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membranaceus, and
similar seeds
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of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of
Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China, 3Hengde Materia Medica
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The roots of Astragalus membranaceus var. mongholicus (AMM) and A.

membranaceus (AM) are widely used in traditional Chinese medicine.

Although AMM has higher yields and accounts for a larger market share, its

cultivation is fraught with challenges, including mixed germplasm resources

and widespread adulteration of commercial seeds. Current methods for

distinguishing Astragalus seeds from similar (SM) seeds are time-consuming,

laborious, and destructive. To establish a non-destructive method, AMM, AM,

and SM seeds were collected from various production areas. Machine vision

and hyperspectral imaging (HSI) were used to collect morphological data and

spectral data of each seed batch, which was used to establish discriminant

models through various algorithms. Several preprocessing methods based on

hyperspectral data were compared, including multiplicative scatter correction

(MSC), standard normal variable (SNV), and first derivative (FD). Then selection

methods for identifying informative features in the above data were compared,

including successive projections algorithm (SPA), uninformative variable

elimination (UVE), and competitive adaptive reweighted sampling (CARS). The

results showed that support vector machine (SVM) modeling of machine vision

data could distinguish Astragalus seeds from SMwith >99% accuracy, but could

not satisfactorily distinguish AMM seeds from AM. The FD-UVE-SVM model

based on hyperspectral data reached 100.0% accuracy in the validation set.

Another 90 seeds were tested, and the recognition accuracy was 100.0%,

supporting the stability of the model. In summary, HSI data can be applied to
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discriminate among the seeds of AMM, AM, and SM non-destructively and with

high accuracy, which can drive standardization in the Astragalus

production industry.
KEYWORDS

Astragalus seeds, similar seeds, classification, machine vision, hyperspectral imaging
1 Introduction

Astragalus commonly refers to Astragalus membranaceus

var. mongholicus (AMM) or A. membranaceus (AM), a legume

which is harvested for the medicinal properties of its roots,

which are purported to confer anti-inflammatory, anti-oxidative,

and anti-cancer effects (Bai et al., 2018; Chen et al., 2020; Zhang

et al., 2021). Notably, Astragalus is among the 40 most

commonly used traditional Chinese medicines, and its demand

is continuously increasing.

However, the seed quality of traditional Chinese medicines is

often markedly lower than that of other crops, with problems

including seeds of mixed and unknown origins, contamination

with debris and foreign matter, inconsistent maturity, low

germination rates, and slow or irregular emergence. The

adulteration of traditional Chinese medicines is common due

to the high value and high demand for these products, which has

aroused widespread concerns for public safety (Reid et al., 2006;

Yang et al., 2021b). Because it is primarily propagated by seed,

Astragalus production faces particular challenges, such as mixed

germplasm resources, uneven seed quality, and substantial

adulteration of commercial seeds. These cumulative factors

adversely affect Astragalus cultivation, and present the

challenge of distinguishing between Astragalus and similar

(SM) seeds.

AMM and AM are both included in the 2020 edition of the

Chinese Pharmacopoeia, and although A. complanatus,

Melilotus officinalis, A. sinicus, and Hedysarum polybotrys are

also considered authentic medicines, they are common SM seeds

found as contaminants in AM or AMM seed lots. In addition to

contamination with SM seeds, AM and AMM seeds are often

mixed, which is problematic due to differences in growth habit,
mongholicus; AM, A.
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planting adaptability, cultivation and management techniques,

chemical composition, and commercial value. AMM plants are

morphologically shorter than AM, but the roots are typical

taproot, with characteristically few root branches and high

yield (since the root is the harvested portion). By contrast, AM

plants are taller, with shorter roots that exhibit higher branch

number, and lower yield (Wang and Liu, 1996; Zhang et al.,

2009; Yang et al., 2020). Therefore, AMM is the most widely

cultivated variety, and mixing AMM and AM seeds will lead to

different heights during planting, which limits the effectiveness

of AMM management practices and decreases yield. This

ongoing problem in AMM cultivations points to a need for a

system that can accurately sort AMM and AM seeds.

