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Rapid prediction of winter
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grade unmanned aerial vehicles
multispectral imagery
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and Xinwei Li1,2*

1College of Resource and Environment, Anhui Science and Technology University, Fengyang, China,
2Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement
Engineering Research Center, Anhui Science and Technology University, Fengyang, China
Rapid and accurate assessment of yield and nitrogen use efficiency (NUE) is

essential for growth monitoring, efficient utilization of fertilizer and precision

management. This study explored the potential of a consumer-grade DJI

Phantom 4 Multispectral (P4M) camera for yield or NUE assessment in winter

wheat by using the universal vegetation indices independent of growth period.

Three vegetation indices having a strong correlation with yield or NUE during the

entire growth season were determined through Pearson’s correlational analysis,

while multiple linear regression (MLR), stepwise MLR (SMLR), and partial least-

squares regression (PLSR) methods based on the aforementioned vegetation

indices were adopted during different growth periods. The cumulative results

showed that the reciprocal ratio vegetation index (repRVI) had a high potential for

yield assessment throughout the growing season, and the late grain-filling stage

was deemed as the optimal single stage with R2, root mean square error (RMSE),

and mean absolute error (MAE) of 0.85, 793.96 kg/ha, and 656.31 kg/ha,

respectively. MERIS terrestrial chlorophyll index (MTCI) performed better in the

vegetative period and provided the best prediction results for the N partial factor

productivity (NPFP) at the jointing stage, with R2, RMSE, andMAE of 0.65, 10.53 kg

yield/kg N, and 8.90 kg yield/kg N, respectively. At the same time, the modified

normalized difference blue index (mNDblue) was more accurate during the

reproductive period, providing the best accuracy for agronomical NUE (aNUE)

assessment at the late grain-filling stage, with R2, RMSE, and MAE of 0.61, 7.48 kg

yield/kg N, and 6.05 kg yield/kg N, respectively. Furthermore, the findings

indicated that model accuracy cannot be improved by increasing the number
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of input features. Overall, these results indicate that the consumer-grade P4M

camera is suitable for early and efficient monitoring of important crop traits,

providing a cost-effective choice for the development of the precision

agricultural system.
KEYWORDS
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Introduction

Wheat (Triticum aestivum L.) is the most crucial global

staple food that constitutes 20% of the required calories and

proteins for humans (Curtis and Halford, 2014). Since the

“Green Revolution” of the 1950s, wheat yield has increased

significantly with the application of nitrogen fertilizer (Nguyen

et al., 2019). To increase wheat yield sustainably, agricultural

systems worldwide have been extensively applying nitrogen

fertilizers (Han et al., 2015; Ali et al., 2018). However,

accumulating evidence suggests that the goal of increasing

wheat yield through nitrogen application rate has reached a

bottleneck (Fischer et al., 2009; Curtis and Halford, 2014).

Meantime, the continuous excessive application of nitrogen

fertilizer leads to an increase of agricultural production cost

and irreversible environmental pollution (Sharma and Bali,

2018). Hence, current research is focused on how to maximize

nitrogen use efficiency (NUE) while maintaining a reasonable N

fertilizer application rate, so as to achieve the ultimate goal of

increasing wheat yields (Good et al., 2004; Han et al., 2015; Ali

et al., 2018; Nguyen and Surya, 2018).

Obvious genotypic differences exist in the yield and NUE,

and complex polygenic traits are influenced by the genotype,

management practice, and environment (Curtis and Halford,

2014; Han et al., 2015; Sharma and Bali, 2018). Researchers need

to systematically examine the level of variation in different

varieties with different N gradients and environments

(Monostori et al., 2017). The assessment of yield and NUE

traits of different varieties under natural conditions in the field is

typically performed at the time of crop maturity by manually

operating simple machines and through complex chemical

analyses performed in laboratories. These processes are

laborious, inefficient, and destructive. Moreover, the

inefficiency of phenotype data acquisition capacity restricts the

high-throughput development of crop genetic improvement

(Prey et al., 2020; Jin et al., 2021). Thus, low-cost, robust,

high-throughput phenotype acquisition platforms and

technologies are highly warranted.

Compared with satellites and ground-based proximal

sensors, a high-throughput phenotyping platform with
02
unmanned aerial vehicles (UAVs) is an economical, practical,

efficient, and non-destructive solution to conveniently capture

spatial resolution images on centimeter- or millimeter-scale

without the constraints of weather conditions (Lin, 2015; Yang

et al., 2017; Hassler and Baysal-Gurel, 2019). This approach

ensures data collection at critical crop growth stages, facilitating

the efficient management or monitoring of crops.

Spectral information from UAVs is mainly used in the form

of vegetation indices (VIs) (Araus and Cairns, 2014; Svensgaard

et al., 2019; Guo et al., 2021). VIs represent mathematical

transformation of reflectance of two or more bands to

characterize the canopy spectral characteristics of crops (Yang

and Guo, 2008; Qiu et al., 2018), and it is the simplest, most

effective, and most widely studied method for the estimation of

crop parameters (Feng et al., 2021). To obtain the ideal crop

yield prediction accuracy, researchers have used the UAVs to

explore the combination of VIs and stages that suits their

respective research needs. For instance, Zhou et al. (2017)

predicted rice yield by using UAVs-based RGB and

multispectral imagery and demonstrated that airborne RGB

and multispectral VIs could be used as reliable platforms for

crop growth and yield estimation. Zhu et al. (2018) also used the

UAVs equipped with a multispectral camera to acquire images

of wheat at different growth stages and assessed the yield by

using nine VIs. The analysis results showed that the most

effective estimation model was presented from the heading to

the filling stage, and the optimal vegetation index was an

enhanced vegetation index without a blue band (EVI2). Fu

et al. (2020) used a multispectral camera to obtain canopy

images of wheat at the critical growth stages and predicted

wheat yield by machine learning methods. The results revealed

that the vegetation indices at the jointing, flowering, and filling

stages showed reasonable fit efforts with the yield. Normalized

difference vegetation index (NDVI) at the jointing stage,

normalized difference red-edge index (NDRE) at the flowering

stage, and canopy chlorophyll content index (CCCI) at the filling

stage showed the best yield estimation. The study by Shafiee et al.

(2021), on the other hand, concluded that NDVI for wheat yield

was the strongest predictor, while the addition of MERIS

terrestrial chlorophyll index (MTCI) in the pre-filling period
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could improve the predictive power of yield models. Wan et al.

(2020) developed the best rice yield prediction model based on

NDVI, normalized difference yellowness index (NDYI), canopy

height, and canopy cover by using a UAVs high-throughput

platform equipped with RGB and multispectral cameras.

Moreover, the initial heading stage was considered the best

stage for yield prediction. Results of previous studies suggest

that the best predictive VIs and stage for yield modeling

generally differ across the growth season. In other words, such

yield estimation models can be applied at specific time points,

and they show limited extrapolation capability under any other

growth stage during the growing season. This point undoubtedly

raises the threshold for spectral vegetation indices in applied

production. Practitioners without specialized remote sensing

knowledge prefer using a single vegetation index during

multiple stages of the growing season.

Unlike yield prediction, the NUE traits have been less

frequently evaluated by UAVs. Yang et al. (2020) evaluated the

NUE of wheat varieties by using a UAV_mounted multispectral

camera. The results revealed that the NDRE had a high

consistency and accuracy for NUE, particularly in the mid to

late-grain filling stage. In addition, the nitrogen dynamics time-

series curves of the two rice populations were captured by UAVs’

multispectral imagery, which were used to identify an available

spectral index (NDRE) and a high NUE variety (Liang et al.,

2021). Therefore, more studies are needed to explore the

potential of UAVs imagery in NUE prediction.

