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Increasing global food production is threatened by harsh environmental

conditions along with biotic stresses, requiring massive new research into

integrated stress resistance in plants. Stomata play a pivotal role in response to

many biotic and abiotic stresses, but their orchestrated interactions at the

molecular, physiological, and biochemical levels were less investigated. Here,

we reviewed the influence of drought, pathogen, and insect herbivory on

stomata to provide a comprehensive overview in the context of stomatal

regulation. We also summarized the molecular mechanisms of stomatal

response triggered by these stresses. To further investigate the effect of

stomata–herbivore interaction at a transcriptional level, integrated

transcriptome studies from different plant species attacked by different pests

revealed evidence of the crosstalk between abiotic and biotic stress.

Comprehensive understanding of the involvement of stomata in some plant–

herbivore interactions may be an essential step towards herbivores’

manipulation of plants, which provides insights for the development of

integrated pest management strategies. Moreover, we proposed that stomata

can function as important modulators of plant response to stress combination,

representing an exciting frontier of plant science with a broad and precise view

of plant biotic interactions.

KEYWORDS

guard cell signaling, jasmonic acid, salicylic acid, abscisic acid, insect herbivory, plant
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Introduction

Climate change and food security are major global issues in

the 21st century. The United Nations Sustainable Development

Goals (SDGs) aimed to achieve 17 individual goals by 2030. SDG

2, ‘Zero Hunger’, is hinged on food security and improved

nutrition. However, more than 800 million people were

reported to have no sufficient food in 2021 across the world

(FAO et al., 2022). More frequent climate extremes disrupt

agricultural production, leading to persistent threats of

starvation (Hatfield and Prueger, 2015). Increasing crop yield

demands under harsh environmental conditions require massive

upgraded new research efforts for plant stress resistance.

In the natural environment, plants often suffer from

numerous abiotic stresses such as drought (Wang X. et al.,

2018), waterlogging (Wang et al., 2017), heat (Sadok et al.,

2021), chilling (Penfield et al., 2021), light (Cai et al., 2021),

salinity (Tyerman et al., 2019), heavy metal (Hu et al., 2020), and

metalloid stresses (Peleg and Blumwald, 2011; Deng et al., 2021).

Meanwhile, climate change-induced outbreaks of insects and

pathogens expose crops to unpredictable biotic stresses (Groll

et al., 2008; Deutsch et al., 2018; Havko et al., 2020; Ristaino

et al., 2021; Lin et al., 2022). Moreover, combinations of abiotic

and biotic stresses may cause a trade-off for plant adaptability

(Pandey et al., 2015). Therefore, understanding how plants

respond to variable environments inundated with stresses is

vital for improving crop productivity and quality.

Stomatal movement in the leaf epidermis is controlled by

guard cells in most plants and guard cells and subsidiary cells in

monocots, allowing terrestrial plants to balance between

photosynthetic CO2 uptake and water loss (Hetherington &

Woodward, 2003). Many studies have revealed the pivotal role

of stomata in orchestrating interactions between biotic and

abiotic stresses (Hetherington and Woodward, 2003; Berry

et al., 2010; Nunes et al., 2020). The emission of CO2 is the

main factor for the warmer average global temperatures, which

could also induce the imbalance between photosynthesis and

stomatal response affecting the water use efficiency of plants

(Meinshausen et al., 2009). To provide a comprehensive

overview of stomatal response to abiotic and biotic stress, we

summarized the influence of drought, pathogen, and insect

herbivory on stomatal regulation in some plant species. As one

of the most detrimental abiotic stresses threating food security,

drought is the most investigated stress for the cellular and

molecular regulation of stomatal movement in plants. More

than 90% of water in plants is lost through transpiration through

stomatal pores (Pei et al., 1998); thus, stomatal regulation plays

the vital role for plants to maintain water balance under drought

conditions (Franks et al., 2007; Sperry et al., 2017). Therefore, we

chose drought as the major representative abiotic stress and

explore the crucial mutual mechanisms and crosstalk between
Frontiers in Plant Science 02
abiotic and biotic stresses in the context of stomatal regulation

in plants.
Stomatal regulation and plant
response to abiotic stresses

Stomatal response to individual abiotic stress such as

drought (Chaves et al., 2009; Daszkowska-Golec and Szarejko,

2013; Martıńez-Vilalta and Garcia-Forner, 2017; Gupta et al.,

2020), light (Shimazaki et al., 2007; Matthews et al., 2020), heat

(Sadok et al., 2021), and salinity (Aslam et al., 2011; Hedrich and

Shabala, 2018) has been well studied and reviewed.

The mechanisms of drought-induced stomatal closure via

the ABA signaling pathway have been summarized previously

(Chen et al., 2017; Hauser et al., 2011; Hsu et al., 2021). Extensive

studies on ABA signaling in the last 2 decades have been

conducted around a chain of core signaling components. ABA

receptors Pyrabactin Resistance (PYR) and Regulatory

Component of ABA Receptor (RCAR) (Ma, 2009; Park et al.,

2009) inhibit Protein Phosphatase 2Cs (PP2Cs) (Schweighofer

et al., 2004) and promote the activation of Snf1-Related Protein

Kinase 2 (SnRK2) kinases (Mustilli et al., 2002; Umezawa et al.,

2009; Jalmi and Sinha, 2015), which target ion channels by

inhibiting plasma membrane H+-ATPase and voltage-

dependent K+ channels (Schroeder et al., 1987; Gao et al.,

2017) as well as activating the S-type anion channels (SLAC)

for stomatal closure (Hedrich and Geiger, 2017). The elevated

ABA under drought conditions produces secondary messengers

such as reactive oxygen species (ROS), nitric oxide (NO), and

Ca2+. Elevated cytosolic Ca2+ activates Ca2+-dependent protein

kinases (CDPK), phosphorylates PP2Cs, and also acts on slow

anion channels such as SLAC1/SLAHs (Geiger et al., 2010).

