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Malus hupehensis is one of the most widely used apple rootstocks in china but

is severely damaged by alkaline soil. Alkaline stress can cause more serious

harmful effects on apple plants than salt stress because it also induces high pH

stress except for ion toxicity, osmotic stress, and oxidative damage.

Brassinolide (BL) plays important roles in plant responses to salt stress.

However, its role and function mechanism in apple plants in response to

alkaline stress has never been reported. This study showed that applying

exogenous 0.2 mg/L BL significantly enhanced the resistance of M.

hupehensis seedlings to alkaline stress. The main functional mechanisms

were also explored. First, exogenous BL could decrease the rhizosphere pH

and promote Ca2+ and Mg2+ absorption by regulating malic acid and citric acid

contents and increasing H+ excretion. Second, exogenous BL could alleviate

ion toxicity caused by alkaline stress through enhancing Na+ efflux and

inhibiting K+ expel and vacuole compartmentalization. Last, exogenous BL

could balance osmotic stress by accumulating proline and reduce oxidative

damage through increasing the activities of antioxidant enzymes and

antioxidants contents. This study provides an important theoretical basis for

further analyzing the mechanism of exogenous BL in improving alkaline

tolerance of apple plants.

KEYWORDS

brassinolide, Malus hupehensis, alkaline stress, rhizosphere pH, oxidative damage
Introduction

Soil salinization seriously restricts the sustainable development of agricultural

production around the world (Hu et al., 2016; Liang et al., 2017; Christian et al.,

2018). About 20% of the global arable land is affected by salinization, which will continue

to expand with global warming and excessive application of pesticides and fertilizers (Xia
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et al., 2019; Negi et al., 2021). Apple (Malus domestica Borkh.) is

one of the most valuable horticultural fruit crops and widely

cultivated in the world (Ma et al., 2019). However, large areas of

salinization soil exist in main apple producing areas, resulting in

yellow leaves and weakening the growth of the fruit trees, which

seriously affect the production and quality of apples (An et al.,

2018; Su et al., 2020). Therefore, improving the tolerance of fruit

trees to saline-alkali stress is of great significance for effectively

utilizing saline-alkali land and giving full play to its economic

and ecological effect.

Saline-alkali stress in natural environment is usually

accompanied by neutral salt stress (caused by NaCl) and

alkaline stress (caused by NaHCO3 and Na2CO3) (Liu et al.,

2015). Plants have different response mechanisms to neutral salt

stress and alkaline stress (Sharma et al., 2016), and the latter

causes a more complex and significant damage to plants than the

former (Wang T. et al., 2015; Gong et al., 2017). Under alkaline

stress, in addition to osmotic stress and ion poisoning, the roots

of the fruit trees suffer from damage caused by high pH stress,

thereby reducing the absorption of trace elements (such as Ca2+,

Mg2+, Fe2+ and Mn2+). This phenomenon causes the symptoms

of element deficiency, disturbs the acid-base balance, and affects

the quality of the fruit (Fan et al., 2021). Moreover, osmotic

stress caused by alkaline stress could harm the photosynthetic

system of plants, which usually affects the photosynthetic rate

and fluorescence parameters of chlorophyll. Besides the direct

damage to plants, alkaline stress could trigger oxidative damage

indirectly, which result in the excessive accumulation of reactive

oxygen species (ROS), leading to the destruction of plant cell

membranes, impairment of vital biological processes, and

acceleration of plant death. A number of previous studies

focused on physiological and biochemical responses of plants

to neutral salt stress. Nevertheless, the resistance mechanism to

alkaline stress remains unclear in fruit trees.

In long-term struggle with alkaline stress, plants have

evolved their own physiological and molecular mechanisms to

adapt this situation (Mao et al., 2017; Hu et al., 2018; Chen et al.,

2019). Plants can regulate the ion balance by expelling Na+ and

absorbing K+ to maintain the cytoplasmic Na+/K+. Antioxidant

enzymes, including superoxide dismutase (SOD), peroxidase

(POD), catalase (CAT) and peroxidase (APX), in plants’

defense systems can remove ROS to reduce oxidative damage

(Tofighi et al., 2017; Wu et al., 2017). Meanwhile, ascorbic acid

(AsA) and glutathione (GSH) are important non-enzymatic

antioxidants, which play a crucial role in quenching the ROS

and protecting plants from damaging effects of highly oxidizing

ROS (Wang et al., 2019; Li et al., 2022). In addition, plants can

regulate osmotic potential and ion balance by increasing the

concentrations of osmolytes (e.g., proline, glycine, betaine,

soluble sugar, and soluble protein). Under high pH stress,

plants regulate the rhizosphere pH primarily by regulating the

proton pump (H+-ATP enzyme) activity and the secretion of

organic acids (Zhan et al., 2019).
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Plant hormones play an important role in plant growth and