With the proliferation of the UAVs and sensor markets,

increasing numbers of consumer-grade UAVs are being used for

agricultural remote sensing research, and their use is being

promoted by actual agricultural managers (Gallardo-Salazar

and Pompa-Garcıá, 2020; Lu et al., 2020; Di Gennaro et al.,

2022). The advent of the DJI Phantom 4 Multispectral (P4M)

camera (SZ DJI Technology Co., Shenzhen, China) brings

multispectral sensors into the consumer-grade category.

However, there are few studies have evaluated cereal yield and

NUE by using P4M multispectral imagery.

In this study, we used a P4M camera to develop rapid

prediction models of yield and NUE traits that can be applied

to different growth stages. In summary, we aimed to (1)

determin the optimal VIs that can be applied to multiple

periods within a growing season for yield and NUE traits

assessment; (2) compare the performance of several linear

regression (LR) models based on optimal VIs at different

growth periods, and (3) validate the potential of the P4M

camera for wheat grain yield or NUE prediction of precision

agricultural systems. Based on a literature review and discussion

of the current methodology, we present our research findings

and discuss the optimal screening VIs and estimation models

suitable for wheat trait monitoring during multiple growth

periods. Our study can provide an efficient, convenient, and
Frontiers in Plant Science 03
reliable high-throughput phenotype selection method to

construct intelligent agricultural systems.
Materials and methods

Design of field experiment

The experimental area was set up in Xiaogang Village, Anhui

Province, China, located on the bank of Huai River. Typical

warm temperate semi-humid continental monsoon climate of

Xiaogang Village is 15.4°C annual average temperature with

mean annual precipitation of 1236.2 mm, and summer maize

and winter wheat are the major crops grown in this region. The

experiment was conducted during the 2020–2021 wheat season,

and was laid out using a split-plot design with three replicates,

with nitrogen fertilizer levels assigned to the primary plots,

whereas the winter wheat varieties were set up in subplots.

There were four nitrogen fertilizer levels (N0 = 0, N1 = 100,

N2 = 200, and N3 = 300 kg/ha) and three wheat varieties (V1:

Huaimai 44, V2: Yannong 999, and V3: Ningmai 13). The three

winter wheat varieties are newly released in Huang-Huai-Hai

areas of China, and have the potential of high yield and stability.

Black plastic films with 4 mm thickness were deposited between

primary plots with different nitrogen fertilizer gradients to

prevent water and fertilizer diffusion. Nine subplots of the

primary plots were designed with 50-cm spacing. The whole

study area comprised 36 wheat plots, with an area of 16 m2 (2

m×8 m) for each plot (Figure 1). Winter wheat seeds were sown

on November 7, 2020, following rice harvest, and the rice stubble

was treated in time, with a row spacing of 30 cm and artificial

drilling. Irrigation was then performed to maintain the soil

moisture content. In late February 2021, winter wheat enters

the turning green and rising period. Then, in late April, it enters

the flowering stage. In May, the winter wheat enters the grain-

filling stage, and hence, the harvest was performed on June 3,

2021. Nitrogen fertilizers were applied at 60% and 40% during

the sowing and jointing stages, respectively. Phosphate (P = 90

kg/ha) and potassium (K = 135 kg/ha) fertilizers were applied as

basal fertilizers prior to sowing. For field management, local

high-yield cultivation methods and pest and disease control

strategies were adopted. Fortunately, the weather conditions

were ideal throughout the winter wheat growing season, and

no meteorological disasters such as drought or waterlogging

occurred during this period.
UAVs multispectral image acquisition

The DJI P4M camera was used for multispectral imagery

acquisition; it is the latest consumer-grade quad-rotor
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multispectral imaging system that can be used for agricultural

applications launched by DJI. It consists of 5 monochrome

sensors of 12.08 megapixels and is configured on a 3-axis

gimbal to obtain clear and stable images. In addition, the

camera is equipped with a real-time kinematic (RTK) system

to obtain images with centimeter-level positioning accuracy.

Table 1 describes the technical specifications of the camera.

The UAVs campaigns were conducted in clear, cloudless,

and calm weather conditions between 11:00 and 13:00 local time.

We employed the software DJI GS PRO software (https://www.

dji.com/cn/ground-station-pro/) to pre-plan the routes and

examine the aerial photography performance in real-time

during the flight. Multispectral images were acquired from

30 m above the ground level, with a flight speed of 2.0 m/s,

under automatic exposure mode, and 90% and 85% of overlap in

the flight and side directions, respectively. A series of 6

campaigns with identical flight plans were developed using the

P4M camera (Table 2). The photos were saved in the.tiff format,

and 785 images were captured per flight.
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Ground hyperspectral data acquisition

Spectral measurements of the winter wheat canopy were

conducted using the ASD FieldSpec HandHeld2 (ASD HH2)

portable spectrometer (Analytical Spectral Devices, Boulder,

Colorado, USA). The spectroradiometer can take continuous

spectrum measurements in the 325–1075 nm wavelength range,

with a spectral resolution of <3.0 nm at 700 nm, wavelength

accuracy of 1 nm, and a view angle of 25°C. The measurements

were performed under stable sunlight conditions before or after

the drone flight, and radiation correction was performed with a

standard whiteboard before measurements. Three representative

uniform areas were selected for the measurement of each plot. The

detector was downward, while the vertical distance was

approximately 50 cm above the canopy. All spectra collected

from the same plot were averaged to represent the mean

reflectance of this plot. Considering the lack of spectral response

functions of the P4M camera, we compared and analyzed the

differences between the reflectance of the P4M bands and the
FIGURE 1

Experimental location (A, B), plot design (E), P4M platform (C), and calibration panels (D) in the present study.
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field-measured mean spectral measurement at the plot scale to

illustrate the reliability of the P4M multispectral camera.
UAVs multispectral image preprocessing

Preprocessing is fundamental for ensuring better image

quality and consistency in subsequent analyses, and it mainly

includes orthophoto image generation, radiometric calibration,

and geometric correction. The original multispectral photos (.tiff

format) were evaluated to exclude images with any noticeable

distortion. To generate orthophoto images, we used DJI Terra

software (https://www.dji.com/cn/downloads/softwares/dji-

terra), which ensures the extraction of accurate quantitative

information by performing positional error registration and

radiation distortion correction from exposure, vignetting, file

format, and spectral sensitivity. Then, the 5 single-band
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orthophoto images were merged into a multispectral file (.tiff)

by using ENVI software (Exelis Visual Information Solutions,

Boulder, Colorado, USA). The unified coordinate system used

was WGS_84 UTM 50N. Following preprocessing, multispectral

images of the experimental field were obtained, and the spatial

resolution was resampled to 1.5 cm.

We applied the empirical line method (ELM) to each

band based on four reference panels with known reflectance

values. Di Gennaro et al. (2022) demonstrated the effectiveness

of the ELM model for radiometric correction of the P4M

camera. To eliminate the boundary effect, an area of

approximately 0.2 m × 0.2 m was selected in the central part

of the reference panels, and the average value was extracted and

used as the DN value of the reference panels. The DN values

were further transformed into reflectance values by using the

following equation:

R i,jð Þ = DN i,jð Þ*ai  ,   i ∈ 1, 5½ �,   j ∈ 1, 4½ � (1)

where R(i,j) and DN(i,j) are the reflectance and DN values of the

reference panel j in band i, respectively, and ai is the slope

coefficient of ELM.
Removal of the soil background

During the early growth period of winter wheat (i.e., at the

tillering and jointing stages), the plants were short, and the soil

background occupied a major proportion in the field of view,

which led to an underestimation of the VI value. Zhu reported

that the impact of soil background on early winter wheat yield

estimation was remarkable (Zhu et al., 2018). In addition, plants

in the non-fertilized (N0) area had less tillering and weak

growth, and the vegetation coverage was low throughout the

growing season. Referring to a previous study (Jay et al., 2019),

we selected the visible atmospherically resistant index (VARI)

and adopted the threshold method to remove the soil

background. The winter wheat accuracy evaluation results

after background removal based on the VARI threshold were

presented in Supplementary Table S1.
Calculation of vegetation indices

The reflectance of the 5 bands was extracted from the

background-removed multispectral images, and nine

vegetation indices, which have been widely used to assess crop

yield and biochemical parameters, were calculated. Among these

indices, MTCI used the red-edge band, which effectively

weakened the reflectance changes caused by leaf orientation

and specular reflection and had a positive effect on accuracy of

the crop physiological parameter prediction (Dash and Curran,

2004). Modified normalized difference blue index (mNDblue)
TABLE 1 DJI P4M camera technical specifications.