Interestingly, the production of ROS inhibits the activity of

PP2Cs (Murata et al., 2001) and activates mitogen-activated

protein kinases (MAPKs), which regulate the S-type anion

channel for stomatal closure (Brock et al., 2010). ROS-

activated MAPK signaling also functions in pathogen-triggered

stomatal regulation, showing an excellent example for crosstalk

between biotic and abiotic stresses (Jalmi and Sinha, 2015). Loss-

or gain-of-function mutants of ABA signaling genes in

Arabidopsis, rice, and other key crop species have laid a solid

foundation for subsequent studies on stomatal response to other

abiotic and biotic stresses.
Stomata and plant innate immunity

Plants have evolved sophisticated strategies to perceive

microbial infection and defense their attackers through an

effective immune response. The role of stomata in plant innate
frontiersin.org
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immunity has been extensively reviewed (Melotto et al., 2008;

Bharath et al., 2021). Stomata are usually the first line of defense

against the pathogen, which restrict pathogen invasion by

inducing stomatal closure or inhibiting stomatal opening

(Melotto et al., 2006). Microbe/pathogen-associated molecular

patterns (MAMPs/PAMPs) can induce stomatal closure within

1 h and the recognition of MAMPs by host cell transmembrane

pattern recognition receptors (PRRs) [e.g. receptor kinases

(RKs)] represents the initiation of evolutionarily conserved

plant immune responses (Boller and Felix, 2009). The elevated

salicylic acid (SA) level after pathogen invasion promotes the

production of secondary messengers such as ROS, NO, and Ca2+

(Qi et al., 2018). These secondary messengers also induce the

inactivation of the K+
in channel (Khokon et al., 2011) and the

activation of SLAC1, leading to stomatal closure (Melotto et al.,

2006; Segonzac et al., 2011). For instance, the immunity response

of flagellin in Arabidopsis starts from the recognition of its highly

conserved N-terminal epitope (flg22), which induces the

heteromerization between a receptor kinase flagellin-sensitive

2 (FLS2) and Brassinosteroid Insensitive 1-associated Kinase 1

(BAK1) to activate innate plant immunity (Sun et al., 2013;

Lozano-Duran et al., 2014). ABA is also required to induce

stomatal closure during pathogen invasion (Miura and Tada,

2014) based on the results that stomatal closure is not found in

plant response to flg22 either in the ABA-insensitive mutant ost1

or in the ABA-deficient mutant abi3-1 (Melotto et al., 2006).

Therefore, we propose that a pathogen caused SA signaling

to regulate at least the key downstream components (e.g.

KAT1 and SLAC1) similar to those in the ABA signaling

pathway under drought stress, but may also be linked to the

upstream ABA reception modules such as OST1/SnRK2.6

protein kinase or ABI/PP2C protein phosphatase important

for stomatal closure.

As counter-defense, virulence factors of pathogens have

evolved to resist host plant stomatal defenses by blocking

stomatal closure or inducing stomatal reopening (Melotto

et al., 2006). For example, the plant pathogen Pseudomonas

syringae pv. Tomato (Pst) DC3000 uses the virulence factor

phytotoxin coronatine (COR) to reopen closed stomata (Melotto

et al., 2006). It is proposed that the inhibition of COR on

stomatal immune response is caused by promoting jasmonic

acid (JA) production and SA deactivation since JA-SA

antagonistic interactions have been one of the most

characterized examples of phytohormone crosstalk (Aerts

et al., 2021). COR also acts as a molecular mimic of JA-Ile and

activates JA signaling by promoting a receptor complex formed

by the F-box subunit COI1 of SCF-type Ubiquitin E3 Ligase

(SCFCOI1) and Jasmonate Zim Domain (JAZ) proteins. Then

JAZ degradation (Sheard et al., 2010) activates transcriptional

factors MYCs and NAC domain containing proteins (ANAC19,

ANAC55, and ANAC72) for the potential inhibition of SA-

mediated plant immunity against the bacteria, resulting in
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reopening of the stomata for pathogen invasion through

stomatal pores (Zheng et al., 2012).

In addition to virulence factors, type-III-secretion-system

effectors (T3SEs) of bacteria pathogens inhibit MAMP-triggered

stomatal closure or promote stomatal opening (Zhou et al.,

2011). The T3SE HopM1 of P. syringae disrupts the function

of 14-3-3 protein GRF8/AtMIN10, leading to MAMP-triggered

ROS burst (Lozano-Duran et al., 2014). Likewise, the HopF2

effector inhibits flg22-induced ROS by targeting RPM1-

interacting protein (RIN4), which accelerates the activity of

H+-ATPase (AHA) and ultimately inhibits stomatal closure

(Hurley et al., 2014; Ray et al., 2019). The syringa-effector

AvrB can also induce stomatal opening, which requires the JA

signaling pathway to impair SA-triggered stomatal closure

(Zhou et al., 2015). Moreover, HopX1 and HopZ1 effectors,

reportedly from P. syringae, do not produce COR but also induce

JAZ protein degradation, leading to stomatal opening (Bürger

and Chory, 2019). Interestingly, 14-3-3 protein and H+-ATPase

are two key components of stomatal opening, and the regulation

of both proteins is important for ABA-induced stomatal closure

and light-activated stomatal opening (Cotelle and Leonhardt,

2015; Wang Y. et al., 2018; Cai et al., 2021; Jiang et al., 2022).

