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Ginseng is an important medicinal plant benefiting human health for thousands

of years. Root disease is the main cause of ginseng yield loss. It is difficult to

detect ginseng root disease bymanual observation on the changes of leaves, as

it takes a long time until symptoms appear on leaves after the infection on

roots. In order to detect root diseases at early stages and limit their further

spread, an efficient and non-destructive testing (NDT) method is urgently

needed. Hyperspectral remote sensing technology was performed in this

study to discern whether ginseng roots were diseased. Hyperspectral

reflectance of leaves at 325-1,075 nm were collected from the ginsengs with

no symptoms on leaves at visual. These spectra were divided into healthy and

diseased groups according to the symptoms on roots after harvest. The

hyperspectral data were used to construct machine learning classification

models including random forest, extreme random tree (ET), adaptive

boosting and gradient boosting decision tree respectively to identify diseased

ginsengs, while calculating the vegetation indices and analyzing the region of

specific spectral bands. The precision rates of the ET model preprocessed by

savitzky golay method for the identification of healthy and diseased ginsengs

reached 99% and 98%, respectively. Combined with the preliminary analysis of

band importance, vegetation indices and physiological characteristics, 690-

726 nm was screened out as a specific band for early detection of ginseng root

diseases. Therefore, underground root diseases can be effectively detected at
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an early stage by leaf hyperspectral reflectance. The NDT method for early

detection of ginsengs root diseases is proposed in this study. The method is

helpful in the prevention and control of root diseases of ginsengs to prevent the

reduction of ginseng yield.
KEYWORDS

ginseng root diseases, hyperspectral reflectance, vegetation indices, extreme random
tree, specific band
1 Introduction

Ginseng (Panax ginsengMey) is one of the precious traditional

herbs. The roots of ginseng are widely used as important medicinal

materials for curing hypertension, stress, and neurological

disorders (Ratan et al., 2021). Nowadays, wild ginsengs are

endangered and cultivated ginsengs are used as main resources

of ginseng products (Xu et al., 2016). The harvest rotation of

cultivated ginseng is usually about 4 to 6 years (Xiao et al., 2016).

Ginsengs cultivated in the same soil for a long-growth period are

susceptible to root diseases (Fang et al., 2022), such as root rot,

rusty root rot, red-skin, soft rot and so on (Liang et al., 2017; Lu
02
et al., 2020). Root disease in ginseng is caused by a variety of factors,

including biological factors such as pathogen infection, and abiotic

factors such as soil temperature and moisture (Shang et al., 1996;

Zhou et al., 2017), leading to diverse symptoms (Figure 1). The

incidence rate of ginseng roots can be as high as 80% (Wang et al.,

2014), which seriously reduces the production of ginseng and costs

huge economic losses. So far, the commonly test method of ginseng

root diseases in the field mainly relies on experiences of farmers by

visually observing the symptoms of aerial parts (Farh et al., 2018),

which is extremely difficult to generate and has poor accuracy,

especially at the early stages of root diseases when there are no

macroscopic symptoms on leaves can be observed (Lu et al., 2020).
FIGURE 1

Symptoms of diseased ginseng roots collected in the field. (A) is healthy root, (B–J) are various diseased roots.
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When there are visible lesions on the aboveground plant, the root

has rotted and it was too late for treatment (Guan et al., 2014).

Unnecessarily damages or losses are caused artificially if ginseng

roots were dug out for visual detection, though it is more precise by

visualization on the underground part. Thus, it is importance to

detect the root diseases at their early stages, as that treatments

could be taken in time.

Root diseases were often accompanied with a decrease in

chlorophyll content of leaves (Fujimoto et al., 2021; Jia et al.,

2021), which indicated the reduction of plant photosynthesis

and external stresses (Monteoliva et al., 2021). In addition, the

contents of antioxidant enzymes in leaves are also affected by

root diseases (Harrach et al., 2013). The increase of enzyme

activity improves the tolerance of plants to stress environments

(Adavi et al., 2020; Deng et al., 2020). For example, in wheat, the

antioxidant enzyme activities increased in resistance to the

Bipolaris sorokiniana-common root rot (Qalavand et al.,

2022). Chlorophyll content and antioxidant enzyme activity of

leaves are physiological characters responding to nutrient

deficiency, abiotic stresses and biotic stresses (Panda and

Sarkar, 2013), the changes of which could be considered as

potential indicators of root diseases of plants.