Parameters Values

Sensor 1/2.9 inch CMOS(5)

Pixel resolution(px*px) 1600*1300

Acquisition mode snapshot

Optics f/2.20

Focal length(mm) 5.74

FOV(°) 62.7

Battery life(minutes) 27

RTK accuracy(m) vertical: ± 0.1; horizontal: ± 0.1

Photo format .tiff

Bands set Blue:450 nm ± 16 nm

Green:560 nm ± 16 nm

Red:650 nm ± 16 nm

Red Edge:730 nm ± 16 nm

NIR:840 nm ± 26 nm
TABLE 2 Flight details for the entire growth season.

Date Growth stages Heights
(m)

Spatial resolution
(cm*cm)

03/14/
21

Jointing(J) 30 1.64*1.44

04/08/
21

Booting(B) 1.85*1.54

04/18/
21

Heading(H) 1.74*1.44

04/29/
21

Late flowering(LF) 1.74*1.45

05/09/
21

Initial grain-filling
(IGF)

1.74*1.46

05/24/
21

Late grain-filling(LGF) 1.74*1.47
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could effectively reduce the radiation error caused by the soil

background and illumination changes, and it was insensitive to

the canopy structure (Jay et al., 2017). Normalized green, red

difference index (NGBDI) is calculated by bands in the visible

light range, which is sensitive to the reproductive growth of

crops, and it showed better for rice grain yield prediction than

VARI (Wan et al., 2020). In another study, this index has been

referred to as NDYI (John and Dan, 2016). Based on the ratio

vegetation index (RVI), the present study proposes the

reciprocal ratio vegetation index (repRVI), which was

calculated by dividing the NIR band by the red band. The

vegetation indices are detailed in Table 3.
Agronomic data acquisition
and preprocessing

At the physiological maturity stage of winter wheat, three

representative and uniform 0.5-m double-row areas in each plot

were selected for sampling. The harvested ears were transferred

to the laboratory and sun-dried until the weight remained

unchanged. The average yield of the 3 sampling sub-plots

served as the final yield of the plot, and this yield was

uniformly converted to kg/ha.

Several definitions have been developed for NUE, and

most of these definitions are based on grain yield, meaning

the input-output ratio of nitrogen fertilizers (Moll et al., 1982;

Good et al., 2004; Hawkesford, 2017). Agronomical NUE

(aNUE) is calculated based on the grain yield under N

application when compared with that under the 0 level, and

it was used to assess the utilization efficiency of the fertilizer

applied on top of the residual N in the soil, In addition, the N

partial factor productivity (NPFP) is adjusted for the grain

yield with the direct application of the N supply under each

treatment (Wan et al., 2020). Both indicators emphasized the

nitrogen fertilizer input-output ratio, which indicated the

ability of the crop to efficiently use the applied nitrogen
Frontiers in Plant Science 06
fertilizer to increase grain yield. aNUE and NPFP were

calculated according to the formulas (2) and (3) ,

respectively, which are as follows (Kefauver et al., 2017;

Wan et al., 2020)

aNUE =
GYNi − GYN0

Ni
      i ∈ 1, 3½ � (2)

NPFP =
GYNi

Ni
      i ∈ 1, 3½ � (3)

where GYNi and GYN0 represent the grain yield of the plot at the

i (i≠0) level and 0 levels, respectively; and Ni represents the N

supply at the i (i≠0) level.

Variance analysis was implemented to describe the

differences among the different N levels and varieties in terms

of grain yield and NUE by using Wilcoxon rank sum and signed

rank tests in RStudio (version 1.4.1106) (https://www.rstudio.

com/) with R version 4.04 (https://www.r-project.org/).
Model development and performance
assessment

Linear regression (LR) is a simple model that incorporates

the concept of naive machine learning modeling and serves as

the basis for highly complicated linear models. The least-square

method based on the minimization of mean square error is the

basic method employed for solving the LR model. Multiple LR

(MLR) model involves two or more independent variables and

considers the comprehensive effect of multiple independent

variables on the dependent variable. In the MLR model,

multiple correlations among variables affect the estimation of

parameters, thereby decreasing the estimation accuracy.

Therefore, other methods are preferred to eliminate

multicollinearity (Fu et al., 2020). Stepwise MLR (SMLR) is a

modeling method that eliminates covariance by removing

unnecessary independent variables through AIC value
TABLE 3 Multispectral vegetation indices used in this study.

VIs name Algorithm formula Reference

Visible atmospherically resistant index (VARI) (Rgreen−Rred)/(Rgreen+Rred−Rblue) Gitelson et al., 2003a

Normalized green, red difference index (NGBDI) (Rgreen−Rblue)/(green+Rblue) Hunt et al., 2005

Normalized difference vegetation index (NDVI) (RNIR−Rred)/(NIR+Rred) Rouse et al., 1974

Normalized difference red edge index (NDRE) (RNIR−Rrededge)/(NIR+Rrededge) Barnes et al., 2000

Green normalized difference vegetation index (GNDVI) (RNIR−Rgreen)/(NIR+Rgreen) Gitelson et al., 1996

Red edge chlorophyll index
(CIrededge)

RNIR/Rrededge−1 Gitelson et al., 2003b

MERIS terrestrial chlorophyll index (MTCI) (RNIR−Rrededge)/(Rrededge−Rred) Dash and Curran, 2004

Modified normalized difference blue index (mNDblue) (Rblue−Rrededge)/(RNIR+Rblue) Jay et al., 2017

Reciprocal ratio vegetation index
(repRVI)

Rred/RNIR Jordan, 1969
repRVI is in a reciprocal relationship to RVI (Jordan, 1969).
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minimization iterations and selecting significant independent

variables to obtain the optimal regression model. The SMLR

model has simple logic and clear physical meaning of the

independent variables, indicating that it is an interpretable

machine learning model (Yu et al., 2016; Han et al., 2019;

Zhang et al., 2022). Partial least-squares regression (PLSR) is

one of the widely used machine learning methods that combines

the basic functions of MLR, canonical correlation analysis, and

principal component analysis. This method can avoid the non-

normal distribution of data, eliminate the multi-linear

relationship between independent variables, and maintain the

relationship between independent variables and factors. PLSR

has demonstrated satisfactory performance in agricultural

remote sensing research (Fu et al., 2014; Kasim et al., 2017;

Shu et al., 2021). Considering the limited number of samples in

the current study, complex machine learning algorithms such as

random forest (RF), support vector machine (SVM), and neural

network (NN), which are recommended for processing high-

dimensional features, were not applied in this study.

The winter wheat grain yield and NUE estimation models

were established by using the aforementioned four models based

on the vegetation indices. Considering the significant differences

in the agronomic traits under different nitrogen levels (Figure 2),

stratified sampling was performed according to the nitrogen

levels; two-thirds of the samples were randomly selected as the

training set to develop the model, and the remaining one-third

of the samples were used as the test dataset for model

performance evaluation. The coefficient of determination (R2),

root mean square error (RMSE), and mean absolute error

(MAE) were applied to evaluate the model’s performance.
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Considering the randomness of sample selection, each model

was repeated 20 times to enhance the robustness of the analysis,

each time with a different random sampling seed number. The

average value of 20 times was considered to evaluate the

performance and stability of the model. Specifically, R2, RMSE,

and MAE were calculated as follows:

R2 = oN
i=1 Yiact − Yact

� �
Yipre − Ypre

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1 Yiact − Yact

� �2 Yipre − Ypre

� �2q (4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1 Yiact − Yipre

� �2
N

s
(5)

MAE =
1
No

N

i=1
Yiact − Yipre

� ��� �� (6)

where Yiact and Yipre represent the actual measured values and

the predicted values of i sample, respectively; Yact and Ypre

represent the average actual measured values and the average

predicted values of all samples, respectively; and N is the number

of samples.