Therefore, the initiation of stomatal immunity upon pathogen

invasion through the stomatal pore depends on some common

secondary messengers, ion transporters, and regulatory proteins

shared with the ABA signaling pathway for drought response in

plants. Therefore, under pathogen invasion, the crosstalk

between JA, SA, and ABA in stomatal guard cells is one of the

key components for plant innate immunity. In summary, the

multifunction and shared mechanisms of those molecular

regulators in response to drought and pathogen stresses may

have enabled resistance to single or combined stresses during the

evolution of plants.
Insect herbivory and stomatal
response in plants: an overlooked
plant-biotic interaction

Stomatal closure is a typical response of plants after

herbivory damage (Pincebourde and Casas, 2006b; Schmidt

et al., 2009; Nabity et al., 2013; Sun et al., 2015; Havko et al.,

2020; Lin et al., 2021; Lin et al., 2022), but as to how plant

stomata sense and conduct defense signals induced by insects,

our understanding is still rudimentary. Chewing herbivores

damage plant tissues to cause water loss through increased

transpiration and sap-sucking herbivores decrease the water

status of vascular tissues, which could both trigger stomatal

closure (Sun et al., 2015). Therefore, herbivore-triggered

stomatal closure could protect plants from water loss. For

instance, Operophtera brumata, a common chewing herbivore
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in temperate forests, reduces stomatal conductance and

photosynthesis in damaged leaves and neighbor undamaged

leaves (Visakorpi et al., 2018), indicating that insect herbivory

has major influences in modifying ecosystem carbon cycling.

Similarly, fruit worm (Helicoverpa zea) significantly reduces the

stomatal conductance of tomato (Solanum lycopersicum) and

soybean (Glycine max) (Lin et al., 2021). There is a significant

reduction of stomatal conductance after tobacco hornworm

(Manduca sexta) feeding on wild-type tomato, but not in

jasmonate-insensitive1 (jai1-1) tomato, indicating that JA-

dependent wound response is related to plant stomatal

movement when coping with insects (Havko et al., 2020).

After sap-sucking insect Bagrada hilaris infestation, the

photosynthesis and stomatal conductance of Brassica oleracea

shows a continuous decline (Guarino et al., 2017). In summary,

stomatal closure can possibly account for herbivore-induced

reduction of photosynthesis that might implicate in the plant

defense regulation against insect herbivore attack (Meza-Canales

et al., 2017; Visakorpi et al., 2018).

Similar to PAMP-triggered plant immunity, multiple

signaling components, including ROS, NO, Ca2+, and MAPKs,

are activated after the perception of insect effectors. In response

to insect herbivory, plants induce the defense processes regulated

by receptors, phytohormones, secondary metabolites, and

volatile compounds (Kerchev et al., 2012; Lin et al., 2022).

Chewing insects cause the production of JA to induce Ca2+

signaling via CBL1-CIPK5 and GORK to mediate stomatal

closure, which converges with the ABA signaling pathway

(Adem et al., 2020). However, it is still unclear whether the

stomatal closure is triggered by independent chewing insect-

inflicted wounding or specific herbivore-associated molecular

patterns (HAMPs) (Lin et al., 2021). SA has a more critical role

in defensive response against piercing- and sucking-type insects

than chewing ones (Bonaventure, 2012); upon insect attack, the

SA-induced apoplastic burst of ROS is the first line of defense

against subsequent attack. Among all types of ROS, H2O2 can

disrupt the digestive system of insects, resulting in a shrinking

insect herbivore population. Thus, it is one of the central

components of defense response in plants against pests (War

et al., 2011).

In addition to plant defense responses that triggered

stomatal closure against insect attack, several components such

as enzymes and pheromones that trigger stomatal closure have

been identified in the oral secretions of herbivores. For example,

the caterpillar Helicoverpa zea secretes salivary enzyme glucose

oxidase (GOX) and causes stomatal closure in tomato and

soybean leaves. GOX also suppresses the emission of

herbivore-induced plant volatiles (HIPVs) during the feeding

process, inhibiting airborne signals in plant defenses (Lin et al.,

2021). The effector phospholipase C (PLC) in caterpillar saliva

mediates the binding of inositol 1,4,5-triphosphate (IP3) and its

receptor on the endoplasmic reticulum (ER), then triggers the
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rapid release of cytosolic Ca2+ (Turlings et al., 1990; Manaboon

et al., 2009). Recent studies have shown the PLC-triggered

signaling model is also related to the resistance of stomatal

opening mediated by ABA (Cousson, 2008; Chamkhi et al.,

2021). IP3 and Ca2+ are two important signaling components in

stomatal closure (Gilroy et al., 1991; Ivanova et al., 2019), which

could be the other important lines of evidence for the role of

stomata in plant response to insect herbivory. These studies

demonstrated that the virulence factors of pathogen prevent

stomata from closing to facilitate pathogen entry into plants,

whereas effectors of insect herbivores promote stomatal closure

(Gilroy et al., 1991; Ivanova et al., 2019). The different

mechanisms of multifactor stress interaction also indicate the

potential competitive relationship between pathogen and pests

for their infestation in plants.
Stomatal closure: A double-edged
sword for plants

Manipulating stomatal closure is helpful for plants to

respond to drought or pathogens, but it could have profound

and robust benefits for herbivores (Lin et al., 2022). As the major

gateways for photosynthetic CO2 assimilation and water

transpiration, the key effects of insect herbivores on stomatal

regulation are CO2 concentration, leaf temperature fluctuation,

and water potential (Figure 1) (Block et al., 2017).

