST1/

SnRK2.6 and PYL4 and PYL5 were also not required (Zhang et al.,

2020). Therefore, it remains controversial whether CO2 signaling

can act upstream of SnRK2 in the ABA signaling cascade.

Moreover, recent studies indicated that ROS signaling is also

important for CO2 signaling for stomatal closure. In

Arabidopsis, ROS signals as well as ABA signals are necessary

for CO2-induced stomatal closure (Chater et al., 2015). He et al.

showed that ROS produced by both cell wall peroxidases and

NADPH oxidases, together with phytohormones (SA, JA, and

ABA), play an important role in CO2-signaling during stomatal

closure (He et al., 2020). However, the detailed molecular

mechanisms by which ROS modulate CO2 signaling are still

unknown. Therefore, we discuss below the effects of CO2 on ROS

generation and plant immunity.
The effects of carbon dioxide
on peroxisome-derived
hydrogen peroxide

Photorespiration was once considered as a wasteful process

because it is inefficient compared to the Calvin cycle and occurs
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when photosynthesis cannot operate. However, many studies

have since shown photorespiration is involved in and required

for various plant processes (Shi and Bloom, 2021). In particular,

photorespiration has a crucial role in plant defenses due to ROS

generation (Sørhagen et al., 2013). Hydrogen peroxide (H2O2) is

a non-radical ROS that is deeply associated with plant defense

responses (Smirnoff and Arnaud, 2019). It is produced mainly in

leaf peroxisomes during photorespiration, with peroxisomal

glycolate oxidase (GOX) and catalase (CAT) acting as major

positive and negative regulators of its production, respectively

(Foyer et al., 2009; Corpas et al., 2020).

Photorespiration and the Calvin cycle are competitively

controlled by ribulose-1,5-bisphosphate carboxylase/oxygenase

(Rubisco); thus, high CO2 levels decrease photorespiration

(Long et al., 2004; Busch, 2020). Therefore, high CO2 would

be expected to repress plant immunity. However, several studies

have shown that high CO2 can increase plant defense responses

including SA and JA (Noctor and Mhamdi, 2017). In addition,

CAT2 was shown to be involved in SA-mediated auxin and JA

inhibition of resistance against biotrophs (Yuan et al., 2017).

Recently, Williams et al. demonstrated that CO2 influenced

resistance to biotrophic and necrotrophic pathogens differently

in Arabidopsis (Williams et al., 2018). Under high CO2

conditions (1200 ppm), resistance to both the biotrophic

oomycete Hyaloperonospora arabidopsidi s and the

necrotrophic fungus Plectosphaerella cucumerina increased

compared to ambient CO2 (400 ppm). SA appeared to play a

minor role in resistance to the biotrophic pathogen, while JA

conferred strong resistance against the necrotrophic pathogen.

At low CO2 (200 ppm), resistance to H. arabidopsidis was

enhanced through photorespiration-derived H2O2 production,

whereas resistance to P. cucumerina declined.
Prospects of genome editing for
climate resilient crop development

Advances in biotechnology have opened up the possibility of

overcoming the deleterious effects of climate change on crop

plants. Induction of plant innate immunity compromised by

climate change improves disease resistance to pathogen under

the unfavorable environmental condition, but the constitutive

activation of plant immune response retards growth and reduces

crop productivity. To address this problem, scientists focused on

the strategy to activate plant defense response spatiotemporally

using pathogen-induced promoters and pathogen-responsive

upstream open reading frames (Kim et al., 2021). However,

this method cannot be free from the issue of genetically modified

organisms. Therefore, the genome editing technologies based on

SDNs (e.g., CRISPR/Cas9) are necessary for the development of
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climate resilient crops. However, even though genome editing

has successfully increased the disease resistance of various crops,

there are still significant hurdle to its application to climate

change adaptive crop development due to the negative effects of

mutations on the crop’s performance (Karavolias et al., 2021).

Therefore, in order to cope with the future food resource crisis,

understanding the various plant immune mechanisms affected

by climate change and identifying elite genes that can improve

disease resistance through genome editing will be one of the

most efficient ways to develop climate resilient crops.
Conclusion

We are currently living in an unprecedented era of climate

change. The consequences of this changing climate may

diminish crop production and access to nutrients for all living

creatures, concomitantly with the faster adaptation of

microorganisms including phytopathogens due to their short

life cycle and rapid propagation compared to other and more

complex species, causing more severe damage to crop plants. It is

clear that the damage to global crop security due to biotic

stresses will pose a great challenge to human life in the future.

Scientists have recently achieved remarkable progress in this

field. Here, we provide an overview of the known and anticipated

effects of climate change such as temperature, high humidity,

and CO2 on plant immunity mechanisms. The current efforts to

understand how climate change will impact plant immune

systems and to develop more efficient NPBTs will make it

possible to overcome the incoming crisis through crop

improvement that can minimize damage and preserve yields

in future pathogen-friendly environmental conditions.
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