The establishment and evaluation of the above-

mentioned estimation models were performed using the

RStudio (version 1.4.1106) (https://www.rstudio.com/) with

R version 4.04 (https://www.r-project.org/). The four

estimation models were implemented using the lm (LR and

MLR), lmStepAIC (SMLR), and pls (PLSR) methods in the

machine learning package caret, respectively. Stratified

sampling employed the strata function from the sampling
FIGURE 2

Yield, nitrogen partial factor productivity (NPFP), and agronomical nitrogen use efficiency (aNUE) under different nitrogen levels are shown with
the mean and standard deviation. NS, not significant; ***p < 0 by Wilcox’s test.
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package. The PLSR model showed a hyperparameter

“ncomp” , which uses a 5-fold cross-val idation for

determination. To ensure the comparability of the models,

the same random number seed was set for each model in each

cycle, and the features were standardized.
Results

Effect of nitrogen levels on the yield
and NUE

Figure 2 depicts the effects of different N levels on the yield and

NPFP, as well as aNUE. The yield parameter showed an increasing

trend with the increase in N levels and varied significantly under N0

and other N treatments. By contrast, both NPFP and aNUE showed

a decreasing trend with an increase in N levels, with the former

showing a steeper decline. Significant differences were observed in

NPFP between different N treatments. For aNUE, significant

differences were observed among different N treatments, except

for N2 and N3. Figure 3 depicts the differences in the

aforementioned 3 agronomic traits across different varieties. No

significant differences were recorded in these parameters among the

varieties, except for the yields of varieties V1 and V2, which showed

a significant difference. The variety V1 clearly showed the highest

yield and NUE, whereas V3 showed the lowest values. In summary,

only the nitrogen level was found to significantly affect the yield,

NPFP, and aNUE. Therefore, building a predictive model using a

stratified sampling strategy is crucial for monitoring wheat yield and

NUE under different N treatments.
Frontiers in Plant Science 08
Correlations of vegetation indices with
yield and NUE

Correlation analysis results for the relationship between

agronomic traits and multispectral vegetation indices are

shown in Figure 4. Multispectral vegetation indices

significantly are correlated with the yield (r = −0.92 to 0.92)

under all N treatments, and the correlation in the middle growth

period (from booting to the initial grain-filling stage) was higher

than that in the early and late growth periods. repRVI

demonstrated strong significant negative correlations in the

growing season, with high correlation coefficients ranging

from −0.77 to −0.92. It showed the best correlation compared

with other indices, particularly in the jointing and late grain-

filling stages. NDVI and green normalized difference vegetation

index (GNDVI) did not differ from repRVI and were slightly

lower than the latter throughout the growing season. NGBDI

showed a weak correlation with the yield.

Vegetation indices strongly correlated with NUE at the

jointing stage, with NGBDI and GNDVI showing the highest

correlation coefficient, followed by repRVI. The correlations of

most vegetation indices at the jointing stage were higher than

those observed at other stages. However, such a close

relationship cannot be synchronized with the growth and

development of winter wheat, limiting the indices’ further

application in the middle and late growth periods. Throughout

the growing season, MTCI and mNDblue showed stable and

strong correlations with NPFP (r = −0.65 to −0.78 and r = −0.60

to −0.74, respectively). Notably, the correlation coefficients of

these two vegetation indices were much higher than those of the
FIGURE 3

Yield, NPFP, and aNUE under different varieties are shown with the mean and standard deviation. NS, not significant; *p < 0.05 by using
Wilcox’s test.
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other vegetation indices in the reproductive growth period,

and they reached the highest at the maturity stage (r = −0.75

and −0.73, respectively). Middle to strong correlations were also

detected between NPFP and other multispectral indices such as

NDRE (r = −0.54 to −0.79) and CIrededge (r = −0.53 to −0.78).

A similar trend was observed in the correlations between UAVs-

based multispectral indices and aNUE. Throughout the growth

period, MTCI and mNDblue performed relatively well.

Specifically, mNDblue exhibited the highest correlation

coefficient (r = −0.76) at the maturity stage. NDRE and

CIrededge also achieved middle to strong correlations over the

entire season.
Estimation of yield and NUE for a single
critical growth stage

The repRVI presented a high potential for yield assessment

throughout the growing season, except for the jointing stage

(Figures 5A–C). This finding is important for researchers to

make better yield prediction before flowering. The best accuracy

was achieved at the late grain-filling stage, with R2 = 0.85,

RMSE = 793.96 kg/ha, and MAE = 654.56 kg/ha.

No significant difference was noted in the predictive

performance of MTCI and mNDblue during the entire growth

period (Figures 5D–F). Considering the stability of the model,

the jointing stage was proven to be the optimal stage to conduct
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NPFP prediction, with R2, RMSE, and MAE of 0.65, 10.53 kg

yield/kg N, and 8.90 kg yield/kg N, respectively, and followed by

the late grain-filling with mNDblue. The initial grain-filling stage

showed the worst prediction.

As a similar prediction performance to NPFP, mNDblue

provided the best assessment of aNUE (R2 = 0.61, RMSE =

7.48 kg yield/kg N, and MAE = 6.05 kg yield/kg N) at the late

grain-filling stage (Figures 5G–I). MTCI in the jointing stage

provided a better prediction, and the worst prediction was

obtained in the initial grain-filling stage.
Estimation of yield and NUE for the
vegetative and reproductive
growth periods

Spectral information showed apparent differences in

vegetative growth and reproductive growth, which are

contributed by the difference in the crop structure of the

observation field of view. We then analyzed the performance

of vegetation indices on yield and NUE prediction in the two

periods. No differences were noted in the prediction

performance among the three linear models. Table 4 shows

the results of repRVI for winter wheat yield prediction. In the

reproductive period, higher performance was achieved, with the

average R2, RMSE, and MAE of 0.85, 801.05 kg/ha, and 668.53
FIGURE 4

Heatmap for the correlation between vegetation indices and agronomic traits under different growth stages. J, Jointing stage; B, Booting stage;
H, Heading stage; LF, Late flowering stage; IGF, Initial grain-filling stage; LGF, Late grain-filling stage; NS, not significant; *: p < 0.05; **: p < 0.01.
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kg/ha, respectively. Compared with that under the single critical

growth stage, the prediction accuracy of yield improved.

For NUE prediction, MTCI was a better variable in the

vegetative period, while mNDblue was anther better variable in

the reproductive period (Tables 5, 6). The NUE predicted better

on the MTCI and MLR in the vegetative growth period; in the

reproductive growth period, the mNDblue and SMLR provided

better results for NUE prediction. Similarly, the predictive

performance of NUE did not exhibit a significant improvement

when compared with that at the single critical growth stage.
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Estimation of yield and NUE for the
entire growth season

According to the aforementioned results, repRVI, MTCI,

and mNDblue showed a good assessment performance for yield

and NUE during multiple growth stages, however, the effects of

the three linear models in the entire growth season

remain unclear.

Among the three linear models, the PLSR model achieved

the best yield prediction performance (Figures 6A–C). The R2 of
TABLE 4 Yield estimation results with multiple linear regression (MLR), stepwise multiple linear regression (SMLR), and partial least-squares
regression (PLSR) models for the vegetative and reproductive growth periods based on the repRVI index.