Conventional methods of distinguishing between AMM,

AM, and SM seeds include observations with an electron

microscope, physical and chemical methods, ultraviolet

spectroscopy, and molecular labeling (Yan et al., 2001; Yan

et al., 2005; Wang et al., 2005; Duan et al., 2012; Zheng et al.,

2019). However, these methods generally produce qualitative

results that depend heavily on experience, especially visual

evaluation, and a non-destructive, accurate, and simple

method for discriminating among AMM, AM and SM seeds is

urgently needed by Astragalus producers and market

regulators alike.
Machine vision technology combines computational

analysis with image recognition and processing technologies

(Savakar and Anami, 2009; Patel et al., 2012). Machine vision

with image processing (typically RGB images) is currently widely

used in agriculture, while research on seed classification is also

developing (Cheng et al., 2010; Huang and Cheng, 2017; Tu

et al. , 2021). Although machine vision can identify

morphological and textural variation well, it does not provide

any non-visual trait data, such as internal composition, which

has limited the application of this approach for distinguishing

seeds from genetically and phenotypically similar varieties. This

problem has been overcome through hyperspectral imaging

(HSI), which simultaneously integrates spatial data with

spectral information to highlight differences in chemical

composition that affect light reflection or transmittance

through the sample, providing additional analytical layers for

each sample. In addition, HSI provides high spatial resolution,

generating continuous and narrow-band spectral information
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for a given object (Guo et al., 2017; Paoletti et al., 2019). HSI

techniques are increasingly tested for application in the

identification of crops such as staple grains, fruits, and

vegetables (Choudhary et al., 2009; Nansen et al., 2015; Sun

et al., 2016; Wang et al., 2016; Wang et al., 2018; Xiao et al., 2020;

Liu et al., 2022), supporting its feasibility for distinguishing

different seed types.

It should be noted that analyzing the large datasets obtained

by machine vision or HSI have presented a non-trivial challenge

for data scientists and researchers. Machine learning methods

have been developed that are currently the most efficient

approaches for image processing and analysis. Common

machine learning algorithms, including support vector

machine (SVM), partial least squares discriminant analysis

(PLS-DA), and multilayer perceptron (MLP), have been

successfully applied to a range of classification tasks (Yang

et al., 2015a; Sun et al., 2016; Sun et al., 2021; Nazari et al., 2021).

Machine vision and HSI approaches have been combined

with machine learning algorithms to classify different crop seeds

(Hong et al., 2016; Sun et al., 2017a; Zhao et al., 2018; Nie et al.,

2019; Nazari et al., 2021; Ruslan et al., 2022; Tu et al., 2022).

Table 1 shows details of these classification tasks. For Astragalus,

Xiao et al. (2020) used visible/short-wave near-infrared and near

infrared hyperspectral imaging with a convolutional neural

network to identify Radix Astragali from five geographical

origins, showing an accuracy of >98%. Despite the success of

machine vision and HSI technologies in different crop seeds, to

our knowledge, no studies have yet reported the application of

machine vision and HSI technologies in AMM, AM and SM

seed identification.

In this study, machine vision and HSI techniques were

applied to the identification of AMM, AM and SM seeds of

different origins. The specific objectives of this work include: (1)

to establish detection models for AMM, AM and SM seeds using

machine vision or HSI image data combined with a machine

learning algorithm; (2) to determine the optimal classification

model based on the predictive accuracy of different models with

the validation dataset; (3) to compare the detection accuracy of

the strongest machine vision- or HSI-based models for sample

seeds not included in the training data; (4) to compare machine

vision and HSI methods to determine which imaging method is

better suited for AMM, AM and SM seed identification.
2 Materials and methods

2.1 Materials

The seed samples used in this study were divided into

“Astragalus seeds” and “SM seeds”. Astragalus seeds include

AMM and AM seeds, while SM includes Astragalus

complanatus, Melilotus officinalis, A. sinicus, and Hedysarum

polybotrys seeds. After the seeds were collected, they were sealed
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and fumigated with aluminum phosphide for 4-5 days, placed in

a ventilated place for 7-10 days, bagged, and stored in a

ventilated place at room temperature. All samples were

identified by field planting and their known origin. The source

and quantity of seed samples collected in this study are shown

in Table 2.
2.2 RGB image acquisition and
feature extraction

Several AMM, AM, and SM seeds were randomly selected

and scanned with a ScanMaker i360/i460 scanner (Shanghai,

China) at a resolution of 600dpi. The images were saved in TIFF

lossless format. Hundreds of seeds were scanned each time,

though there was no contact between seeds.

The Phenoseed automatic extraction system, which was

jointly developed by the Seed Science and Technology

Research Center of China Agricultural University (Beijing,

China) and Nanjing Zhinong Yunxin Big Data Technology

Co., Ltd. (Nanjing, China), was used to extract phenotypic

features of the seeds. Shape features included length (mm),

width (mm), L/W ratio, area (mm2), perimeter (mm), and

roundness (mm). Color features included R (red in the

primary color light spectrum), G (green in the primary color

light spectrum), B (blue in the primary color light spectrum), L

(luminosity), a (range from red to green), b (range from blue to

yellow), hue, saturation, value, gray, and standard deviation.