Nowadays, hyperspectral remote sensing technology has been

widely used for rapid and non-destructive testing (NDT) of plant

diseases (Lowe et al., 2017; Mahlein et al., 2018; Chen et al., 2022),

such as wheat powdery mildew (Feng et al., 2022), fusarium head

blight (Zhang et al., 2020) and decayed citrus (Zhang et al., 2021).

The effective information on plant growth status is archived by

screening and processing the complex and redundant

hyperspectral data (Yang et al., 2020). Hyperspectral vegetation

indices (VIs) were widely deployed to estimate plant biophysical

and biochemical traits (Koh et al., 2022). The downy mildew

severity stages in watermelon are significantly correlated with the

chlorophyll green, photochemical reflectance index and

normalized phaeophytinization index (Abdulridha et al., 2022).

Improved accuracy of hyperspectral data processing due to

advances of machine learning (ML) enabling further

development of non-invasive high-throughput plant

phenotyping (Mahlein et al., 2019; Arya et al., 2022). ML

algorithms such as random forest (RF), support vector machine

and convolutional neural networks, have improved the accuracy

of hyperspectral data processing to obtain the spectral

characteristics of plants during the growth period, and to

finalize the early detection of plant diseases (Ghosh et al., 2022),

such as the Fusarium head blight disease severity of wheat

(Żelazny et al., 2021). Combined with artificial intelligence

algorithms and continuous rich hyperspectral reflectance data,

models could be constructed to detect and identify plant diseases

(Singh et al., 2018; Singh et al., 2021). The application of ML

technologies based on hyperspectral reflectance enables precise

diagnosis of plant root diseases at an early stage.

To prevent the massive loss of ginseng yield caused by severe

root diseases, this study proposed an NDT method using the
Frontiers in Plant Science 03
hyperspectral remote sensing technology to detect root diseases

of ginsengs at their early stages. Based on the previous field

investigation, ginsengs with healthy leaves in the field of high

incidence of root diseases were used. The hyperspectral

reflectance data of ginseng leaves were obtained non-

destructively to construct a detection model by ML. Taking

the constructed model as a reference, a hyperspectral inversion

model of ginseng root disease was established. We finally found

that hyperspectral remote sensing technology could achieve

early accurate detection of ginseng root diseases, which greatly

reduced the loss of production and avoided the use of

excessive pesticides.

2 Materials and methods

2.1 Experiment setup and measurements
in the field

The experimental site was located at the experimental base of

the Chinese Academy of Traditional Chinese Medicine in Jingyu

County, Jilin Province, China (126.8°E, 42.39°N), and the ginsengs

were cultivated continuously for 3-5 years. The cultivated soils were

all farmland soils where ginseng had not been grown before, and

the ginseng was cultivated in shade by covering with blue and

yellow shade nets. The field management, including watering and

fertilizing, was the same as the cultivated ginsengs in farmland as

has been described by Shen et al. (2017). The measurements and

harvest were conducted in 17 to 20 August 2021, a period when

ginseng grows in the red-fruited stage and the average local

temperature was around 15°C to 25°C. A total of 217 ginsengs

with no diseased symptoms on leaves were chosen in the field for

the measurements. The leaf chlorophyll contents were measured by

soil plant analysis development chlorophyll meter (SPAD-502 Plus,

KONICA MINOLTA, Japan) with the middle leaf of a palmately

compound leaf. Threemiddle leaves of each ginseng weremeasured

and each leaf was measured three times. The hyperspectral

reflectance of the middle and upper parts of the largest leaf of

these ginsengs were collected using a FieldSpec HandHeld 2

Spectroradiometer (HH2, Analytical Spectral Devices, Colorado,

US). The wavelength of HH2 is 325-1,075 nm, and the sampling

interval of HH2 is 1.4 nm. It is used in combination with a plant

probe, an optical fiber and a leaf clip to avoid the disturbances of

ambient light. The spectral reflectance was measured 10 times per

leaf using white plate calibration in prior to measurement.
2.2 Sample collection and antioxidant
enzyme measurements