Yield Vegetative growth period Reproductive growth period

Training dataset Test dataset Training dataset Test dataset

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

repRVI PLSR mean 0.78 837.84 658.11 0.74 1057.35 859.94 0.87 640.81 512.54 0.85 812.47 676.90

std 0.04 62.18 51.96 0.09 137.52 134.76 0.03 59.21 44.20 0.06 141.50 128.76

SMLR mean 0.78 838.08 657.28 0.74 1045.04 841.67 0.88 622.31 503.42 0.85 803.66 669.09

std 0.03 60.81 50.95 0.08 125.13 135.77 0.02 52.32 45.07 0.05 151.44 140.85

MLR mean 0.79 829.13 655.80 0.74 1060.53 867.07 0.88 618.27 504.36 0.86 787.01 659.61

std 0.03 59.28 52.05 0.09 130.69 135.65 0.02 51.76 46.03 0.05 146.01 133.61
frontiers
the unit of RMSE and MAE is kg/ha.
B C

D E F

G H I

A

FIGURE 5

Results of yield (A-C) and NUE (D-I) prediction for a single critical growth stage using the LR model based on the selected VIs. (A) the value of
determination coefficient (R2) for yield prediction; (B) the value of root-mean-squared error (RMSE) for yield prediction; (C) the value of mean
absolute error(MAE) for yield prediction; (D) the value of R2 for NPFP prediction; (E) the value of RMSE for NPFP prediction; (F) the value of MAE
for NPFP prediction; (G) the value of R2 for aNUE prediction; (H) the value of RMSE for aNUE prediction, and (I) the value of MAE for aNUE
prediction. MTCI indicates the MERIS terrestrial chlorophyll index; mNDblue indicates the modified normalized difference blue index; repRVI
indicates the reciprocal ratio vegetation index; XXX_tr indicates the result based on the training dataset and XXX vegetation index (RepRVI or
MTCI or mNDblue); XXX_te indicates the result based on the test dataset and XXX vegetation index (RepRVI or MTCI or mNDblue). J, Jointing
stage; B, Booting stage; H, Heading stage; LF, Late flowering stage; IGF, Initial grain-filling stage; LGF, Late grain-filling stage.
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the test dataset was 0.85, the RMSE was 814.61 kg/ha, and the

MAE was 642.69 kg/ha, which were comparable to the accuracy

of the yield estimation model in the late grain-filling stage.

A similar approach was applied to estimate NUE by using

MTCI and mNDblue indices. mNDblue performed significantly

better than MTCI (Figures 6D–I). Although the three linear

models did not show differences, better results for NPFP

assessment were achieved based on the mNDblue and MLR,
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with R2, RMSE, and MAE of 0.70, 9.59 kg yield/kg N, and 7.70 kg

yield/kg N, respectively (Figures 6D–F). This result

outperformed the prediction results obtained using only the

critical growth stage, as shown in Figure 5.

Similar to the results of NPFP, no noticeable difference was

noted among the three linear models, and the best results were

also obtained based on the mNDblue and MLR (R2 = 0.60,

RMSE = 8.11 kg yield/kg N, and MAE = 6.58 kg yield/kg N) for
TABLE 6 aNUE estimation results with MLR, SMLR, and PLSR models for the vegetative and reproductive growth periods based on the MTCI and
mNDblue indices.

aNUE Vegetative growth period, Reproductive growth period

Training dataset Test dataset Training dataset Test dataset

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

MTCI PLSR mean 0.53 7.39 5.66 0.55 8.84 7.11 0.39 8.50 6.58 0.37 9.97 8.32

std 0.10 0.94 0.84 0.15 1.94 1.71 0.11 1.25 1.04 0.10 2.29 1.95

SMLR mean 0.56 7.22 5.59 0.52 8.84 7.07 0.41 8.35 6.41 0.39 9.87 8.28

std 0.06 0.89 0.92 0.13 1.76 1.52 0.08 1.09 0.92 0.14 2.38 1.98

MLR mean 0.57 7.11 5.48 0.55 8.63 6.81 0.44 8.12 6.15 0.41 9.49 7.67

std 0.05 0.82 0.86 0.15 1.98 1.78 0.09 1.12 0.91 0.14 2.49 2.09

mNDblue PLSR mean 0.49 7.68 5.91 0.50 9.62 7.67 0.59 6.85 5.39 0.52 8.38 7.03

std 0.11 0.91 0.88 0.18 1.50 1.24 0.09 0.77 0.82 0.22 2.28 2.20

SMLR mean 0.56 7.21 5.60 0.49 9.39 7.48 0.59 6.91 5.51 0.55 8.11 6.82

std 0.06 0.81 0.86 0.17 1.36 1.20 0.10 0.81 0.78 0.24 2.12 2.06

MLR mean 0.57 7.12 5.56 0.53 9.04 7.19 0.61 6.69 5.39 0.53 8.30 7.07

std 0.05 0.73 0.83 0.17 1.54 1.21 0.09 0.79 0.86 0.23 2.31 2.22
frontiers
the unit of RMSE and MAE is kg yield/kg N.
TABLE 5 NPFP estimation results with MLR, SMLR, and PLSR models for the vegetative and reproductive growth periods based on the MTCI and
mNDblue indices.

NPFP Vegetative growth period Reproductive growth period

Training dataset Test dataset Training dataset Test dataset

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

MTCI PLSR mean 0.66 9.11 7.19 0.61 11.34 9.08 0.59 10.10 8.08 0.55 12.05 10.25

std 0.07 1.15 0.94 0.15 2.26 2.00 0.08 1.39 1.10 0.11 2.99 2.45

SMLR mean 0.68 8.94 7.18 0.61 11.25 9.23 0.59 10.03 7.99 0.58 11.46 9.76

std 0.06 1.12 0.99 0.15 2.59 2.18 0.08 1.33 1.04 0.12 3.14 2.61

MLR mean 0.70 8.69 6.97 0.65 10.63 8.65 0.61 9.86 7.79 0.54 11.98 10.05

std 0.05 0.97 0.85 0.15 2.34 2.08 0.08 1.35 1.00 0.13 3.03 2.48

mNDblue PLSR mean 0.64 9.45 7.41 0.59 11.83 9.58 0.69 8.73 6.84 0.61 10.63 8.95

std 0.08 1.05 0.94 0.15 1.93 1.71 0.07 1.01 0.92 0.18 2.55 2.32

SMLR mean 0.68 8.86 7.14 0.62 11.25 9.04 0.69 8.65 6.70 0.64 10.21 8.59

std 0.04 0.85 0.92 0.16 2.10 1.81 0.07 1.02 0.88 0.19 2.66 2.53

MLR mean 0.69 8.81 7.05 0.64 10.97 8.90 0.70 8.56 6.80 0.63 10.38 8.93

std 0.04 0.83 0.85 0.14 1.95 1.75 0.07 1.03 0.94 0.18 2.59 2.35
the unit of RMSE and MAE is kg yield/kg N.
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aNUE (Figures 6G–I), which were comparable to the results at

the late grain-filling stage.
Estimation of yield and NUE using all
vegetation indices

Further analysis was performed to determine whether

redundant independent variables affect the prediction results.

Figures 7A–C describes the effect of all VIs on the yield,

indicating that the yield assessment performance of SMLR and

MLR increased from the jointing stage to the initial grain-filling

stage and then decreased at the late grain-filling stage. Taking

MLR as an example, the R2 (RMSE and MAE) values changed

from 0.62 (1322.23 kg/ha and 1055.07 kg/ha) to 0.82 (900.71 kg/

ha and 725.50 kg/ha), which then fluctuated to 0.78 (989.24 kg/

ha and 811.37 kg/ha). Conversely, the prediction result of PLSR

was satisfactory with R2, RMSE, and MAE of 0.70, 1120.59 kg/

ha, and 908.77 kg/ha, respectively, at the jointing stage, which

then gradually increased to 0.86, 776.83 kg/ha, and 642.69 kg/ha,

respectively. The performance was slightly improved when

compared to a linear model based on a single critical stage by

using repRVI.