Texture features included the average value and standard

deviation of contrast, dissimilarity, homogeneity, energy,

correlation, ASM, and entropy under gray, R, G, and B. There

were a total of 54 phenotypic features.
2.3 Hyperspectral reflectance
data extraction

2.3.1 HSI system and analysis software
Hyperspectral reflectance images of seeds were collected

using a prototype visible/near-infrared (VIS/NIR) HSI system

installed at the Beijing Key Laboratory of Crop Genetic

Improvement, China Agricultural University. The spectral

range of the system was 311- 1090 nm, the bandwidth was

0.78 nm, and the image resolution was 1004 × 1002 pixels. The

software for collecting spectral information was Spectral Image-

VNIR (Isuzu Optics Corp., Taiwan, China). Other detailed

descriptions of the VIS/NIR HSI system are listed in a paper

published by Zhang et al. (2020).

2.3.2 Hyperspectral image acquisition and
data extraction

Before collecting hyperspectral images, we calibrated the

black-and-white board to produce the corrected image and then
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set the moving speed of the electric control platform to 1.7 mm/s

and the exposure time of the camera to 6 ms. When collecting

spectral information from the sample, we placed each seed on

the electric control displacement table. The camera scanned the

whole platform as it moved. We then collected 50 seeds from

each batch, for a total of 1150 seeds. The hyperspectral image

acquisition process was completed in the dark box.

Before extracting spectral information, an HSI analyzer

(Isuzu Optics Corp., Taiwan, China) was used to correct the

spectral image, as shown in equation (1), where I is the corrected
Frontiers in Plant Science 04
hyperspectral image. I0 is the original hyperspectral image; B is

the blackboard file image (reflectivity close to 0%), and W is the

whiteboard file image (reflectivity close to 100%).

I =
I0 − B
W − B

                                                   (1)

After the black-and-white plate was corrected, the single

seed was separated from the background of the hyperspectral

image. The background and seeds were separated by setting a

threshold and obtaining the region of interest (ROI) by
TABLE 1 Application of machine vision and HSI for different crop seed classification tasks.

Method Seed Varieties Classifier(s) Result Reference

Machine
vision

Sorghum 10 sorghum cultivars MLP, MLT 99% Nazari et al.,
2021

Weedy rice 5 cultivated rice varieties and a weedy rice seed LR 92.40% Ruslan et al.,
2022

Rice 6 common cultivated rice seed varieties KNN, SVM, RF 90.54% Hong et al., 2016

HSI Grape 3 grape seed varieties SVM 94.30% Zhao et al., 2018

Maize Jingke 968 and Non-Jingke 968 RF, SVM, MLP ~99% Tu et al., 2022

Hybrid okra seeds and hybrid loofah
seeds

6 hybrid okra seed varieties and 6 hybrid loofah seed
varieties

PLS-DA, SVM,
DCNN

~95% Nie et al., 2019

Rice Rice seeds from 4 different regions SVM 91.67% Sun et al., 2017a
TABLE 2 Table of materials.

Category Species Identifier Source Genotypes Number of seeds

Machine vision Hyperspectral

Astragalus seeds A. membranaceus var. mongholicus (AMM) AMM-1 Tangshan, Hebei Cultivated 234 50

AMM-2 Datong, Shanxi Cultivated 249 50

AMM-3 Chifeng, Inner Mongolia Cultivated 199 50

AMM-4 Yulin, Shaanxi Cultivated 215 50

AMM-5 Guyuan, Ningxia Cultivated 184 50

AMM-6 Shangzhuang, Beijing Cultivated 361 50

AMM-7 Anguo, Hebei Cultivated 85 50

AMM-8 Market purchase Cultivated 186 50

AMM-9 Longnan, Gansu Wild 234 50

A. membranaceus (AM) AM-1 Tangshan, Hebei Cultivated 290 50

AM-2 Zhangjiakou, Hebei Cultivated 256 50

AM-3 Hezheng, Gansu Cultivated 237 50

AM-4 Guyuan, Ningxia Cultivated 197 50

AM-5 Shangzhuang, Beijing Cultivated 239 50

AM-6 Longnan, Gansu Wild 202 50

AM-7 Zhangjiakou, Hebei Wild 240 50

Similar (SM) seeds A. complanatus AC-1 Anguo, Hebei Cultivated 427 50

AC-2 Bozhou, Anhui Cultivated 325 50

AC-3 Suqian, Jiangsu Cultivated 407 50

AC-4 Laboratory samples / 352 50

M. officinalis MO-1 Laboratory samples / 132 50

A. sinicus AS-1 Laboratory samples / 214 50

H. polybotrys HP-1 Laboratory samples / 145 50
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morphological filtering and mask processing. Due to the large