After the measurement of spectral reflectance, the 217

ginseng plants were harvested. Roots with stem and leaves

were dug out. They were washed with running water and

thereafter dried by tissue paper. Pictures of each plant were
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taken, and healthy and diseased ginseng roots were separated by

visual observation on whether there was disease spot on the

surface or rot part. The leaves were removed from each stem,

shortly frozen in the liquid nitrogen and then stored at -80°C.

Based on the visually assessed symptoms of ginseng roots, 57

samples were healthy, and 160 samples were diseased (Figure 2).

The Frozen leaves of randomly selected 15 healthy and 15

diseased ginsengs were used for antioxidant enzyme activity

measurement. Three leaves of each ginseng (~ 0.2 g) were

weighed for these measurements. The superoxide dismutase

(SOD) enzyme activity of ginseng leaves was determined by

nitro blue tetrazolium photoreduction method, peroxidase

(POD) enzyme activity was determined by guaiacol method, and

catalase (CAT) enzymes activity was determined by ultraviolet

spectrophotometry, as described previously by Li (2000).
2.3 The calculation of spectral
vegetation indices

In this study, 8 vegetation indices that related to plant

stresses (Ayanlade, 2017; Xue and Su, 2017; Velichkova et al.,
Frontiers in Plant Science 04
2019) were calculated (details see the supplementary, Table S1).

These vegetation indices are mainly types of narrowband

greenness and leaf pigments. The red and near-infrared region

(red edge) between 690-740 nm was used to calculate the

narrowband greenness.
2.4 Preprocessing of
hyperspectral reflectance

The raw data of hyperspectral reflectance of ginseng leaves

were exported by the spectral data processing software View

Spec Pro (Analytical Spectral Devices, Colorado, US) from the

spectrometer. Machine noises at the beginning and the end of a

band were removed according to the fluctuation range of the

hyperspectral reflectance curve, and the spectral data with less

machine noises were selected for subsequent processing. In this

study, 10 preprocessing schemes including first derivative (1D),

second derivative (2D), standard normal variate (SNV), multiple

scattering correction (MSC), savitzky-golay (SG), 1D-SG, 2D-

SG, SNV-SG, and MSC-SG were used, which were completed by

the software SIMCA_P+ 13.0 (Umetrics, Umea, Sweden). SNV is
B

C D

A

FIGURE 2

Whole plant, leaves, and root of representative healthy ginseng (A) and asymptomatic diseased ginsengs (B–D). The dashed green box
represents the healthy part, the dashed red box represents the diseased part.
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used to correct for light scattering differences. MSC effectively

eliminates spectral differences due to different scattering levels.

Derivative processing effectively improves sensitivity and

resolution. SG preprocessing smoothest high-frequency noise

and effectively improves the signal-to-noise ratio. The

fluctuation range and smoothness of spectral reflectance were

compared according to the image, and the accuracy was

compared according to the preliminary modeling results. The

best preprocessing method was selected and then further

modeling was performed.
2.5 Construction of detection models
and evaluation indices

Based on the Python 3.7.0 open-source ML toolkit Scikit-

Learn (Pedregosa et al., 2011), models were built using 4

algorithms (RF; ET, extremely randomized trees; ADA, adaptive

boosting; GBDT, gradient boosting decision tree) with the

hyperspectral dataset of ginseng leaves after optimal

preprocessing. The basic unit of RF is a single decision tree, and

its main idea is ensemble learning (EL). Every decision tree in a RF

is a classifier. For an input sample, the RF algorithm assigns the

class with the most votes as the final output by performing an

equal vote on the predictions of all decision trees (Breiman, 2001).