Figures 7D–I depicts the prediction performance for NUE of

all vegetation indices at different stages in terms of R2. Although
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the PLSR model showed a lower accuracy than SMLR and MLR

models on the training dataset than SMLR and MLR, the

accuracy on the test dataset was better than with the other two

models, and the R2 distribution was concentrated. In short, the

PLSR model was more effective in overcoming the problem of

unbalanced prediction accuracy on the test dataset and the

training datasets caused by overfitting and performed better

on the test dataset. Compared with the single-stage estimation

model, the prediction performance based on all VIs did not

improve. These results suggested that improving the prediction

performance by increasing the number of input features is not

necessarily a good choice.
Discussions

Reliability of the P4M camera

UAVs are increasingly being used for crop growth

monitoring and field phenotyping. In the recent decade, UAVs

have entered the consumer goods market in parallel with the

continuous development of low-cost sensing technology. The

appearance of DJI P4M has made the multispectral remote-

sensing system available in the market. Although there are cheap

CIR cameras that can capture NIR images by modifying the
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FIGURE 6

Results of yield (A-C) and NUE (D-I) prediction with MLR, SMLR, and PLSR models for the entire growing season based on the selected VIs.
(A) the value of determination coefficient (R2) for yield prediction; (B) the value of root-mean-squared error (RMSE) for yield prediction; (C) the
value of mean absolute error(MAE) for yield prediction; (D) the value of R2 for NPFP prediction; (E) the value of RMSE for NPFP prediction;
(F) the value of MAE for NPFP prediction; (G) the value of R2 for aNUE prediction; (H) the value of RMSE for aNUE prediction, and (I) the value of
MAE for aNUE prediction. MTCI indicates the MERIS terrestrial chlorophyll index; mNDblue indicates the modified normalized difference blue
index; repRVI indicates the reciprocal ratio vegetation index; XXX_tr indicates the result based on the training dataset and XXX vegetation index
(RepRVI or MTCI or mNDblue); XXX_te indicates the result based on the test dataset and XXX vegetation index (RepRVI or MTCI or mNDblue).
J, Jointing stage; B, Booting stage; H, Heading stage; LF, Late flowering stage; IGF, Initial grain-filling stage; LGF, Late grain-filling stage.
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images obtained through ordinary RGB cameras, the red-edge

band, which is of great significance to crop monitoring, remains

a luxury. Nevertheless, P4M integrates this band to the

consumer level, which positively promotes the significance of

the popularization of agricultural remote sensing. It is especially

well-received by users with limited funds. Lu et al. (2020)

compared the consistency of the spectral features of Parrot

Sequoia and P4M and noted a high correlation among the

green, red, red-edge, and near-infrared bands. In their study,

the consistency between P4M-NDVI and the ground measured

ASD_NDVI was compared to reveal a correlation coefficient

of >0.85. However, it remains questionable that the processing of

P4M reflectance in the study was replaced by dividing 105 based

on the original DN value, which lacked radiometric calibration

in remote sensing. It is well-known that NDVI is calculated

based on reflectance rather than DN value. Although satisfactory

results were obtained in the study Lu et al. (2020), the methods

used for data processing remain questionable. A recent study (Di

Gennaro et al., 2022) discussed the exposure mode and

radiometric calibration of P4M in detail and exhibited that

irrespective of whether the exposure mode was set manually or

automatically, there was no difference in data obtained and users

can obtain professional-quality data without any background in

optics. On the other hand, they compared the influence of 4

radiometric calibration methods (M1-M4 for short; M1 and M2
Frontiers in Plant Science 13
performed no radiometric calibration, while M3 and M4

performed radiometric calibration with ELM) on the accuracy

of vegetation indices. Their results showed that M3 (empirical

linear correction performed on the orthophoto images by the

DJI Terra software with multiple reference reflectance panels of

known reflectance) had high accuracy. The authors also reported

that the accuracy in the crop canopy of the VIs calculated after

the correction by this method was equivalent to that of the

improved Micasense RedEdge camera (Lu et al., 2020). These

results mainly suggest the spectral reliability of the P4M camera

and its effectiveness in vegetation monitoring. However, another

ambiguity is raised as a result of the use of VIs instead of band

reflectance values by the authors during the authenticity test of

the spectral performance of P4M. It is well-known that band

reflectance is the basis for calculating spectral VIs. If the

authenticity of band reflectance can be verified, numerous VIs

can be calculated or created according to the corresponding

formula to meet the diversified agricultural application

scenarios. Another consideration was that although three VIs

were used in this study, more than 50 VIs calculated based on

reflectance were initially referenced (data not shown). The

comparison of the spectral consistency among a few VIs in

past studies could not cover this huge index group. Therefore,

the reflectance of the P4M bands was compared with the

measured reflectance of the ground ASD HH2 spectrometer to
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FIGURE 7

Results of yield (A-C) and NUE (D-I) prediction with MLR, SMLR, and PLSR models at different stages based on all vegetation indices. (A) the
value of determination coefficient (R2) for yield prediction; (B) the value of root-mean-squared error (RMSE) for yield prediction; (C) the value of
mean absolute error(MAE) for yield prediction; (D) the value of R2 for NPFP prediction; (E) the value of RMSE for NPFP prediction; (F) the value
of MAE for NPFP prediction; (G) the value of R2 for aNUE prediction; (H) the value of RMSE for aNUE prediction, and (I) the value of MAE for
aNUE prediction. MTCI indicates the MERIS terrestrial chlorophyll index; mNDblue indicates the modified normalized difference blue index;
repRVI indicates the reciprocal ratio vegetation index; XXX_tr indicates the result based on the training dataset and XXX vegetation index
(RepRVI or MTCI or mNDblue); XXX_te indicates the result based on the test dataset and XXX vegetation index (RepRVI or MTCI or mNDblue).
J, Jointing stage; B, Booting stage; H, Heading stage; LF, Late flowering stage; IGF, Initial grain-filling stage; LGF, Late grain-filling stage.
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establish a solid theoretical basis for further research, as well as

for its wider and deeper application in the future.

Figures 8A–E shows the scatter distribution of the

reflectance of P4M bands after radiometric calibration and the

mean reflectance measured by the ground ASD HH2

spectrometer, respectively. The correlation between the

reflectance of the remaining four P4M bands, except for the

red-edge band, and the measured reflectance exceeded R2 = 0.82.

The correlation between the red and near-infrared bands was

higher, and the scatter distribution was closer to the 1:1 line. The

comparison of NDVI also suggested a significant correlation

with R2 = 0.94 (Figure 8F), which is higher than that reported by

Lu et al. (2020) (R2 = 0.88). This may benefit from the efficient

radiometric calibration method adopted in this study. Compared

with the results of Di Gennaro et al. (2022), the NDVI in this

study also obtained a good percentage error (PE) in the wheat
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canopy (this study: PE = 9.5%, the study of Di et al.: PE = 9.9%).

The correlation between the reflectance of the red-edge band and

the ground measured reflectance was the lowest. The NDRE

calculated by the calibrated red-edge reflectance and near-

infrared reflectance elsewhere (Di Gennaro et al., 2022)

showed poor PE accuracy (PE = 19.4%), however, the authors

did not analyse this result further. We believe that this can be

deemed to be associated with the setting of the red-edge band

with a bandwidth of 32 nm, which is greater than the setting of

similar multispectral cameras (Supplementary Table S2). A large

bandwidth setting contributes to imprecise determination of the

position of the red edge. The red edge may get missed at the

steepest slope of the sharp rise region of the typical green

vegetation reflectance spectrum from the red light to near-

infrared light . Furthermore, Holman et al . (2019)

demonstrated that the spectral reflectance of 30 wheat varieties
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FIGURE 8

Analysis of the correlation between the reflectance of P4M bands and ground measured reflectance of the ASD HH2 spectrometer (A–E) and
corresponding NDVI (F). The dotted line indicates a 1:1 line.
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obtained by the Parrot Sequoia camera under 4 nitrogen

treatments was compared to that measured by the Tec5

HandySpec Field Spectrometer. Holman et al. (2019) reported

that the correlation of the NIR band with R2 = 0.74, which is

consistent with that of the red-edge band with R2 = 0.76 in this

study. In comparison with the wide application of the Parrot

Sequoia camera in agricultural research, the correlation of the

red-edge band of P4M was within the acceptable range.