noise interference in the head and tail bands, only the reflection

spectra of 765 bands within 400-1000 nm of each seed were

extracted for subsequent modeling and analysis. Among them,

the VIS included 490 reflectance data points in the range of 400-

780 nm, and the NIR included 275 reflectance data points in the

range of 780-1000 nm.
2.4 Spectra preprocessing

Spectral information is inevitably affected by various factors,

and spectral preprocessing is used to improve the usefulness of

spectral data (Esquerre et al., 2012). This study compared three

spectral preprocessing methods, including multiplicative scatter

correction (MSC), standard normal variable (SNV), and first

derivative (FD). From the latter, MSC and SNV were used to

consider the addition/multiplication effect and scattering effect

in spectral data (Silalahi et al., 2018; Wu et al., 2019). FD helps

delete baseline offset (Qu and Liu, 2017). These preprocessing

methods eliminate the external interference generated during

the acquisition of hyperspectral images. In this study, a suitable

preprocessing method was selected based on the preprocessing

effect of various preprocessing methods on the raw spectral data.
2.5 Selection of effective wavelengths

The presence of high dimensional data and a large amount

of redundant information in hyperspectral images can affect the

modelling speed. Therefore, it is important to use the variable

selection method during the analysis and processing of

hyperspectral data. In this study, successive projection

algorithms (SPA), uninformative variable elimination (UVE),

and competitive adaptive reweighted sampling (CARS) were

used to select EWs.

SPA can extract low collinearity and low redundancy

variables to avoid the influence of information overlap and

collinearity. When the SPA method is used to optimize the

wave band, multiple linear regression models can be established

one by one for different wave segment subsets, and the root

means square error (RMSE) value can be calculated, in which the

number of variables corresponding to the lowest RMSE is the

optimal EWs (Galvão et al., 2008; Zhang et al., 2018b). UVE can

remove the wavelength variables that contribute less to the

modeling and select the characteristic wavelength variables.

The removed wavelength variables are called non-information

variables. UVE and CARS establishment are based on the PLS

algorithm. To select non-informative variables, the UVE

algorithm adds a group of white noise variables with the same

number of original variables to the PLS model and obtains the

regression coefficient corresponding to each variable based on

the cross-leave method of the PLS model. The stable value of
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each variable coefficient is divided by the standard deviation,

their quotient is compared with the stable value obtained from

the random variable matrix, and those wavelength variables that

are invalid for modeling are deleted as random variables. (Put

et al., 2006; Wang et al., 2020) In CARS algorithm, adaptive

weighted sampling (ARS) is used to retain the points with large

absolute values of regression coefficients in the PLS model as a

new subset each time, and remove the points with small weights.

Then, the PLS model is established based on the new subset.

After multiple calculations, the subset with the smallest cross-

validation root mean square error (RMSECV) of the PLS model

is selected as the characteristic wavelength. (Zhang et al., 2018a;

Zhou et al., 2020a)
2.6 Data−driven modeling

Support vector machine (SVM), partial least squares

discriminant analysis (PLS-DA), and multilayer perceptron

(MLP) are widely used classification methods that have been

well validated for seed detection (Kujawa et al., 2014; Nazari

et al., 2021; Yang et al., 2021a). In this study, three classification

models of AMM, AM, and SM seeds were established using

SVM, PLS-DA, and MLP, respectively. SVM is widely used to

solve linearly differentiable and linearly indistinguishable

classification problems, and the radial basis kernel function

(RBF) kernel is the most common and effective method for

classification problems. Optimization of the hyperparameters is

necessary before the real model can be trained. In current

practical applications, hyperparameters are usually determined

empirically or by grid search. (Liu et al., 2022) PLS-DA is a

typical classification method, which is considered as a

supervision method to distinguish samples to the maximum

extent. (Nie et al., 2019; Zhang et al., 2022b) MLP is a

feedforward neural network. It maps a set of input vectors to a

set of output vectors. The inputs and outputs can be connected

by multilayer weighting, with strong self-learning, adaptive,

associative memory and parallel processing of things and

environments. (Xu et al., 2021)

To avoid the effect of default parameters on the prediction

accuracy of the classification model, the internal parameters of

the classification model must be separately adjusted. In the SVM

algorithm, the RBF kernel was selected, and it carried out the 5-

fold internal cross-validation and grid search method to

calculate optimal penalty coefficient c and the kernel

parameter g. The searching range was both set to -10 to 10

with the step of 0.2 (a total of 101*101 combinations were used

to search the best parameters). In the PLS-DA model, the

number of latent variables (LVs) changes, and the model

correctly identifies the highest percentage of seeds. The MLP

network with two hidden layers was selected, and the hidden

layer adopted the hyperbolic tangent activation function of SPSS.