It has been revealed that the elevated level of atmospheric

CO2 leads to an increase in herbivore and the population growth

rate of aphids on plants, which is often accompanied by reduced

stomatal aperture (Guo et al., 2013; Ryan et al., 2015; Li et al.,

2019). It was suggested that the quick adaptation of insects to

rising CO2 and warmer climates leads to more outbreaks of

herbivorous insects under elevated global atmospheric CO2 that

are devastating to plants and crops (Landsberg and Smith, 1992;

Harvey et al., 2020). In addition, the gut pH of insects is more

acidic in a warmer environment, and digests the food quickly,

making the larval stages of many insect species more destructive

to plants (Deutsch et al., 2018). Meanwhile, the stomatal

aperture of most plant species is expected to decrease under

elevated CO2, which further improves the performance of insects

such as aphids, indicating that an elevated CO2 level will make

the management of pests more arduous (Sun et al., 2015).

For leaf miners, there is an intimate contact with plant leaves

coupled to leaf temperature, implying the link between stomata

(major regulator of leaf temperature) and insect colonization

(Pincebourde and Casas, 2006a). The physiology of ectothermic

organisms, including insect herbivores, depends on

microclimate temperature (Pincebourde and Casas, 2006b; Ma

et al., 2018). The herbivore physically manipulates its proximate

environment, especially plant tissues, and stomatal closure also

regulates the leaf microclimate. Elevated temperature can trigger
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insect herbivore-induced JA, signaling block stomata opening

and reduction of plant transpiration (Havko et al., 2020), which

directly benefits insect herbivores by accelerating the growth

(Barton, 2010), reducing the risk of predation (Urban, 2007;

Garcıá-Robledo et al., 2016; Garcıá-Robledo and Baer, 2021).

Moreover, stomatal closure can maintain or even increase

leaf water content to favor herbivores. For piercing-sucking

insects, stomatal closure benefits them by fine-tuned leaf water

potential. The aphid infestation triggered the stomatal closure of

Medicago truncatula, causing decreased leaf transpiration and

leaf water potential, which facilitates aphid infestation (Sun et al.,

2015). More specifically, aphids feed on plant phloem saps,

which are enriched with sugars and hold a four- to five-times

greater osmotic pressure than aphid’s hemolymph (Douglas,

2006). Thus, aphids have to balance hemolymph osmolarity to

avoid osmotic stress and self-dehydration during the feeding

phase (Pompon et al., 2011). Therefore, it was speculated that

stomatal closure of host plants can help aphids absorb more

water from the xylem to neutralize phloem osmotic pressure

(Guo et al., 2016) (Figure 1).

We speculate that compared with biotic stresses such as

pathogen, insect feeding has a more adverse effect on plant

physiological processes upon stomatal closure. Therefore,

gaining comprehensive knowledge of stomatal mediated plant-

herbivore interaction will be an important step towards the

understanding of herbivores’ manipulation of plants and is

beneficial for the development of integrated pest management.

In the following section, we further discuss the effects of insect
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herbivory on plant stomata in the context of the existing

molecular evidence on plants.
Comparative transcriptome studies
on plants under insect herbivore
attack reveal a crosstalk between
abiotic and biotic signaling pathways

To further investigate the impacts of insect herbivores on

plant stomatal regulation, we integrated RNA-sequencing

datasets from different plant species including Arabidopsis

thaliana, Solanum lycopersicum, Oryza sativa, Glycine max,

Hordeum vulgare, and Zea mays infested by their main

herbivores (Table 1). We combined these transcriptomes of

different plant species using Arabidopsis homologs based on

our previous publications (Chen et al., 2017; Zhao et al., 2019).

The differentially expressed genes (DEGs) in JA, SA, and ABA

signaling pathways, plant secondary metabolisms (PSM), and

ROS and Ca2+ signaling pathways are shown in Figure 2.

As expected, genes involved in JA biosynthesis, metabolism,

and transport are widely differentially expressed in plant species

after insect infestation, especially upregulating MYC, which

promotes the biosynthesis of JA. The upregulation of JAZs

indicates that the regulatory feedback loop involved MYC2

and JAZ proteins. Specifically, JAZ is degraded to activate

MYCs after insect attack. In turn, activated MYC induces the
FIGURE 1

A Cross-sectional diagram of phloem sap-sucking insects feeding on a leaf of a monocot species. The opening of stomata favors pathogen
invasion, as it eases the pathogen entry into plant tissues. While the sap-sucking insect infestation causes stomatal closure since sap-sucking insects
feed on plant vascular tissues, mainly phloem, insects feed by penetrating their stylet in the epidermal tissue and eventually reach the sugary sap in
the soft phloem tissue, which causes dehydration by water sucking and leads to the closure of guard cells. The herbivory of pest and pathogen
infestation induces stomatal closure or opening, which potentially leads to the competitive relationship between pests and pathogens.
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up-regulation of JAZ and finally desensitizes plants (Howe and

Yoshida, 2019). Likewise, lipoxygenase (LOX) involved in the

first step in JA biosynthesis has been detected during responses

to biotic and abiotic stresses in many plant species (Matsui,

2006). LOX1, expressed in guard cells, so-called green leaf

volatiles, plays a key role in stomatal immunity via the SA-

dependent and ABA-independent manner in response to both

bacteria and the flg22 (Montillet and Hirt, 2013). The number of

DEGs of the SA pathway is slightly less than those in the JA

pathway where the most obvious ones are Phenylalanine

Ammonia Lyase (PAL1) and BA/SA carboxyl methyltransferase

1 (BSMT1) (Figure 2). PAL, the major enzyme in the

phenylpropanoid pathway, also takes part in SA synthesis.