development and response to environmental stress (Ryu and

Cho, 2015). Exogenous application of plant growth regulators is

one of the effective ways to improve the salt and alkali resistance

of crops (Shahzad et al., 2018; Su et al., 2020). Multiple plant

hormones, such as abscisic acid, melatonin, and jasmonic acid,

play key roles in plants’ response to salt stress (Zhu, 2016; Wu

et al., 2019; Zhao et al., 2021). Brassinosteroids (BRs) are sterol

hormones that regulate vegetative growth and reproductive

growth in plants (Xiong et al., 2022). Exogenous analog

brassinolide (BL) is recognized as a highly efficient, universal,

and non-toxic regulator of plant growth, which can significantly

increase the plant photosynthesis efficiency and promote

nutrient growth at low concentrations (Dong et al., 2017;

Nawaz et al., 2017; Tofighi et al., 2017). Exogenous application

of BL can also improve the cold resistance, drought resistance,

and salt resistance of crops (Sharma et al., 2013; Jia et al., 2021).

BL promotes nutrient absorption and metabolism in plant

growth by reducing the accumulation of toxic ions and

oxidative damage, and plays a positive role in abiotic stress

tolerance (Li et al., 2015). For instance, exogenous BL

application improved the drought tolerance through

modulation of enzymatic antioxidants and leaf gas exchange in

maize (Li et al., 2020). In cucumber plants, exogenous BL

application alleviated Ca(NO3)2 stress by regulating mineral

nutrients uptake and distribution (Yuan et al., 2015). However,

the effect of BL on apple plants growth and the underlying

mechanism under alkaline stress remains unclear.

To investigate the role and mechanism of BL on Malus

hupehensis seedlings under alkaline stress, our study analyzed

the its function from four aspects: rhizosphere pH balance, ion

homeostasis, osmotic regulation, and antioxidant system.

Moreover, the expression of alkaline-responding genes was

detected under alkaline stress and exogenous BL treatment by

qPCR. This study provides an important theoretical basis for

further analyzing the mechanism of exogenous BL in improving

alkaline tolerance of apple plants by focusing on roots.
Materials and methods

Plant materials and growth conditions

Seeds ofM. hupehensis after cold stratification were sown in a

50-hole tray containing seedling substrate [nutrient soil (65%

fertile garden soil, 10% fine sand, 25% burning soil, and 0.4%

calciummagnesium phosphate fertilizer) and vermiculite with the

ratio of 1:1]. They were cultivated in a greenhouse under the

controlled condition of photoperiod (16/8 h day/night), light

intensity (100 mmol·m-2·s-1), humidity (60%-65%), and

temperature (25°C). When the apple seedlings developed to six

leaves, they were transplanted into plastic pots (one seedling per

pot) with dimensions of 7 cm × 7 cm × 10 cm (length, width and
frontiersin.org
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height) and watered with Hoagland’s nutrient solution (pH = 5.9)

every 3 days. After 7 days, seedlings with similar growth status

were selected for alkaline stress and exogenous BL treatment.
Alkaline stress and exogenous BL
treatment

A total of 120 apple seedlings were randomly divided into

three groups. The control group was irrigated with Hoagland’s

nutrient solution (group I). The alkaline treatment group (group

II) was irrigated with Hoagland’s nutrient solution containing 80

mM Na2CO3:NaHCO3 = 1:1 (pH = 8.3) every 3 days. In group

III, except for the same alkaline treatment [Hoagland’s nutrient

solution containing 80 mM Na2CO3:NaHCO3 = 1:1 (pH = 8.3)]

with group II, the apple seedlings were also irrigated and sprayed

with 0.2 mg/L BL (Solarbio, Beijing, China) every 3 days. After

15 days of alkaline stress and BL treatment, the phenotype of the

apple seedlings was recorded. Wilting rate, plant height, fresh

weight (FW), dry weight (DW), chlorophyll content, and

photosynthetic rate were measured as described by Zheng

et al. (2021). Total root length and fibrous root number were

analyzed by root scanner (Epson, Beijing, China). Each

experiment was independently repeated three times.
Roots pH staining and determination of
organic acid contents

Rhizosphere pH staining was conducted according to Zhao

Q. et al. (2016). The roots of apple seedlings under alkaline stress

and exogenous BL treatment were placed in culture medium

containing 0.01% bromocresol purple (Solarbio, Beijing, China),

0.2 mM CaSO4, and 0.7% agar (pH = 6.5) for 24 h. Bromocresol

purple was used as an acid-base indicator, and its pH change

range was 5.2 (yellow)-6.8 (purple). Acidification was indicated

by yellow colour around the apple roots. The color presents the

accurate pH value.