The ET algorithm is very similar to the RF algorithm. The

difference between the two is that the training set of each

decision tree in the RF model is obtained by random sampling,

while each decision tree in the ET model uses the original training

set (Geurts et al., 2006). Therefore, the variance of the ET

algorithm is lower than that of RF to some extent, but its bias is

relatively high. Furthermore, unlike RF which selects the optimal

eigenvalue split point, ET usually randomly selects an eigenvalue

split point. ADA is an ensemble algorithm based on the boosting

strategy. Its core idea is to use the training set to train multiple

weak classifiers. During this process, the weight of the sample and

the weight of the classifier are constantly changing. Finally, a

strong classifier is formed. The “adaptation” of the ADA

algorithm is reflected in the fact that the weight of each sample

is determined by the accuracy of the previous prediction (Freund

and Schapire, 1997; Bauer and Kohavi, 1999). GBDT is also an EL

based on boosting strategy, but it is different from the ADA

algorithm. For the GBDT algorithm, it does not have the concept

of sample weight, but adopts the concept of “residual error”. In

detail, the GBDT algorithm is fitted for the negative gradient of

the current model, and in this process, the error value of the weak

learner is getting smaller and smaller (Friedman, 2001). Since 10

measurements were recorded for one plant, there were a total of 2

170 groups of data for all plants. These data were divided

randomly into the training set and test set with the ratio of 3:1.

The healthy ginseng was represented by 0, and the diseased

ginseng was represented by 1. The training set was used for

model establishment and optimization, and the test set was used
Frontiers in Plant Science 05
to test the hyperspectral reflectance data collected from ginseng

leaves. Then Grid Search and Learning Curve were combined to

adjust the hyperparameters of the model, including n_estimators,

max-depth, and subsample, so as to achieve the purpose of

optimizing the model (Isa et al., 2019). The optimal

hyperparameter combination for model optimization was set as

follows: n_estimators = 100, max_depth = 17 for RF model;

n_estimators = 50, max_depth = 19 for ET model;

n_estimators = 240 for the ADA model; and n_estimators =

270, subsample = 0.7 for the GBDT model.

Finally, the importance of all hyperspectral bands was

sorted, and the characteristic bands that played important

roles in the early detection of ginseng root diseases were

screened out. The performance of each model was compared

by calculating different indicators, including accuracy, precision,

recall, f1-score, area under the curve (AUC) and Matthew’s

correlation coefficient (MCC). Among the indicators, precision

represents the proportion of truly diseased samples to the

samples predicted to be diseased by the model; recall

represents the proportion of all diseased samples that the

model predicted correctly; and f1-score is the balance

coefficient between precision and recall. By drawing receiver

operating characteristic curve (ROC) and confusion matrix

chart, the performance of the model itself and the overall

prediction effect were objectively evaluated. The specific

calculation formula are as follows:

Accuracy = (TP + TN)= TP + FP + TN + FNð Þ (1)

Precision = TP= TP + FPð Þ (2)

Recall = TP= TP + FNð Þ (3)

F1 − score = 2� Precision� Recall= Precision + Recallð Þ (4)

Where TP (true positive) indicates the number of diseased

ginsengs correctly predicted, TN (true negative) indicates the

number of healthy ginsengs correctly predicted, FP (false

positive) indicates the number of healthy ginsengs wrongly

predicted, FN (false negative) indicates the number of diseased

ginsengs wrongly predicted.
2.6 Model validation

Besides 217 ginseng plants, hyperspectral reflectance of leaves

of randomly selected another 12 ginsengs with healthy leaves

growing were also collected using HH2 in the same way. The roots

of these 12 ginsengs were harvested for the classification of healthy

or diseased ginsengs. The selected model was applied to predict

these randomly selected 12 ginsengs. Ten groups of hyperspectral

reflectance data were collected from each plant. The average ten

groups of data of each plant were calculated and was used for the

prediction. The predicted results of the model were compared to
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the classification after harvest and the prediction accuracy