However, the ABA level represses PAL activity in tomato

(Audenaert et al., 2002) and soybean (Ward et al., 1989). SA

can be converted into methyl-SA (MeSA) by BSMT1 (Attaran

et al., 2009) and MeSA is an important herbivore-induced plant

volatile to recruit natural enemies and finally defense-damaging

pests (Rodriguez-Saona et al., 2011).

As the major phytohormone regulating stomata, DEGs were

also found in the ABA signaling pathway in those plant

transcriptome datasets after insect infestation treatments

(Figure 2). The upregulation of ABA transporter ABCG40

indicates there may be an enhanced ABA transport in guard

cells after insect infestation (Kang et al., 2010). Both MYC and

MYB proteins were upregulated, which function as
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transcriptional activators in ABA-inducible gene expression

under drought stress in plants (Abe et al., 2003). However,

plant species appear to respond differently in ABA signaling

DEGs after insect infestation. For instance, herbivore-induced

upregulation of PYLs, SnRKs, SLAC/SLAH, and ALMTs and

downregulation of chloride channels CLCa/CLCc and AHA of A.

thaliana, O. sativa, and H. vulgare are consistent with drought-

induced stomatal closure (Cai et al., 2017; Eisenach and De

Angeli, 2017). However, those DEGs were reversely expressed in

a susceptible genotype of G. max after aphid infestation for 5

days and in S. lycopersicum-susceptible/resistant genotypes after

leaf miner feeding for 40 days.

We also found DEGs involved in multiple signaling

components, including ROS, NO, and Ca2+ signaling

(Figure 2), which exist in guard cells to facilitate stomatal

closure under biotic or abiotic stress (Ranty et al., 2016;

Huang et al., 2019; Medeiros et al., 2020). Ca2+ sensors,

including CDPKs, calmodulin-like proteins (CMLs) and CBL

(COBRA-like proteins)–CIPK (CBL-interacting serine/

threonine-protein kinase) complexes, are differentially

expressed after herbivore infestation (Figure 2), among which

CBL–CIPK complexes were downregulated in this study and

reported negatively regulated ABA signaling during stomatal

movement (Song et al., 2018). ROS scavenging is an important

emerging mechanism for repairing damaged DNA or protein

(Mittler, 2017), the catalase (CATs) and peroxidase (PERs)
TABLE 1 Integrated RNAseq datasets of different plant species attacked by their corresponding main pest.

Plant species Herbivores Treatment Experiment code Reference

Arabidopsis thaliana Myzus persicae aphid infested 72h At_72h (Annacondia et al., 2021)

Solanum lycopersicum Tuta absoluta Leaf miner fed 40d, susceptible genotype Sl_S_40d (D'Esposito et al., 2021)

Solanum lycopersicum Tuta absoluta leaf miner fed 40d, resistant genotype Sl_R_40d (D'Esposito et al., 2021)

Oryza sativa Cnaphalocrocis medinalis rice leaf roller fed 1h Os_1h (Wang et al., 2020)

Oryza sativa Cnaphalocrocis medinalis rice leaf roller fed 6h Os _6h (Wang et al., 2020)

Oryza sativa Cnaphalocrocis medinalis rice leaf roller fed 12h Os _12h (Wang et al., 2020)

Oryza sativa Cnaphalocrocis medinalis rice leaf roller fed 24h Os _24h (Wang et al., 2020)

Glycine max Aphis glycines aphid infested 5d, resistant genotype Gm_R _5d (Neupane et al., 2019)

Glycine max Aphis glycines aphid infested 30d, resistant genotype Gm_R_30d (Neupane et al., 2019)

Glycine max Aphis glycines aphid infested 5d, susceptible genotype Gm_S _5d (Neupane et al., 2019)

Glycine max Aphis glycines aphid infested 30d, susceptible genotype Gm_S_30d (Neupane et al., 2019)

Hordeum vulgare Tetranychus urticae TSSM-infested 2h Hv_T_2h (Bui et al., 2018)

Hordeum vulgare Oligonychus pratensis BGM-infested 2h Hv_B_2h (Bui et al., 2018)

Hordeum vulgare leaf wounded 2h Hv_W_2h (Bui et al., 2018)

Zea may Rhopalosiphum maidis aphid infested 2h Zm_2h (Tzin et al., 2015)

Zea may Rhopalosiphum maidis aphid infested 4h Zm_4h (Tzin et al., 2015)

Zea may Rhopalosiphum maidis aphid infested 8h Zm_8h (Tzin et al., 2015)

Zea may Rhopalosiphum maidis aphid infested 24h Zm_24h (Tzin et al., 2015)

Zea may Rhopalosiphum maidis aphid infested 48h Zm_48h (Tzin et al., 2015)