The output layer adopted the Softmax activation function.
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2.7 Analyzing

MSC, SNV, FD spectral preprocessing, SPA, UVE, CARS

feature band extraction, and SVM and PLS-DA model driving

processes were implemented in Matlab R2020b. The MLP

modeling process was using IBM SPSS statistics 26. For each

model, the ratio of three model training sets and validation sets

was 7:3. The specific quantity of seeds in each batch is shown in

Table 2. Origin 2022 and R 4.1.2 were used to visualize data. The

experimental flow of this study is shown in Figure 1.
3 Results

3.1 Identification of AMM, AM, and SM
seeds based on machine vision

In order to develop a machine learning algorithm capable of

distinguishing AMM, AM, and other SM seeds, we first tested

untrained machine vision using a mixed set of 5610 seeds. The

machine vision technology based on Phenoseed automatic

extraction system extracted a set of 54 potentially informative

morphological features for discriminating among seed types,

including shape, color, and texture. A probability density map

was then generated to examine the distributions of these

phenotypic features across the 5610 combined AMM, AM and

SM seeds (Figure 2), which showed high overlap in their features

related to color and texture, especially between AMM and AM.

These results indicated that these features might not be

sufficiently different between seed types to form a basis for

distinguishing between them. It is worth noting that the size of

SM was generally smaller than that of AMM or AM seeds,

although the size distributions showed substantial overlap

(Figure 2). Thus, SM resembled small AMM and AM seeds,

which is germane to distinguishing SM seeds mixed into

Astragalus seed lots in the market.
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In order to establish a model for classifying AMM, AM, and

SM seeds, the 54 morphological features detected by machine

vision were used as inputs for SVM, PLS-DA, and MLP

networks, with 3927 seeds in the training set and 1683 seeds

in the validation set. The accuracy in distinguishing between

seeds was then calculated for each model (Figure 3), with 48

latent variables (LVs) selected for the PLS-DA model.

Classification accuracy of SM seeds using these features

reached >98.2%, but the classification effect of AMM and AM

seeds were not ideal. In particular, SVM showed 83.3% accuracy

for identifying AMM seeds, 89.2% accuracy for detecting AM

seeds, and 99.5% accuracy for SM seeds, resulting in 91.1%

average accuracy for this model.
3.2 Identification of AMM, AM, and SM
seeds using HSI

Since machine vision with different machine learning

algorithms could not effectively distinguish AMM seeds from

AM seeds, we next explored means of improving accuracy by

VIS/NIR hyperspectral imaging of reflectance spectra between

400 nm and 1000 nm bands for each seed type.

3.2.1 Spectral characteristics
To identify wavelengths that were distinct among seed types,

the reflectance spectra were obtained for 1150 seeds (Figure 4A)

and the average spectrum of AMM, AM, and SM seeds were

calculated (Figure 4B), which revealed that the average spectra of

AMM and AM seeds was significantly lower than that of SM

seeds. By contrast, AMM and AM seeds displayed similar

spectra, which agreed well with previous studies examining the

variety and viability of seeds from other crops (Yang et al., 2017;

Wakholi et al., 2018; Yang et al., 2021a). However, the

reflectance of AMM was generally higher than that of AM

seeds, with greater differences in the NIR region (780-1000
FIGURE 1

Technical routes.
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nm) than in the VIS region (400-780 nm). The VIS region may

be related to b-carotene and anthocyanin in the seeds (Sun et al.,

2021), and the difference in the NIR region may be related to

protein, starch and other organic matter in the seeds (Cen and

He, 2007; Awanthi et al., 2019). These results indicated that HSI

could capture differences in texture, pigment and other physical

and chemical properties between AMM and AM seeds. And the

differences between AMM and AM seeds in terms of organic

matter such as protein and starch are greater than the differences

in pigment content, which explains the inability of models based
Frontiers in Plant Science 07
on VIS data (machine vision) to correctly distinguish between