A total of 0.5 g of roots from each treatment were used to

detect the contents of organic acids, including malic acid and

citric acid, as described by Li T. et al. (2021). Each experiment

was independently repeated three times.
Determination of ROS Level, antioxidant
enzyme activities and antioxidants
contents

Fifteen apple seedlings were randomly selected from each

group for ROS detection. The ROS level in the roots and H2O2

and O2·
− staining in leaves were detected as described by Zheng

et al. (2017). The content of malondialdehyde (MDA) was

determined by thiobarbituric acid (TBA) as described by Alam

et al. (2019).
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Each 0.1 g of apple seedling roots or leaves were separately

weighed to detect antioxidant enzyme activities and antioxidants

contents. The apple seedlings roots were ground into

homogenates on ice and then centrifuged at 12 000 rpm for 10

min at 4°C. For the assay of activity of SOD, the reaction mixture

comprising enzyme extract (100 µL), phosphate buffer (100 mM,

pH 7.4), riboflavin (50 µM), EDTA (1.0 mM), methionine (10

mM), and NBT (75 µM) was kept for 15 min under fluorescent

light. The optical density (OD) was noted at 560 nm (Alam et al.,

2019). POD activity was estimated using the guaiacol

colorimetric at 470 nm for 1 min, as described by Zheng et al.

(2017). The activity of CAT was detected by detecting the

reduction of H2O2 at 510 nm for 5 min by the method of

Alam et al. (2019). APX activity was assayed following a

reduction in absorbance of the mixture containing hydrogen

peroxide and ascorbic acid at 290 nm for 3 min as described by

Alam et al. (2019).

Each 0.1 g of apple seedling roots were ground into

homogenates in liquid nitrogen and then centrifuged at 12 000

rpm for 10 min at 4°C. GSSG, GSH, AsA, and DHA contents

were measured using visible photometry as described previously

(Li et al., 2018; Song et al., 2018; Ji et al., 2019). Each experiment

was independently repeated three times.
Determination of electrolyte leakage and
osmolyte content

Ten seedlings were randomly selected from each group after

treatment for 15 days to detect electrolyte leakage as described

previously (Ahmad et al., 2016). Firstly, the electrical

conductivity (ECa) of the 10 leaf disks submerged was

measured. Secondly, the leaf disks were put in test tubes and

incubated at 55°C for 25 min, and the electrical conductivity

(ECb) was measured. Finally, the test tubes were boiled at 100°C

for 10 min, and the electrical conductivity (ECc) was

determined. Electrolyte leakage was calculated using the

following formula: electrolyte leakage (%) = (ECb − ECa)/ECc

× 100. Both the biological and technical duplications of each

experiment were repeated three times.

0.5 g of roots from each group were used to detect osmolytes

including proline and soluble sugar. The roots were ground in 5

mL of pre-cooled extracted buffer and centrifuged (12,000 rpm)

at 4°C for 10 min. The supernatant was used for proline and

soluble sugar content assays as described by Li T. et al. (2021).

Each experiment was independently repeated three times.
Quantification of mineral elements

Fifteen apple seedlings were randomly selected from each

group and cleaned with distilled water after 15 days of treatment.

The samples were dehydrated at 105°C for 30 min and then baked

in an oven at 80°C for 72 h. A total of 0.5 g of the dried roots were
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ground into powder and mixed with 10 mL of HNO3 and 2 mL of

HClO4 to digestion. The solution was added with deionized water

and diluted to 25 mL. The contents of Na+, K+, Ca2+, Fe2+, Mg2+,

and other mineral ions were determined by inductively coupled

plasma atomic emission spectrometry (PerkinElmer, Waltham,

USA), as described by Li T. et al. (2021). Each experiment was

independently repeated three times.
RNA extraction and quantitative real-
time PCR analysis

After alkaline stress and exogenous BL treatments, the total

RNA of different groups was extracted using the RNAprep pure

Plant Plus Kit (Tiangen, Beijing, China). Inverse transcription

and qPCR assay were conducted as described by Zheng et al.

(2021). MhActin (accession number: MDP0000774288) was

used as internal control. Primer sequences for qPCR were

designed according to the coding sequence of MhAHAs,

MhNHXs, MhBZRs, MhMATE1 , MhALMT1 , MhSOS1 ,

MhCHX15, and MhSKOR by using Primer 5 software and

checked using BLAST search in the apple genomic database.