Zea may Rhopalosiphum maidis aphid infested 96h Zm_96h (Tzin et al., 2015)
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involved in ROS scavenging mechanisms were upregulated after

herbivores infestation. The cysteine-rich receptor-like protein

kinases (CRKs), reported as a transcriptional regulator of

pathogen-triggered immunity, ROS, and the SA signaling

pathway, were highly upregulated after herbivore infestation

(Acharya et al., 2007; Ederli et al., 2011). In addition, the
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central pillar of plant cells to sense and respond to the

extracellular environment, wall-associated receptor-like kinases

(WAKs), were upregulated, indicating enhanced plant innate

immunity to reconstruct ROS homeostasis (Delteil et al., 2016)

and recognize effectors or DAMP through cell wall modification

(Stephens et al., 2022).
FIGURE 2

Integrative analysis of transcriptomes from different plant species fed by their main herbivores. The differential expressed genes (DEGs) with a
threshold (fold change >1, FDR < 0.05) in JA, SA, ABA, ROS, and Ca2+ signaling pathways and plant secondary metabolisms (PSM) are shown in
heatmaps. The color scale represents the fold change value from low (green) to high (red). The row name and column name of each heatmap
indicate the gene name and experimental abbreviation, respectively. Abbreviations for experimental codes of plant and insect species can be
found in Table 1. JA signaling pathway: LOXs, lipoxygenase; AOCs, allene oxide cyclase; OPRs, oxophytodienoic acid reductases; JAR1,
jasmonate resistant 1; JAZs, jasmonate ZIM domain; MYCs, basic-helix-loop-helix transcription factor. ABA signaling pathway: AAOs, aba-
aldehyde oxidase; ABCGs, Arabidopsis thaliana ATP-binding cassette G; PYLs, pyrabactin resistance-like; SnRKs, snf1-related protein protein
kinase; MYB, transcription factor in abscisic acid signaling; KATs, guard cell inwardly rectifying K+ channel; ALMTs, aluminum-activated malate
transporter; SKORs, outward-rectifier K+ channel; SLAC/SLAHs, S-type anion channels; CLC-A/B, chloride channel A/B; CNGCs, cyclic
nucleotide-gated channels; AHAs, H+-ATPase; CAXs, cation/H+ exchanger; NHXs, sodium hydrogen exchanger; TIPs, tip growth defective; PIPs,
plasma membrane intrinsic proteins; SUCs, Sucrose transport protein. SA signaling pathway: ICSs, isochorismate synthase; DIRs, drought-
induced ring finger; NPRs, non-expressor of pathogenesis-related genes; BSMT1, BA/SA carboxyl methyltransferase 1; PAD4, peptidyl arginine
deiminase 4; SARD4, SAR-deficient 4; PAL1, phenylalanine ammonia lyase. ROS, Ca2+: AOXs, alcohol oxidase; CATs, catalase; NPFs, nitrate
peptide transporter family; CIPKs, CBL-interacting serine/threonine-protein kinase; CRKs, cysteine-rich receptor-like protein kinase; KUPs,
potasium ion uptake permease; NIRs, nitrite reductase; RBOHD, respiratory burst oxidase homologous protein D; ROPGAPs, RHO GTPase
activating proteins; ADHs, alcohol dehydrogenases; PAOs, polyamine oxidases; MAPKs, mitogen-activated protein kinase; CMLs, calmodulin-like
proteins; WAKs, wall-associated receptor kinases. Secondary metabolism: PS2, phosphate starvation-induced gene 2; PSAT2, phosphoserine
aminotransferase 2; ALS, acetolactate synthase; AHASS1, acetolactate synthase small subunit 1; KPHMT1, ketopantoate hydroxymethyltransferase
1; BCAT1, branched-chain amino acid transaminase 1; ALDHs, aldehyde dehydrogenase; 4CLs, 4-coumarate-CoA ligase; PPT1,
polyprenyltransferase 1; PHYLLO, 2-oxoglutarate decarboxylase/hydro-lyase/magnesium ion-binding protein; FMNB, fmn-binding protein; HPD,
4-hydroxyphenylpyruvate dioxygenase; DXS, 1-deoxy-d-xylulose 5-phosphate synthase; ISPG, (e)-4-hydroxy-3-methylbut-2-enyl-diphosphate
synthase; ISPH, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase; HMG1, hydroxy methylglutaryl CoA reductase 1; GGPPS1, geranylgeranyl
diphosphate synthase 1; CPT1,cis-prenyltransferase 1; CHLP, geranylgeranyl reductase; FLDH, farnesol dehydrogenase; TPS14, terpene synthase
14; CPS1, copalyl diphosphate synthetase 1; KS1, kaurene synthase 1; KO, kaurene oxidase 1; KAO2, kaurenoic acid hydroxylase 2; GA20OX5,
gibberellin 20-oxidase 5; GA2OX1, gibberellin 2-oxidase 1; CHY1, beta-hydroxyisobutyryl-coa hydrolase 1; ZEP, zeaxanthin epoxidase; NCED3,
nine-cis-epoxycarotenoid dioxygenase 3; IPT1, isopentenyl transferase 1; CKX5, cytokinin oxidase 5; UGTs, UDP-glucosyl transferase; HST,
homogentisate prenyltransferase; CCOAOM, caffeoyl coenzyme a ester o-methyltransferase; CCR1, cinnamoyl CoA reductase 1; CYP84A1,
cytochrome p450 84A1; OMT1, o-methyltransferase 1; CAD6, cinnamyl alcohol dehydrogenase 6; SCPL19, serine carboxypeptidase-like 19;
CHS, chalcone synthase; CH12, chlorina 12; CYP75B1, cytochrome p450 75B1; LDOX, leucoanthocyanidin dioxygenase; BAN, banyuls.
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Meanwhile, a wide range of DEGs are related to PSM, such

as Vitamin B6 metabolism, ubiquinone biosynthesis, terpenoid

biosynthesis, and phenylpropanoid biosynthesis. Plants have

evolved several types of PSM to defend phytophagous

herbivores such as alkaloids, terpenes, amines, glucosinolates,

cyanogenic glucosides, quinones, phenolics, and polyacetylenes,

through direct toxicity to pests and indirect protection by

recruiting herbivorous natural enemies (Jamwal et al., 2018;