AMM and AM. Further analysis showed that in the range of

660-750 nm, the spectral curve showed an obvious upward

trend, and the average spectral curve of the two seeds

gradually separated. The reason is that this wavelength

corresponds to the vibration of N-H chemical bond of amino

acid in seeds, which can be used to verify the difference of amino

acid content in AMM and AM seeds. (Yang et al., 2021a; Wang

et al., 2022) In addition, there are four absorption peaks in the

average reflectance spectra of AMM and AM seeds (valleys at

415 nm, 640, 680 and 885 nm). The carotenoid (Yang et al.,

2021a) and proanthocyanidin content of the seed coat (Wang

et al., 2022) can be determined at about 415 nm; The bands at

about 640 nm and 680 nmmay be associated with the absorption

of chlorophyll b and chlorophyll a (Zhang et al., 2016). The band

at about 885 nm may be associated with C-O, N-H, C-H and O-

H bonding vibrations in proteins, carbohydrates and fats

(Caporaso et al., 2018). However, the spectral curves were not

unique enough to distinguish AMM, AM, and SM seeds. More

specifically, while a large proportion of SM overlapped with

Astragalus seeds in the original spectral curve, the reflectance

spectra of AMM and AM showed extremely high overlap,

making them indistinguishable by curve shape. To identify

specific spectral features or effective wavelengths that could be

used for classification of AMM, AM, or SM seeds, it was first

necessary to generate discriminant analytical models to test

different methods of preprocessing to maximize the accuracy

of discriminating among AMM, AM and SM seeds.

3.2.2 Spectral preprocessing and effect analysis
In order to establish the most effective discriminant model, we

first tested three methods for preprocessing the seed reflectance

spectra, including MSC, SNV and FD, as well as raw data. The

SVM, PLS-DA, and MLP methods were each used to generate

models with the processed and raw data, using a training set of

805 seeds and a validation set of 345 seeds (i.e., a 7:3 ratio) (see
FIGURE 3

Performance of the SVM, PLS-DA, and MLP model validation sets based on machine vision data.
FIGURE 2

Probability density distribution of phenotypic features of AMM,
AM, and SM seeds.
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section 2.6 for parameter details). The PLS-DAmodel selected 10,

10, 10, and 9 LVs from raw spectra or spectra preprocessed by

MSC, SNV, FD, respectively. Validation of each classifier model

with each respective preprocessing method showed that accuracy

ranged from 81.7%, in the PLS-DA model with raw data, to

100.0% in the SVM model with the FD-processed spectra

(Figure 5). Among the three pre-processing methods, the model

built after FD pre-processing was the optimal, while MSC and

SNV showed suboptimal accuracy compared to FD, but still better

than RAW. Among the three classifiers, the performance of the

model showed SVM > MLP > PLS-DA, regardless of the pre-

processing based. While accuracy differed to a limited extent
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between each combination of classifier and data processing

method, it warrants mention that all preprocessing methods

increased the accuracy over that of raw data input for all

classifiers by denoising the original reflectance spectra. Since the

FD-SVM denoising/classifier combination provided the highest

accuracy in discriminating among AMM, AM, and SM seeds, this

method was used in subsequent analyses of effective wavelengths

HSI reflectance data.

3.2.3 Selection of effective wavelengths
Based on the above results showing highly accurate

classification of AMM, AM, and SM seeds obtained by full
A B

FIGURE 4

Reflection spectrum (A) and average spectrum (B) of AMM, AM, and SM seeds.
FIGURE 5

Accuracy of SVM, PLS-DA, and MLP models with spectral data that was preprocessed or not.
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spectra models, we next sought to increase computational efficiency

and reduce processing time by identifying effective wavelengths in

FD-processed data that were informative for classifying seed types.

Since the algorithmic principles underlyingwavelength selection

can impact modeling results (Zhang et al., 2020), we tested three

approaches to EW extraction, SPA, UVE, and CARS. In SPA

extraction, the root means square error (RMSE) values decreased

with increasing number of variables (i.e., EWs). The lowest RMSE

value coincided with 22 variables, above which RMSE remained

stable (Figure 6A). Therefore, an RMSE threshold of 0.5164 with 22

effective wavelengths in the denoised reflectance spectrum was

selected for subsequent tests (Figure 6B). By contrast, UVE analysis

identified 391 potentially informative EW features (Figure 6C) for

classifier analysis. InCARS extraction, the number of EWsdecreased

rapidlywith the exponential decay function, butdecreased at a slower

rate as the number of samples increases (Figure 6D). The cross-

validation rootmeansquare error (RMSECV) tended todecreaseand

then increase as the number of samples increased, with the smallest

RMSECVvaluewhen the number of samples reached 14 (Figure 6E)

(i.e., the subset of EW selected for this sampling was the key variable

for predicting AMM, AM and SM seeds). Therefore, 140 potentially

informative EW features (Figure 6D) were identified for classifier

analysis after CARS.