was calculated.
2.7 Statistical analysis

Statistical analysis in this study was conducted using SPSS

20.0 Software (IBM Corp., Armonk, NY, USA). SPAD values,

antioxidant enzyme activities, and vegetative indices of ginseng

leaves from both healthy and diseased groups were compared for

differences using student T-tests.
3 Results

3.1 The chlorophyll content and the
activity of antioxidant enzymes

The chlorophyll contents of leaves of healthy ginsengs were

slightly higher than those of leaves of diseased ginsengs, but this
Frontiers in Plant Science 06
difference was not significant (Figure 3A). The absence of lesions

on leaves inhibits us to recognize root diseases at their early

stages. Similarly, the antioxidant enzyme activities of SOD, POD

and CAT in leaves of diseased ginsengs were also slightly higher

than those in leaves of healthy ginsengs (Figures 3B–D), but not

significantly (n=15, P>0.05). Thus, the activities of antioxidant

enzymes were in accordance with the macroscopic symptoms of

leaves, and cannot be the indicator of root diseases.
3.2 Hyperspectral vegetation indices

VIs related to vegetation vitality, anthocyanin and

carotenoid content were calculated with hyperspectral

reflectance. The narrowband greenness values, such as red

edge normalized difference vegetation index (NDVI),

modified red edge simple ratio (MSR), modified NDVI

(mNDVI), and vogelmann red edge index1 (VOG1), of

diseased ginseng leaves were lower than those of healthy
B

C D

A

FIGURE 3

The chlorophyll content (n=57) and the activity of antioxidant enzymes (n=15) of leaves of healthy and diseased ginsengs. (A) Changes of
relative chlorophyll content in healthy and diseased ginseng. (B) Changes of SOD activity in healthy and diseased ginseng. (C) Changes of POD
activity in healthy and diseased ginseng. (D) Changes of CAT activity in healthy and diseased ginseng. SPAD, soil plant analysis development;
SOD, superoxide dismutase; POD, peroxidase; CAT, catalase.
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ginsengs (Figure 4). Especially the value of NDVI, which was

significantly lower (P<0.05) in the diseased ginsengs than in the

healthy ginsengs, indicating that at the position of the red edge

(690-740 nm), ginsengs with diseased roots could be identified

by the NDVI value. In addition, the leaf pigments of diseased

ginseng leaves, represented by anthocyanin reflectance index 1

(ARI1) and ARI2, showed significant higher values (P<0.05)

than those of healthy ginseng leaves (Figure 4), indicating that

the content of anthocyanins in diseased ginseng leaves had

been increased, and senescence symptoms would be expected

to appear in the next stage of the diseases. However, the VIs

related to carotenoids, such as carotenoid reflectance index 1

(CRI1) and CRI2 values of diseased ginsengs, were slightly

lower, but not significantly changed, than those of the healthy

ginsengs (Figure 4).
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3.3 Hyperspectral reflectance

3.3.1 Pre-processing of hyperspectral
reflectance data

Hyperspectral bands and a large amount of reflectance data

were obtained from ginseng leaves. We selected hyperspectral

data with less noises in the region of 460-950 nm by removing

the noises at both ends of hyperspectral bands (Figure 5).

Among the 10 pre-processing methods (single methods of

SNV, MSC, derivat ive and SG and their different

combinations), the SG retained the trend of the original

spectral curve, and the reflectivity range was concentrated in

0-0.5 with a clear curve outline (Figure S1).

The accuracy rates of RF, ADA, GBDT, and ET under the

raw dataset conditions were 94.81%, 80.08%, 84.65%, and
B C

D E F

G H

A

FIGURE 4

Vegetation indices of healthy and diseased ginsengs. n=57, * indicates the significant difference between healthy and diseased (P< 0.05). (A)
NDVI, red edge normalized difference vegetation index; (B) MSR, modified red edge simple ratio; (C) mNDVI, modified NDVI; (D) VOG,
vogelmann red edge index; (E, F) CRI, carotenoid reflectance index; (G, H) ARI, anthocyanin reflectance index.
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97.13%, respectively (Table 1). Among the 10 pre-processing

methods, after SG pre-processing, the models of RF, GBDT, and

ET achieved the highest scores, which were 95.76%, 87.29%, and

97.97%, respectively. After SG pre-processing, the ADA model’s

accuracy was 79.37%, which was a bit lower than the raw data

and the data pre-processed after SNV-SG. Thus, based on the

accuracy of the models and the changes of reflectivity curve, the

method of SG for data pre-processing was taken as the best pre-

processing method in this study.