The primer sequences are shown in Table S1. Each experiment

was independently repeated three times.
Experimental design and statistical
analysis

All experiments were repeated three times. Data were

analyzed by ANOVA followed by Fisher’s least-significance

difference or Student’s t-test analysis. Statistically significant

differences were indicated by P-value < 0.05. Statistical

computations were conducted using SPSS (IBM, Armonk, USA).
Results

Effects of exogenous BL on the
aboveground phenotype of apple
seedlings under alkaline stress

As shown in Figure 1A, the apple seedlings were wilted and

seriously damaged by alkaline stress, and the wilting rate was as

high as 75%. After application of 0.2 mg/L BL for 15 days, the

growth vigor of exogenous BL-treated seedlings was better than

that of the alkaline-stressed seedlings. The wilting rate also

decreased to 19% (Figure 1A, B). In addition, the plant height,

fresh weight, and dry weight were detected. The plant height

under alkaline stress was only 6.4 cm, which was 4.2 cm shorter

than that of the control, while it only reduced by 3.2 cm after

application of exogenous BL (Figure 1C). After 15 days of

alkaline stress, the fresh weight and dry weight were

significantly lower than those in the control group. However,
Frontiers in Plant Science 04
after 15 days of treatment with exogenous BL, the fresh weight

and dry weight increased by 54.5% and 47.2%, respectively,

compared with those under alkaline stress (Figure 1D, E). These

results indicated that alkaline stress seriously inhibited the

aboveground part growth of the apple seedlings, and the

treatment of exogenous BL significantly alleviated this damage.
Effects of exogenous BL on chlorophyll
content and photosynthetic rate under
alkaline stress

Alkaline stress caused plant wilting, and exogenous BL

alleviated the chlorosis of the apple seedlings under alkaline

stress. Chlorophyll content and photosynthetic rate were

measured to explore the physiological mechanism. As shown

in Figure 2A, the chlorophyll content in the apple seedlings

under alkaline stress was only 21.1 SPAD, which reduced a third

compared with that in the control group (32.4 SPAD). When

exogenous BL was applied, the chlorophyll content significantly

increased to 27.7 SPAD. The variation in photosynthetic rate

was similar to that in chlorophyll content. The photosynthetic

rate was significantly inhibited under alkaline stress but

increased after application of exogenous BL. Under alkaline

stress, the photosynthetic rate decreased significantly but

recovered when exogenous BL was applied (Figure 2B). These

results suggested that exogenous BL protected the chlorophyll

level and photosynthetic system from alkaline stress.
Effects of exogenous BL on the
underground phenotype of apple
seedlings under alkaline stress

For the underground part, the root growth of the apple

seedlings was seriously inhibited under alkaline stress, but the

inhibitory effect was alleviated after application of exogenous BL

(Figure 3A). The root length of the apple seedlings was only 5.69

cm under alkaline stress, which was 10.30 cm shorter than that of

the control group, but it increased significantly to 8.37 cm after

exogenous BL was applied (Figure 3B). Similar to root length, the

fibrous root number under alkaline stress was decreased

significantly compared with the control group and increased by

about threefold after exogenous application of BL (Figure 3C).

The above results indicated that exogenous BL treatment

significantly alleviated the root damage caused by alkaline stress.
Effects of exogenous BL on rhizosphere
pH and organic acid contents under
alkaline stress

Alkaline stress would cause high pH stress to the roots. A

medium containing the pH indicator bromocresol purple could
frontiersin.org
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be effective in reflecting rhizosphere pH. As shown in Figure 4A,

the surrounding of the roots turned purple under alkaline stress,

but it returned yellow after application of exogenous BL,

meanwhile, the control roots showed yellow color. Moreover,

the contents of malic acid and citric acid under alkaline stress

increased significantly, but decreased respectively after

application of exogenous BL (Figure 4B, C). These results

demonstrated that exogenous BL alleviated the high pH stress

caused by alkaline stress by regulating organic acid contents.
Frontiers in Plant Science 05
Effects of exogenous BL on the oxidative
damage under alkaline stress

The fluorescence staining results revealed that alkaline stress

significantly elevated the ROS levels in the roots of apple

seedlings, but the levels were significantly decreased when

exogenous BL was applied (Figure 5A). Consistently, the MDA

contents in the roots and leaves under alkaline stress were more

than twice that in the control group, but significantly decreased
ED

A

B C

FIGURE 1

The aboveground phenotypes of M. hupehensis seedlings treated with alkaline stress and 0.2 mg/L BL. (A) The phenotypes of M. hupehensis
seedlings treated with alkaline stress and BL at day 0 and day 15. The scale bar represents 7.0 cm. Effects of exogenous BL on wilting rate (B),
plant height (C), fresh weight (D), and dry weight (E) of the seedlings after alkaline stress for 15 days. Data represent the mean ± SD of triplicate
experiments. Different lowercase letters indicate significant differences according to Fisher’s least significant difference (P < 0.05).
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after the application of exogenous BL (Figure 5B). The activities

of SOD, POD, CAT and APX in roots were detected. As shown

in Figure 5C, the SOD activity in roots had no significant change

under alkaline stress and exogenous BL treatment. In contrast to
Frontiers in Plant Science 06
SOD, the POD, CAT and APX activities in roots showed a

significant decline under alkaline stress, nevertheless, enhanced

after exogenous application of BL. The POD, CAT and APX

activities under alkaline stress were significantly lower than
A B

FIGURE 2

Effects of exogenous BL treatment on chlorophyll content (A), photosynthesis rate (B) of M. hupehensis seedlings under alkaline stress. The data
represent the mean ± SD of three biological replicates. Different lowercase letters indicate significant differences according to Fisher’s least
significant difference (P < 0.05).
A B