Khare et al., 2020). Recent genetic and chemical studies have

shown that PSM can induce the activity of JA and SA at a

transcriptional level (Schweiger et al., 2014; Hettenhausen et al.,

2015; Erb and Kliebenstein, 2020); similar results were observed

in this study (Figure 2). The multifunction of PAL and LOX are

excellent examples since the major enzyme in phenylpropanoid

pathway, PAL, is also involved in SA synthesis (Smith et al.,

2009; Klessig et al., 2016; Lefevere et al., 2020), and LOX plays a

vital role in both JA biosynthesis and carotenoid biosynthesis

(Balbi and Devoto, 2008; Smith et al., 2009; Shivaji et al., 2010;

Liang et al., 2021). Terpenoid is the largest group of plant

secondary metabolites; terpenes are active components in

plant defense when plants are harmed by herbivores (Aharoni

et al., 2005; Mumm et al., 2008; Wouters et al., 2016). Flavonoid

natural compounds are insecticide synergists by destroying

insect detoxification enzymes (Wang et al., 2016). In addition,

the insecticidal potential of phenylpropanoids has been widely

tested in different pest species (Sharma et al., 2006; Liu et al.,

2013; Desmedt et al., 2021). Vitamin biosynthesis in plants is

also a key target for novel pesticides because it is absent from

animals (Smith et al., 2007); Vitamin B6 is involved in the

biosynthesis of alkaloids (Drewke and Leistner, 2001). As one of

the most promising components of pest management, alkaloids

act as ingestion deterrent, growth inhibitor, and target

neurotransmitter; affect neuronal signal transduction; and

cause direct toxic effects on pests (Wink, 2012). In plants,

pantothenate and CoA (Vitamin B5) are indispensable for

lignin biosynthesis, which has been identified as a resistance

factor against a number of insect species, including grasshoppers

and caterpillars (Dowd et al., 2013). DEGs detected in these

pathways are exactly mirrored in PSM regulation after

insect feeding.

This transcriptomic analysis will offer great potential to

identify key genes to bring novel insights into mechanisms

underlying herbivore-induced stomatal regulation. Based on

the integrated transcriptome datasets, it is worth noting that

there are diverse plant responses to insects with different feeding

modes (War et al., 2013). Here, we also found almost no DEGs of

chosen pathways in G. max after aphid infestation for 30 days,

but they were widely differentially expressed in S. lycopersicum

after chewing herbivore (Tuta absoluta) feeding for a relative

long-term 40 days. Therefore, whether insect feeding types or

feeding time can affect plant defense response is worthy of

further investigation.
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Are stomata important modulators
of plant response to the
stress combination?

Recent studies revealed that climate extremes will increase

the complexity, frequency, and intensity of multiple stress

combinations (Zandalinas et al., 2021), resulting in an

increasing impact on plants from biotic stresses compounded

by abiotic stress conditions (Havko et al., 2020). It implies the

necessity to further study the stomatal regulation and plant

plasticity under multiple stress combinations.

Plants develop complex mechanisms to cope with different

abiotic and biotic stress with minimal cost (Mencuccini et al.,

2019). It is difficult to predict how plants will deal with combined

stress as a single stress condition is modified under combined

stresses. The comparison of more than stresses combinations

showed that each combined stress treatment results in a unique

response in plants (Suzuki et al., 2014). The early perception of

the stresses is crucial to activating an appropriate fine-tuning of

the molecular pathways involved in stress response (Saijo and

Loo, 2020). Plant stomata are important in shaping the overall

responses of plants to the stress combination (Zandalinas et al.,

2021). For example, a stomatal opening conduces to cool leaves

through transpiration under heat stress, but closes to avoid water

loss under drought. During a combination of heat stress and

drought stress stomata of different plants remain closed,

suggesting that drought-driven regulation of stomata

overcomes heat stress-driven regulation (Zandalinas et al.,

2021). Interestingly, an experiment was conducted recently;

when high light and heat stress are treated to the same leaf of

Arabipdopsis simultaneously, it does not induce changes in

stomatal aperture; however, when these two stresses are

treated to two different leaves, stomata display a rapid closing

and then opening, indicating that heat stress-driven stomatal

opening overcomes high light-driven stomatal closure during

the stress combination (Zandalinas et al., 2020). Therefore, we

proposed that stomata can function as important modulators of

plant resistance to combined stress and play an important role in

fine-tuning the crosstalk between different stress response

pathways for plants to adapt to the changing environment.

As global warming is predicted to intensify more voracious

arthropod pest populations, in the meantime may exacerbate

crop losses. Stomatal closure benefits plants under pathogen

invasion; it is worthwhile to investigate whether insect

herbivore-induced stomatal closure will benefit plants or not.

In a recent study, it was reported that herbivore-induced heat

shock proteins motivate JA activity and inhibit stomatal opening

resulting in leaf overheating and stunted plant growth at elevated

temperatures (Havko et al., 2020). In addition, there is a

potential competitive relationship between herbivore-induced

stomatal closure and pathogen-induced stomatal reopening,
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since stomatal closure benefits insect feeding while the stomata

pore is the first line for pathogen entry into leaves (Figure 1). For

example, a salivary enzyme of insect herbivores, GOX, induces

stomatal closure and may inhibit microbial invasion via

producing H2O2 (Musser et al., 2005; Rojas et al., 2014).