Moreover, P4M has been used in several studies with

ambiguous calibration methods to obtain data, which further

proves the effectiveness of this camera (Gallardo-Salazar and

Pompa-Garcıá, 2020). Considering that this study is the first to

verify the accuracy of the reflectance of the P4M bands from the

perspective of reflectance, whether the weak correlation of the

red-edge band is an exception remains unestablished. Further

work is needed in this direction to validate the current findings.
Physiological interpretation of
UAVs-based VIs

VIs shows good potential in crop growth monitoring by

UAVs (Yang and Guo, 2008; Qiu et al., 2018). Using suitable

VIs, instead of the complex methods based on VIs, is the key for

agronomic trait estimation. This study developed generic

evaluation models for early yield and NUE monitoring based

on three promising VIs that can be applied to multiple growth

stages during the growing season of wheat. One of these VIs —

repRVI, was an index of yield; the other two indices, MTCI, and

mNDblue, showed relatively consistent performance in the

estimation of two NUE traits.

The results revealed that repRVI performed best in grain

yield assessment at the LGF stage, which is consistent with

previous studies (Hassan et al., 2019; Fei et al., 2021a; Fei et al.,

2021b; Ganeva et al., 2022), because the LGF stage is close to

maturity and the information in the UAVs field of view is mainly

provided by the mature spikes. The signal is minimally affected

by moisture and other green parts of the rice plant.

Furthermore, repRVI performed best at the LGF stage,

which may be related to the construction of this index. The

green signal is relatively less prominent and the reflectance of the

red band is relatively higher in LGF stage. The high value of Red

band makes the NIR/Red value lower overall when Red band is

used as the denominator, but the fact that the magnitude of NIR

band is more than 10 times higher than that of the Red band

cannot be ignored, thus, the NIR/Red is more dependent on the

numerator NIR, which makes it difficult to effectively capture the

weak changes brought about by the elevation of Red band.

However, the repRVI uses Red band as a molecule and NIR

band as a denominator, which can better capture rising trends of

Red band and is sensitive to weak information. Thus, the repRVI

index is more conducive to monitoring vegetation information

in the grain-filling stage.
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The MTCI and mNDblue performed stably and

demonstrated significant correlations with NUE throughout

the growing season. Another interesting finding is that MTCI

was more suitable for NUE prediction in the vegetative growth

period, while mNDblue was more suitable for evaluation in the

reproductive growth period. Chlorophyll is closely related to

nitrogen, and high chlorophyll and N contents in the plant are

obvious signs of effective nitrogen fertilization supply (Tian

et al., 2011). Due to the red edge band, MTCI is sensitive to

the chlorophyll content and should not be saturated at a high

chlorophyll concentration (Dash and Curran, 2004). At a high

chlorophyll concentration in the vegetative growth stage, other

vegetative indices may be saturated to varying degrees, whereas

MTCI can help avoid this problem and thus better reflect the

photosynthetic capacity of rice, which is conducive to adequate

nitrogen uptake and increased yield (Tian et al., 2011). mNDblue

was improved by Jay et al. (2017), who found that mNDblue was

sensitive to canopy chlorophyll content when the effect of soil

background is weak. During the reproductive growth period of

winter wheat, the effect of soil background was minimized, thus

maximizing the performance of the mNDblue. We also found

correlation coefficient of more than 0.97 between the two

indices, which may explain the similarity and difference in

NUE prediction by these two indices.

Furthermore, we also calculated the weighted mean/

maximum-rank sums (WMMRS) score, which evaluates the

optimum vegetation index that is robust towards date-

specifific effects through linear relationship (Prey et al., 2020)

for 9 vegetation indices. These three indices obtained the highest

scores among all indices in terms of generalized performance

throughout the whole growing season (Supplementary Table S3

and Appendix document A), which is a major motivation for

our selection.
Accuracy and stability of yield and NUE
prediction models

In recent years, several studies on the yield and/or NUE of

different genotypes of crops based on remote sensing have proved

the applicability of UAVs in the field. The technical system for yield

prediction is mature and advanced, however, the current studies on

NUE have been limited in quantity or quality. Only one study used

the UAVs to evaluate the NUE of winter wheat (Yang et al. 2020).

Notably, NUE was distinguished from the nitrogen content.

Although the nitrogen content in plant reflects the ability of a

crop to absorb nitrogen, NUE emphasizes the extent to which crops

can utilize external nitrogen applications.

Our study showed that the model has high accuracy for yield

prediction and moderate accuracy for NUE prediction. Despite a

gap between NUE prediction accuracy and yield prediction

accuracy, the models have equivalent or higher accuracy

compared with those reported in similar studies (Table 7).
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The results of yield prediction were compared with those of past

studies, and the present study results are equivalent to or better than

the prediction results of wheat yield reported in previous studies

(Table 7). We believe that the main difference between these studies

with higher accuracy was that the input features not limited to VIs,

plant height, canopy coverage, or density were included and the

machine learning method was applied in these studies (Fu et al.,

2020; Garcıá-Martıńez et al., 2020; Klompenburg et al., 2020; Wan

et al., 2020; Shafiee et al., 2021). For instance, previous studies have

used the RF model (Fu et al., 2020; Wan et al., 2020), the neural

network model (Garcıá-Martıńez et al., 2020), and SVR regression

models (Shafiee et al., 2021).

Regarding the prediction of NUE, the values reported in this

study are lower than those reported by Yang et al. (2020) and

Pavuluri et al. (2015) (Table 7). Unlike the approach adopted in

these studies, different N treatments were simultaneously

considered in our study to establish models. Another

explanation for this was the significant difference in the wheat

genotype used in these studies. However, there was no difference

in the NUE parameters of the three varieties in the present study.

The NDRE at the middle and late grain-filling stages in a past

study (Yang et al., 2020) showed the best mean R2 and RMSE.

NDRE was also applied in this study, which showed a moderate

correlation with NUE. The MTCI was also considered in the
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studies by Prey et al. (2020) and Frels et al. (2018); however, it

showed the worst performance on the test dataset. This result

can be explained by three possible reasons: (1) the dependent

variable in the study Fresl et al. (2018) was NutE (NutEff_grain).

Although it also emphasized NUE, the calculation method was

different (yield/nitrogen uptake), with the denominator being

the plant nitrogen content, rather than the amount of fertilizer

applied; (2) the MTCI was first developed based on broadband

and was calculated by the reflectance in the narrow hyperspectral

bands in these studies (Frels et al., 2018; Prey et al., 2020); (3)

several wheat genotypes (22–75 genotypes) have been used in

past studies (Pavuluri et al., 2015; Prey et al., 2020), which could

have resulted in low R2.

Machine learning is being increasingly applied in the

estimation of crop parameters (Jin et al. , 2021). It

complements big data and high-performance computing. We

used only 3 varieties and 4 nitrogen levels in this study, totaling

36 samples with only 9 features involved, which did not show the

characteristics of high-dimensional data. Hence, significant

improvements may not be necessarily obtained by machine

learning, as also verified by Zhou et al. (2021). Another key

consideration is that machine learning is in a black box.

Consequently, there are certain obstacles for personnel without

a background in data analysis science, which limits its further
TABLE 7 Previous research results similar to those of the present study.