C

FIGURE 3

The underground phenotypes of M. hupehensis seedlings treated with alkaline stress and exogenous BL. (A) The roots phenotypes of the
seedlings treated with alkaline stress and BL at day 15. The scale bar represents 2.0 cm. Effects of exogenous BL on root length (B) and fibrous
root number (C) of the seedlings after alkaline stress for 15 days. The data represent the mean ± SD of three biological replicates. Different
lowercase letters indicate significant differences according to Fisher’s least significant difference (P < 0.05).
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those in the control group, but increased significantly when

exogenous BL was applied (Figures 5D–F). Moreover, the ratios

of GSH/GSSG and AsA/DHA showed a significant decline under

alkaline stress, but increased evidently after application of

exogenous BL (Figures 5G, H).

Furthermore, the above indicators of oxidative damage were

also determined on leaves. The leaves exhibited a notably

increased H2O2 level relative to the WT control under alkaline

stress, but a decreasing trend after application of exogenous BL.

However, the level of O2·
− in leaves had no significant change

under alkaline stress and exogenous BL treatment (Figure S1A).

The activities of SOD, POD and CAT in leaves were also

detected. Similar to the roots, the SOD activity in leaves had

no significant change under alkaline stress and exogenous BL

treatment. In contrast to SOD, the POD and CAT activities in

leaves were also decreased significantly under alkaline stress, but

increased when exogenous BL was applied (Figure S1B-D). The

above results suggested that exogenous BL could alleviate

oxidative damage by improving the activities of the
Frontiers in Plant Science 07
antioxidant enzymes (POD, CAT, and APX) and increasing

the ratios of GSH/GSSG and AsA/DHA in the non-enzymatic

antioxidant protection system of apples.
Effects of exogenous BL on the
electrolyte leakage and osmolytes of
apple seedling roots under alkaline stress

As shown in Figure 6A, after alkaline stress, the electrolyte

leakage increased significantly from 19% to 42% compared with

that in the control group but decreased to as low as 32% when

exogenous BL was applied. In addition, we measured the

contents of osmolytes including proline and soluble sugar.

Both of them were significantly induced by alkaline stress.

However, the proline content was significantly increased, while

the soluble sugar content had no remarkable change when

exogenous BL was applied compared with that under alkaline

stress group (Figure 6B, C). These results indicated that
A

B C

FIGURE 4

Effects of exogenous BL on rhizosphere pH and organic acid contents of M. hupehensis under alkaline stress. (A) Effects of alkaline stress and
exogenous BL on rhizosphere pH of the seedlings by bromocresol violet staining. The scale bar represents 2.0 cm. Effects of alkaline stress and
exogenous BL on malic acid content (B) and citric acid content (C) of the seedlings at day 15. The data represent the mean ± SD of three
biological replicates. Different lowercase letters indicate significant differences according to Fisher’s least significant difference (P < 0.05).
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e x o g e nou s BL b a l a n c e d t h e o smo t i c s t r e s s b y

accumulating proline.
Effects of exogenous BL on the mineral
elements of apple seedling roots under
alkaline stress

The mineral elements including micronutrients and

macronutrients of apple seedlings were measured. The content

of Na+ was significantly under alkaline stress but decreased when

exogenous BL was applied (Figure 7A). In contrast to Na+, the

content of K+ was sharply decreased under alkaline stress but

increased when exogenous BL was applied (Figure 7B). The Na+/

K+ ratio is an important indicator of plant tolerance to alkaline
Frontiers in Plant Science 08
stress and was also detected. As shown in Figure 7C, the Na+/K+

ratio was significantly increased under alkaline stress compared

with that in the control group but decreased to extremely after

application of exogenous BL. The variation tendency of Ca2+, Fe2+,

and Mg2+ was similar to that of K+ (Figure 7D-F).
Effects of exogenous BL on the
expression levels of alkaline-related
genes in roots under alkaline stress

As shown in Figure 8, the expression levels of 12 candidate

genes, which were screened from RNA-Seq data (NCBI number:

PRJNA588566) under alkaline stress, were detected under
ED

F

A B

G H

C

FIGURE 5

Effects of exogenous BL on the oxidative damage, antioxidant enzyme activities and antioxidants contents of M. hupehensis seedlings roots
under alkaline stress. (A) Effects of alkaline stress and exogenous BL on the ROS level in roots. The scale bar represents 3.0 cm. Effects of
exogenous BL treatment on MDA content (B), SOD activity (C), POD activity (D), CAT activity (E), APX activity (F), GSH : GSSG ratio (G) and AsA :
DHA ratio (H) under alkaline stress. The data represent the mean ± SD of three biological replicates. Different lowercase letters indicate
significant differences according to Fisher’s least significant difference (P < 0.05).
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alkaline and exogenous BL treatment. These genes were

divided into five categories. First, the three H+ transporter

genes, namely, MhAHA1, MhAHA2, and MhAHA9 had

significantly decreased expression level under alkaline stress

but significantly increased expression level when exogenous BL

was applied. Second, the expression of organic acid transport

genes, including MhMATE1 and MhALMT1, were significantly

decreased by alkaline stress and increased under exogenous BL

treatment in the roots. Third, for Na+ transporter genes

including MhSOS1 and MhCHX15 , the expression of

MhCHX15 showed a decreasing tendency under alkaline stress
Frontiers in Plant Science 09
and exogenous BL treatment; however, the expression of

MhSOS1 was significantly increased after the application of

exogenous BL. Fourth, for K+ transporter genes, a decreasing

tendency variation was observed for MhSKOR under alkaline

stress and exogenous BL treatment. MhNHX1 and MhNHX4

had significantly increased expression under alkaline stress but

had significantly decreased expression when exogenous BL was

applied. Finally, the expression of two selected transcription

factors, namely, MhBZR3 and MhBZR5, significantly changed

under alkaline and exogenous BL treatment. For both of them,

the expression level was increased significantly under alkaline
ED F

A B C

FIGURE 7

Effects of exogenous BL treatment on Na+ content (A), K+ content (B), and Na+/K+ ratio (C), Ca2+ content (D), Fe2+ content (E) and Mg2+

content (F) under alkaline stress. The data represent the mean ± SD of three biological replicates. Different lowercase letters indicate significant
differences according to Fisher’s least significant difference (P < 0.05).
A B C

FIGURE 6

Effects of exogenous BL treatment on electrolyte leakage (A), proline content (B), and soluble protein content (C) under alkaline stress. The data
represent the mean ± SD of three biological replicates. Different lowercase letters indicate significant differences according to Fisher’s least
significant difference (P < 0.05).
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stress, while decreased dramatically when exogenous BL was

applied. These results suggested that exogenous BL responded to

alkaline stress by regulating the expression of alkaline-related

genes and MhBZRs.
Discussion

Soil salinization seriously restricts the development of the

global fruit industry (Hu et al., 2016).M. hupehensis is one of the

most popular rootstocks in apple cultivation, but it is severely

affected by saline-alkali stress (Su et al., 2020). Saline-alkali stress
Frontiers in Plant Science 10
includes salt stress and alkaline stress. Alkaline stress causes

more serious damage to plants than salt stress because it also

induces high pH stress except for ion toxicity, osmotic stress, and

oxidative damage (Yang and Guo, 2018; Fan et al., 2021).

Nevertheless, most studies focus on the mechanism of plants

in response to salt stress and on how to alleviate salt stress

damage, ignoring the occurrence of salt stress is usually

accompanied by alkaline stress in soil (Liang et al., 2017;

Christian et al., 2018). Therefore, this study mainly focuses on

the response of apple seedlings to alkaline stress.

Exogenous application of plant growth regulators is one of

the effective methods to alleviate abiotic stress for hormones play
FIGURE 8

The expression of the 12 candidate genes (MhAHA1, MhAHA2, MhAHA9, MhMATE1, MhALMT1, MhSOS1, MhCHX15, MhSKOR, MhNHX1, MhNHX4,
MhBZR3 and MhBZR5) in roots under alkaline stress and exogenous BL treatment for 15 days. The data represent the mean ± SD of biological
replicates. Different lowercase letters indicate significant differences according to Fisher’s least significant difference (P < 0.05).
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important roles in plant growth and development and

environmental stress response (Dong et al., 2017; Wu et al.,

2017). Our previous study reported that exogenous BL could

alleviate the salt stress of apple rootstock by regulating the

transcription of NHX-type Na+ (K+)/H+ antiporters (Su et al.,

2020). In the present study, we mainly focused on the root

phenotype under alkaline stress. The roots were seriously

damaged by alkaline stress with significantly short root length

and less fibrous root number. Exogenous BL reduced the damage

and partly recovered the root phenotype (Figure 3). Yang and

Guo (2018) reported that the main damage to roots under

alkaline stress was caused by high pH stress, which affected

the roots absorption of nutrient elements and led to a series of

symptoms related to nutrient deficiency. Ca is an important

secondary messenger, maintaining its concentration in the

cytoplasm can contribute to the regulation of plant signaling-

transduction pathways under alkaline stress (Ding et al., 2010).