In fact, the intricate signal regulatory networks that trigger

stomatal movement under particular stress have conflicting

effects under a combination of stresses, due to the clashing of

hormonal signaling pathways and metabolic processes. In

particular, they are embodied in the roles of SA, ABA, and JA

in regulating plant defense responses and their interconnections
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(Figure 3), including the antagonistic crosstalk between SA and

JA (Glazebrook, 2005) and SA and ABA (Cao et al., 2011), and

the synergistic crosstalk between ABA and JA (Ju et al., 2019).

Moreover, the trade-off under the particular stress of the

individual hormone is still significant. For example, the SA

signaling pathway mediates the release of plant volatiles to

attract the natural enemies of insect pests, but SA-triggered

stomatal closure can reduce the risk of finding insect predators

(Peñaflor and Bento, 2013). The interactions discussed in the

text are summarized in Figure 3 to show the stomatal regulation

in response to drought, pathogen, and insect herbivory.
FIGURE 3

Schematic representation of the crosstalk of biotic and abiotic responses through the regulation of stomatal movement. MAMPs or PAMPs are
perceived by receptors like PRRs. This recognition triggers plant immunity and elevates the SA level, which promotes the production of
secondary messengers such as ROS, NO, and Ca2+. ROS accumulation leads to stomatal closure. As a counter defense, virulence factors or
effectors produced by the pathogen such as COR, syringolinA, T3SEs, AvrB, HopX1, HopF2, and HopZ promote stomatal reopening by
manipulating downstream ion channels or inhibitory effects on SA biosynthesis and SA signaling. Piercing or chewing insect attack triggers
stomatal closure by mainly activating SA and JA signaling, respectively. Insect saliva enzymes and effectors such as GOX, PLC, CathB, and C002
also induce herbivory-induced stomatal closure via elevated ROS, Ca2+, and H2O2 levels. ABA affects insect-attack defense or pathogen-
induced plant immunity by interacting with SA and JA. Straight and dashed arrows indicate direct and indirect interactions, respectively. Pointed
and blunt arrows indicate activated and inhibited processes, respectively. Abbreviations, plant proteins: PLC, phospholipase c; RBOHD,
respiratory burst oxidase homologou protein d; LOX, lipoxygenase; FLS2, flagellin-sensitive 2; BAK1, brassinosteroid insensitive 1-associated
kinase 1; BIK1, Botrytis-Induced Kinase 1; MAPK, mitogen-activated protein kinase; CDPK, Ca2+-dependent protein kinases; PP2C, protein
phosphatase 2C; SnRK, snf1-related protein protein kinase; SLAC, S-type anion channels; KAT, guard cell inwardly rectifying K+ channel; AHA,
H+-ATPase; RIN4, rpm1 interacting protein 4; COI, coronatine insensitive; JAZ, jasmonate ZIM domain; MYC2, basic-helix-loop-helix
transcription factor 2; NAC, NAC domain containing protein; PAL, phenylalanine ammonia lyase; PYR/PYL/RCAR, pyrabactin resistance/
pyrabactin resistance-like/regulatory component of aba receptor; NPR, non-expressor of pathogenesis-related genes; ABCG, Arabidopsis
thaliana ATP-binding cassette G; EDR1-like, enhanced disease resistance 1-like protein. Insect effectors: C002, effector detected in aphids;
CathB, cathepsin b; GOX, glucose oxidase; PLC, thephospholipase C. Pathogen effectors: COR, coronatine; HopM1/HopF2, type-III-secretion-
system effectors; XopR, effector of Xanthomonas oryzae; AvrB/HopZ1/HopX1, effector of Syringa protolaciniata.
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Conclusions and future perspectives

Stomata are at a crossroad of molecular interaction not

limited to drought, pathogen, or insect herbivory, but also

manipulated by underlying multiple stress combinations. This

review highlights the influences and responses of stomatal

opening or closing on pathogens and insect herbivores. Stomatal

opening facilitates pathogen invasion and stomatal closure is

stimulated by plant immunity response but in turn benefits

insect infestation. Therefore, we proposed that insect herbivory

has a more adverse effect on stomata-mediated physiological

processes. To further investigate the impacts of herbivores on

plant stomatal regulation, we integrated RNA-sequencing datasets

from different plant species attacked by pests, which reveal some

important interactions between abiotic and biotic signaling

pathways embodied in phytohormone crosstalk and the

multifunction of secondary messengers. Since the current

understanding of stomata–stress interaction mechanisms are

largely based on well-studied models such as the ABA signaling

pathway, it is valuable to discuss the effect of different stimuli on

stomata in the context of the existing molecular evidence.

Significant progress has been made in elucidating the

molecular mechanisms of plants under single stress. However,

how signal conflicts under multi-stress remains elusive. Stomata

are at the center to perceive and respond to different

environmental cues and play pivotal roles in orchestrating

interactions between biotic and abiotic stresses. New insights

of stomatal biology in the context of combined biotic and abiotic

stress conditions are crucial for future plant biology research.

Investigating stomatal response to multiple stresses represents

an exciting frontier of plant science. Addressing these challenges

will provide excellent perspectives for a broad and precise

understanding of crosstalk between plant abiotic and biotic

stress to shape plant–stress interactions at the molecular,

physiological, and biochemical levels. The potential discoveries

in these research areas will benefit our agriculture and

environment in response to the current global climate changes.
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