The EWs selected by SPA were further examined to better

understand their relevance as a theoretical basis for
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distinguishing AMM, AM and SM seeds. Several EWs were

located around specific regions, which suggested that seed

reflectance was related to the presence of specific chemicals.

Some specific wavelengths in the visible light spectrum are

reportedly related to plant pigments, such as absorption peaks

for carotenoids at 412.9 and 413.7 nm, chlorophyll a at 427.8,

430.7, and 666.4nm, and anthocyanin at around 435.2 and 437.5

nm (Li et al., 2013; Nansen et al., 2015; Yang et al., 2015b; Zhang

et al., 2016). Among the EWs screened by SPA, the selection of

bands near pigment absorption peaks indicated that accurate

classification of AMM, AM, and SM seeds may rely on seed

color. By contrast, several EWs in the NIR were attributable to

various chemical bonds. For example, EWs located near 833.1

nm were related to the vibrations of C-O, N-H, C-H, and O-H

bonds in proteins, carbohydrates, and fats, respectively (Cen and

He, 2007; Sun et al., 2017b; Caporaso et al., 2018). Tannin

absorption peaks were also detected near 887.7 and 898.1 nm,

and cellulose absorption peaks were present near 935.0

nm (Wang et al., 2022). In addition, peaks between 860-970

nm reflected the vibration of N-H bonds in proteins and amino

acids, and suggested that these seeds differed in protein or amino

acid contents (Zhou et al., 2020b). Since tannin, cellulose, and

protein contents in the seed coat affect the thickness and

hardness of the seed coat, these results indicated that AM,

AMM, and SM seeds differed in their seedcoat hardness.
A B

D E

C

FIGURE 6

Results of EWs selection. (A) RMSE for the number of EWs by SPA; (B) The position of EWs identified by SPA in FD-processed spectrum; (C) EWs
selected by UVE. Peaks in the blue curve represent stability values for the 765 wavelengths; the red curve shows the distribution of stability
values of random noise variables generated by UVE which were used to determine the thresholds. The two horizontal dashed lines indicate the
upper and lower thresholds of band selection. Bands between the thresholds were eliminated as invalid information, and the remaining variables
were selected. The arrowheads show a few representative wavelengths; (D)Variation of wavelength variables number by CARS; (E) Variation of
RMSECV by CARS.
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3.2.4 SVM modeling based on different EW
selection methods

In light of our above findings, we next tested the accuracy of

the SVM model in discriminating between AM, AMM, and SM

seeds using FD-denoised EWs selected by SPA or UVE or CARS

as inputs. Validation of model accuracy is shown in Figure 7.

The changes in model performance indicate that UVE screening

of EWs results in higher accuracy, with CARS showing the sub-

optimal accuracy and SPA the worst performance. It potentially

due to an insufficiently large sample set of EWs selected by SPA,

leading to the exclusion of informative wavelengths related to

seed classification. Our results thus showed that UVE method is

more suitable than the SPA and CARS algorithm for building

SVM models to classify AMM, AM, and SM seeds and that the

FD-UVE-SVM combination provides an optimal model for this

task, providing 100.0% accuracy in the validation set.
3.3 Visual comparison between machine
vision and HSI prediction results

Based on the above results showing that SVM classification

provided the highest accuracy with machine vision imaging data,

while the FD-UVE-SVM model showed the highest accuracy with

HSI-based data, we next visually examined a set of 90 seeds,

including 30 AMM, 30 AM, and 30 SM, to manually verify the

classifications made by these two models (Figure 8). The SVM

model based on machine vision image data (Figure 8A) could

correctly predict the 30 SM seeds, while 7 of the 30 AMM seeds

were incorrectly predicted as AM seeds, and 4 of the 30 AM seeds

were incorrectly predicted as AMM seeds (i.e., an overall accuracy

of 87.8%), indicating sub-optimal discriminatory power between

AM and AMM seeds. By contrast, FD-UVE-SVMmodelling of HSI

data correctly predicted the types of all 90 seeds (i.e., 100.0%

accuracy), indicating that hyperspectral data contained sufficient

information to accurately discriminate between AMM, AM, and
Frontiers in Plant Science 10
SM seeds, supporting its application in routine analysis required for