Mg also has numerous positive effects on plant development

(Zirek and Uzal, 2020). Fe is involved in chlorophyll synthesis

and essential for maintaining the structure and function of

chloroplasts (Casiraghi et al., 2020). Our results showed that

the Ca2+, Fe2+ and Mg2+ contents were significantly decreased

under alkaline stress, but increased when exogenous BL was

applied (Figure 7). Hence, exogenous BL could promote Ca2+,

Fe2+ and Mg2+ absorption, and the increase of the Fe2+ content

would be the cause of the protection of chlorophyll and

photosynthesis under alkaline stress (Figure 2). Previous study

also reported that the application of BL promoted Ca2+ and Mg2+

absorption in soybean plants under normal conditions (Alam et al.,

2019). The precipitation of nutrient elements could be attributed

mainly to increased rhizosphere pH under alkaline stress

(Veremeichik et al., 2021). Our staining results showed that the

rhizosphere pH of apple roots significantly increased under alkaline

stress but decreased after the application of exogenous BL

(Figure 4A). However, the rhizosphere pH value under normal

conditions was not affected by exogenous BL in cucumber (Wang

et al., 2012). Our results suggested that the influence of exogenous

BL to rhizosphere pH existed in the presence of alkaline stress. Root

exudation of organic acids and H+-ATPase are the main responses

of plants to high pH stress (Ghassemi-Golezani and Abdoli, 2021).

On the one hand, we found that exogenous BL could significantly

induce the expression of MhALMT1 and MhMATE1, which are

important genes involved in the transport of malic acid and citric

acid. Moreover, the contents of malic acid and citric acid

significantly decreased in the roots after exogenous BL was

applied (Figure 4 and Figure 8). These results indicated that

exogenous BL could enhance the excretion of malic acid and

citric acid outside of the roots in response to high pH stress. On

the other hand, the H+-ATP enzyme in the plasma membrane

acidified the pH environment in the roots through the external

pump of H+ and improved the plants’ response to high pH stress

(Sukhov et al., 2016; Zhao S. et al. (2016)). In this study, qPCR

results also showed that exogenous BL could significantly induce the
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expression of MhAHAs (MhAHA1, MhAHA2, and MhAHA9),

which encode the synthesis of H+-ATP enzyme (Figure 8). Taken

together, our results indicated that exogenous BL could decrease the

rhizosphere pH and promote Ca2+ and Mg2+ absorption by

regulating malic acid and citric acid contents and increasing H+

excretion under alkaline stress.

Alkaline stress caused substantial accumulation of ROS in

plants, resulting in oxidative damage (Sharma et al., 2016).

Previous studies reported that salt stress could increase the

contents of O2·
− and H2O2, whereas exogenous BL could

alleviate this damage in leaves (Su et al., 2020). The present

study focused on roots and found that the ROS level and MDA

contents were significantly increased by alkaline stress and then

decreased after the application of exogenous BL in the roots

(Figure 5). SOD, POD and CAT are three major antioxidant

enzymes (Tan et al., 2012; Abdelaal et al., 2018). They increased

the resistance of sorghum roots to oxidative damage caused by

heavy metal stress (Yilmaz et al., 2017). SOD is responsible for

O2·
− clearance, while POD and CAT are responsible for H2O2

clearance in plant antioxidant systems. In this study, the results

demonstrated that exogenous BL induced the activities of POD

and CAT, but exerted no significant activity change in SOD to

mitigate ROS in the roots (Figure 5). In addition, the O2·
− level

had no significant change, but suffered severe H2O2 damage in

leaves under alkaline stress. When exogenous BL was applied,

the H2O2 content was substantially decreased (Figure S1A).

Moreover, the POD and CAT activities were significantly

repressed under alkaline stress but increased in leaves after BL

was applied, while the SOD activity had no significantly change

both in leaves and roots. Therefore, we speculated that

exogenous BL could eliminate H2O2 through increasing the

activities of POD and CAT, with no remarkably effect on SOD

activity and O2·
− scavenging both in leaves and roots. The AsA-

GSH cycle is an important non-enzymatic antioxidant

protection system in plants, and its function on ROS

scavenging is mainly through the combination of the

antioxidants AsA, GSH and the key enzyme APX (Wang et al.,

2019; Li et al., 2022). For normal cell functioning, exogenous BL

supplementation is useful in maintaining the GSH/GSSG and

AsA/DHA ratios (Batth et al., 2017; Alam et al., 2019). In this

study, the change of APX activity was similar with POD and

CAT, which was decreased under alkaline stress, but increased

under exogenous BL treatment. The ratios of GSH/GSSG and

AsA/DHA showed a significant decline under salt stress;