Platforms Traits Sensors Crops Stage Best results Reference

Ground Yield
\NutEff_grain

PhenoTrac 4 multi-sensor wheat initial grain-filling LR: Yield:R2 = 0.52; NutEff_grain: R2 = 0.21
PLSR: Yield:R2 = 0.33 RMSE = 1891kg/ha

Prey et al., 2019

Yield\NUtE Ocean Optics USB2000
spectrometers

wheat heading to initial grain-
filling

LR: Yield: R2 = 0.47; NUtE: R2 = 0.44
PLSR: Yield: R2 = 0.42,RMSE = 792kg/ha;
NUtE: R2 = 0.41,RMSE = 2.2

Pavuluri et al., 2015

Yield\NPFP JAZ portable field
spectrometer

wheat heading MLR: Yield: R2 = 0.83,RMSE = 565.29kg/ha
MLR: NPFP: R2 = 0.85 under low N
conditions
MLR: NPFP: R2 = 0.77 under normal N
conditions

Frels et al., 2018

UAVs Yield \aNUE
\NPFP

Tetracam mini MCA barley grain-filling MLR: Yield: R2 = 0.827 Kefauver et al., 2017

aNUE Parrot sequoia wheat mid to late grain-filling LR: R2 = 0.78, RMSE = 0.004 Yang et al. 2020

Yield Micasens- RedEdge-M wheat initial grain-filling SVR: R2 = 0.91, MSE = 0.14 Shafiee et al., 2021

Yield Airphen wheat whole RF: R2 = 0.78, RMSE =103 kg/ha Fu et al., 2020

Yield Parrot Sequoia wheat tillering and grain-
filling

LR: R2 = 0.62, RMSE = 972 kg/ha Zhou et al., 2021

Yield Parrot Sequoia wheat late grain-filling SLR: R2 = 0.89 Hassan et al., 2019

Yield MultiSPEC 4C wheat heading to grain-filling MLR: R2 = 0.70, RMSE = 618.30 kg/ha Zhu et al., 2018

Yield multispectral camera
MQ022MG-CM

rice whole RF: R2 = 0.78, RMSEP = 370 kg/ha, rRMSE
= 3.20%

Wan et al., 2020

Yield Tetracam mini MCA rice booting and heading MLR: R2 = 0.75, RMSE = 926.46 kg/ha Zhou et al., 2017

Yield Parrot Sequoia maize anthesis ANN: R2 = 0.97, RMSE = 425kg/ha, MAE
= 249kg/ha

Garcıá-Martıńez
et al., 2020
NutEff_grain indicates the grain N utilization efficiency; NutE indicates N utilization efficiency; LR indicates linear regression; MLR indicates multiple linear regression; SMLR indicates
stepwise multiple linear regression; PLSR indicates partial least-squares regression; RF indicates the random forest; SVR indicates support vector machine regression, and ANN indicates
artificial neural network regression.
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popularization. If the applied research remains limited to the

laboratory level, its value will be greatly reduced (Klompenburg

et al., 2020). Considering the aim of this study was to further

verify the reliability of P4M camera for yield and NUE rapidly

evaluation and to provide a cost-effective and practical approach

for agricultural practitioners lacking remote sensing experience,

several understandable and operatable linear models were used

in this study. The results support our choices.

According to the results depicted in Figures 2, 3, the three

agronomic parameters were sensitive to the nitrogen level but

not to the variety. Therefore, when establishing regression

models, varieties were not differentiated. Stratified sampling

was adopted when dividing the training and test datasets

according to the nitrogen level. It allowed the division of an

equal proportion of samples for each nitrogen level to participate

in modeling. Regression models were established according to

the nitrogen level as in a past study to obtain more accurate

models. However, the sample size was smaller (N = 9). The

models at the middle and late grain-filling stages adopted

elsewhere (Yang et al. 2020) used 9 samples (3 samples/year),

and the training dataset was not distinguished from the test

dataset. The stability and applicability of such models are

uncertain. To establish a more robust model, we adopted 20

cycles in this study to calculate the average value of the model

evaluation indices to display the stability of the model. The

modeling results showed that the training dataset was much

more stable than the test dataset. When more independent

variables were input, the PLSR model was more stable and had

fewer outliers because the PLSR model could better deal with the

collinearity of multidimensional variables. Generally, the

stability of the prediction model for yield was higher than that

for NUE. The robustness of the prediction model trained by

multiple cycles has rarely been examined in past studies. Our

study demonstrated that the error of model performance caused

by the difference in random sampling was also worth

considering. Random sampling is approximately unbiased only

when the population is sufficiently large. For a small sample size,

it cannot be ensured whether the samples collected each time are

unbiased or depict an approximately unbiased estimate of the

population. Therefore, confirming the stability of the model by

increase the number of sampling cycles for a small sample size is

highly recommended.
Implications for future work

Compared with ground assessment, the non-destructive

UAVs remote-sensing evaluation is repeatable and flexible and

provides real-time data. The popularity of the consumer drone

market has further promoted the in-depth application of UAVs

remote-sensing technology in the field of agricultural research,
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however, only a few studies have used P4M cameras to predict

wheat yield and nitrogen use efficiency. Our research aims to

explore and establish a general strategy for better prediction of

yield and NUE across multiple growth periods, thereby

providing a low-cost data analysis strategy for potential non-

expert users of consumer-grade multispectral UAVs. In this

study, three P4M-based vegetation indices with good

performance were proposed. The combination of these

vegetation indices and linear models can provide a rapid and

cost-effective method to assess yield and NUE, demonstrating

the great potential of P4M camera for quantifying important

crop traits.

Although our model based on three genotypes adequately

accounted for the differences in varieties and nitrogen levels, the

performance of the model must be tested on multiple wheat

varieties where the differences between varieties were more

significant. The model can be applied in practice and accepted

by researchers and applicators only by developing it as a general

prediction model for yield and NUE assessments by considering

different N gradients and varieties. In addition, continued multi-

year trials are warranted, and future attention should be paid to

seasonal differences in the proposed general strategy to

compensate for the lack of inter-year variation characteristics

in the current study. Considering the increasing application of

UAVs remote sensing in agriculture, developing a

comprehensive and shared database to support mutual

verification of the same research purposes and future in-depth

exploration of precision agriculture is essential.
Conclusions

In this study, we explored the potential of a consumer-

grade multispectral P4M camera for monitoring the winter

wheat grain yield and NUE traits. For this purpose, three

universal vegetation indices showing high correlations with

the target-dependent variables were determined. The results

revealed that the repRVI presented a high potential for grain

yield assessment during the entire growing season, except at

the jointing stage. The late grain-filling stage was identified as

the optimal single stage to predict the grain yield and achieve

the prediction results, with R2 = 0.85, RMSE = 793.96 kg/ha,

and MAE = 656.31 kg/ha. The performance of the yield

estimation combining multiple stages improved slightly but

not significantly. Both MTCI and mNDblue exhibited a

significant correlation with NUE. The simple LR model based

on the MTCI index at the jointing stage showed a good

performance in NPFP assessment, with R2 = 0.65, RMSE =

10.53 kg yield/kg N, and MAE = 8.90 kg yield/kg N, followed by

the mNDblue at the late grain-filling stage. Good performance

with the mNDblue index for aNUE was observed at the late
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grain-filling stage, with R2 = 0.61, RMSE = 7.48 kg yield/kg N,

and MAE = 6.05 kg yield/kg N, followed by MTCI at the

jointing stage. Combining multiple stages did not improve

NUE traits assessment accuracy. Moreover, MTCI and

mNDblue were suitable for NUE prediction in the vegetative

growth period and reproductive growth period, respectively.

The differences among the three linear models became

evident with an increase in the number of input independent

variables. The PLSR model with all VIs as input features showed

better robustness than the other regression models, albeit the

accuracy did not improve noticeably.

Importantly, our study demonstrated the effectiveness of the

DJI P4M camera as a high-throughput phenotyping platform for

small-scale crop monitoring tasks, and the selected indices can

serve as effective indicators for timely and accurate prediction of

yield and NUE prior to harvest. In the future research, the

potential of P4M camera in different climates, seasons, and

varieties should be studied and the capabilities of UAV remote

sensing for diversified agricultural applications should be

thoroughly explored.
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