seed sorting and quality control in production settings.
4 Discussion

In this study, HSI data outperformed machine vision image

data in SVM-based models for distinguishing AMM, AM and SM

seeds, which aligns well with studies comparing these approaches

for classifying kernels of rice (Fabiyi et al., 2020) and maize (Tu

et al., 2022), as well as comparing chlorophyll content in sorghum

leaves (Zhang et al., 2022a). It is likely that machine vision data

resulted in lower accuracy in classifying AMM and AM seeds

because the features extracted by machine vision were purely

morphological phenotypes. Since AMM and AM belong to the

same species, they share highly similar seed morphology. Thus,

other phenotypic data, such seed traits related to the internal

accumulation or deposition of specific metabolites affecting light

reflection or diffraction captured by HSI data can provide more

informative features for discriminating among subspecies. Although

both methods are non-destructive and high-throughput tests that

enable screening of intact seeds, each technology is accompanied by

advantages and disadvantages. The main advantages of machine

vision over HSI are the relatively low instrument cost and faster

image acquisition, which are linked to its main disadvantage of

capturing strictly morphological information that cannot account

for many internal, physiological seed traits. By contrast, HSI data

includes hundreds or thousands of spectral bands, and therefore

contains more information allowing more robust discrimination

among samples. However, it should be pointed out that the high

dimension of spectral data limits the calculation speed and

processing time to some extent. Moreover, HSI equipment is

relatively expensive and the operating cost is high.

In HSI data analysis, FD pre-processing achieved superior

results to MSC and SNV, which aligns well with studies for

classifying kernels of sugar beet (Yang et al., 2018) and the
FIGURE 7

Validation of SVM model accuracy based on EW data selected by SPA (left), UVE (middle) or CARS (right) methods.
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detection of germination rates in sorghum-sudan grass seed

(Hui et al., 2022). It is likely that due to FD eliminates baseline

drift in AMM, AM and SM seed spectral data and improves the

spectral band characteristics and spectral resolution, thus FD

pre-processing achieves the highest accuracy (Qu and Liu, 2017;

Li et al., 2021). However, it is worth noting that spectral

derivatives can also increase the noise level and reduce the

spectral signal-to-noise ratio, which is detrimental to

modeling. The higher the derivative order, the more serious

the degradation of the signal-to-noise ratio. Therefore, in

spectral analysis, only FD or second derivative (SD) is

generally used for spectra.

Selecting a subset of EW features by SPA or UVE or CARS to

construct the model can dramatically reduce processing time

(Gao et al., 2013). SPA-based screening of denoised EWs

captures a portion of bands in the NIR wavelength range

(>780nm), whereas machine vision technology collects

wavelengths largely in the VIS range. These additional NIR

EWs may explain why HSI technology can provide higher

accuracy than machine vision in distinguishing AMM, AM,

and SM seeds.
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Although HSI technology has enormous potential for

discrimination among highly (visually) similar seeds, sample

sizes in this study, including nine batches of AMM, seven

batches of AM, and seven batches of SM, were not adequately

large for robust statistical verification. Follow-up research will

necessarily include larger sample sets improve the generalizability

and accuracy of the classification model. In addition, in order to

maintain model validity when testing seeds from different origins

and growing seasons, the model can be updated using a method

established for updating a maize seed detection model (Guo et al.,

2017; Tu et al., 2022).
5 Conclusion

We compared machine vision and HSI image data to classify

AMM, AM, and SM seeds, which led to the following

specific conclusions:
1) SVM-based models of machine vision image data to

distinguish AMM, AM, and SM seeds indicated that
A

B

FIGURE 8

Visualization results based on (A) machine vision optimal model and (B) HSI optimal model (from left to right: AMM, AM, and SM seeds).
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Fron
AM/AMM seeds could be distinguished from SM seeds at

>99.0%, but could not well-distinguish between AMM and

AM seeds.

2) The application of a FD-UVE-SVM model to HSI data

resulted in 100.0% accuracy, thus validating the SVM

classification model as the best suited for distinguishing

SM, AM, and AMM seeds.

3) Verification ofmodel accuracy based onmachine vision and

HSI data from a 90-seed verification set indicated that

predictive accuracy was 100.0% with HSI data,

demonstrating the efficiency, reliability, and simplicity of

this model, and importantly, revealing that HSI is more

suitablefordiscriminatingamongAMM,AM,andSMseeds.

In general, this study used machine vision and HSI

technology to classify AMM, AM, and SM seeds. FD-

UVE-SVM modeling of HSI data can be used to

accurately distinguish AMM, AM, and SM. This

strategy can be adapted for routine analyses in

production facilities. These advances can in turn

increase the economic benefits of Astragalus seeds.
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