nevertheless, application of exogenous BL improved

productions of GSH and AsA, which transformed more GSSG

and DHA to its reduced form and generate a reduced redox

homeostatic environment (Figure 5 and Figure S2). Taken

together, our study concluded that exogenous BL has the

potential to improving the activities of the antioxidant

enzymes and modulate the AsA-GSH cycle to a redox state

that plays a fundamental role in alkaline stress tolerance of

apple plants.
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Osmotic stress is a direct damage to plants caused by alkaline

stress (Wu et al., 2017). Our results showed that electrolyte

leakage was induced significantly under alkaline stress but

decreased after exogenous BL treatment (Figure 6). Previous

studies reported that the accumulation of substances such as

proline and soluble sugars is a common defense mechanism of

plants under osmotic stress (Liang et al., 2017; Zhang et al.,

2017). Our data indicated that exogenous BL could protect

apple seedlings from osmotic stress by accumulating

proline (Figure 6).

Another major damage caused by alkaline stress is ion

toxicity because large amounts of Na+ entering cells can lead

to cation imbalance (Lv et al., 2013). Regulating Na+/K+ in the

cytoplasm is one of the core mechanisms of plants in response to

saline-alkali stress (Wang X. et al., 2015; Azhar et al., 2017). In

the present study, the Na+/K+ ratio increased significantly under

alkaline stress; after exogenous BL treatment, the K+ content

increased and the Na+ content was inhibited (Figure 7). The SOS

pathway is one of the classical responses of plants to alkaline

stress, and SOS1 in the plasma membrane alleviates the harmful

effects of alkaline stress by discharging Na+ from the cells (Fan

et al., 2019; Gupta et al., 2021). Our results indicated that the

expression ofMhSOS1 was significantly induced after exogenous

BL application, resulting in reduced Na+ content (Figure 7 and

Figure 8). In the regulation of K+, the SKOR family in the plasma

membrane functions in the efflux of potassium ions outside the

cells (Zheng et al., 2020). NHX1-4 in tonoplast is responsible for

K+ compartmentalization between the cytosol and the vacuole

(Barragan et al., 2012; Li Y. et al. (2021); Solis et al., 2022).

Exogenous BL treatment significantly decreased the levels of

MhSKOR, MhNHX1, and MhNHX4 (Figure 8). Hence, exogenous

BL could inhibit K+ expel and compartmentalization, resulting in

more K+ concentration in the cytoplasm to maintain relatively

stable Na+/K+ ratio. In a word, the ion toxicity caused by alkaline

stress could be alleviated by exogenous BL through enhancing Na+

efflux and inhibiting K+ expel and vacuole compartmentalization.

The expression ofMhBZRs, as the key transcription factor in

the BR signaling pathway, was also detected in the current study.

The results indicated that the expression levels of MhBZR3 and

MhBZR5 were significantly induced by alkaline stress and

inhibited after exogenous BL was applied (Figure 8). This

variation tendency was similar to that of K+ transport genes

(MhNHX1 and MhNHX4) and opposite to that of MhAHAs,

MhSOS1, MhMATE1, and MhALMT1. BR regulates a variety of

biological processes mainly through the key transcription factors

(BZRs) in its signal transduction pathway, while the BZR family

transcription factors can directly regulate gene expression to

participate in biological reactions (Sun et al., 2022). Recently, it

was found that MaBZR1, MaBZR2, and MaBZR3 could bind

specifically to the promoters of ethylene biosynthesis-related

genes, thus reducing ethylene synthesis, and then inhibit the

ripening of banana fruit (Guo et al., 2019). In maize, ZmBZR

genes responds positively to salt stress but negatively to high
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temperature stress (Manoli et al., 2018). Therefore, BZRs

expression patterns differed among different species or within

the same species under different stresses. Previous studies

showed that MhBZR1 and MhBZR2 can bind to the promoter

of MhSOS1 or MhNHX4-1 and inhibit their transcription,

respectively (Sze and Chanroj, 2018; Fan et al., 2019; Su et al.,

2020). Future research will focus on the regulatory relationship

between BR-signaling transduction pathway genes and alkaline-

related genes.
Conclusion

Our study explored that exogenous BL could effectively

improve the tolerance of apple plants on alkaline stress.

Exogenous BL could decrease the rhizosphere pH by

regulating malic acid and citric acid contents and increasing

H+ excretion, reduce oxidative damage through increasing the

activities of antioxidant enzymes and the antioxidants contents,

regulate osmotic balance by accumulating proline, and alleviate

ion toxicity through enhancing Na+ efflux and inhibiting K+

expel and vacuole compartmentalization. Overall, the

application of exogenous BL mitigated the alkaline toxicity in

apple plants and thus it can be applied to other plants as well.

Such a sustainable approach can be used to achieve enhanced

fruit production under saline-alkali soils.
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