3.3.2 Model optimization and evaluation
Model optimization improves the recognition ability of the

models. The discriminable ability of the 4 models before and

after model optimization were listed in Table S2. After

parameter adjustment, the accuracy of the ADA and GBDT

were improved. The accuracy of Boosting’s ADA model was
Frontiers in Plant Science 08
88%, which was the lowest, indicating the classification effect of

this model was slightly worse than the others. Compared with

ADA, the accuracy of GBDT model was 4 percent higher, and

the bagging strategy-based RF algorithm was 8 percent higher.

ET model had the best performance with accuracy of 98%,

precision of 98%, recall of 100% and F1-Score of 99%, suggesting

it to be the appropriate model for classification. According to the

ROC curves (Figure 6A), the AUC of the model of RF and ET,

which were based on the bagging strategy, were relatively high,

reaching 98.8% and 99.8%, respectively; and the AUC of the

models of ADA and GBDT, which were based on the boosting

strategy, were relatively low, reaching 84.1% and 97.0%,

respectively. It was worth noting that the bagging strategy had

an advantage over the boosting strategy on this dataset.

According to the confusion matrices (Figure 6B), the overall

prediction effect of all models for class 1 was better than class 0,
FIGURE 5

The original hyperspectral reflectance of ginseng leaves (A, B) are the band ranges with machine noises and are visually selected to be removed.
TABLE 1 Accuracy rates of 10 preprocessing methods based on the 4 algorithms.

Accuracy (%) Raw 1D 2D SNV MSC SG 1D-SG 2D-SG SNV-SG MSC-SG

RF 94.81 86.56 78.64 87.66 86.92 95.76 91.97 92.45 87.58 79.23

ADA 80.08 77.35 72.38 78.45 77.72 79.37 79.19 78.82 81.49 72.46

GBDT 84.65 83.24 78.27 82.69 82.87 87.29 86.56 86.74 86.00 75.62

ET 97.13 89.32 78.27 91.53 91.16 97.97 96.69 96.13 92.10 80.14
fron
RF, Random forest; ET, Extremely randomized trees; ADA, Adaptive boosting; GBDT, Gradient boosting decision tree; RAW, Raw dataset; 1D, first derivative; 2D, Second derivative; SNV,
Standard normal variate; MSC, Multiple scattering correction; SG, Savitzky golay; 1D-SG, first derivative- savitzky golay; 2D-SG, Second derivative – savitzky golay; SNV-SG, Standard
normal variate – savitzky golay; MSC-SG, Multiple scattering correction- savitzky golay.
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indicating that it had a better recognition effect on ginseng root

disease. The f1-score of all models in class 1 were greater than 0.9

(Figure 6B), meaning that all models achieved a balance between

precision and recall. Among the four models, the ET model has

the highest f1-score of 0.99, precision of 0.98 and recall of 1.0

(Figure 6B), which was taken to be the optimal model for

evaluation the early detection of ginseng root diseases. Similar

to the results of AUC, the models of the bagging strategy (RF and

ET) were better than the models of the boosting strategy (GBDT

and ADA) on this dataset.
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3.3.3 The determination of the range of
hyperspectral bands of importance

The hyperspectral bands of ginseng leaves measured in this

experiment ranged from 325 to 1 075 nm, with a total of 750

bands. After pre-processing, 490 bands were selected as 490

variables. After processing these 490 variables by RF, ET, ADA,

and GBDT algorithms, it was concluded that the most important

bands for each model were 691 nm, 726 nm, 714 nm, and 716

nm, respectively (Figure 7). The most important bands were all

ranged between 690-726 nm (Figure 7). Although the high
B

A

FIGURE 6

Comparison of ROC curves (A) and confusion matrix (B) of the 4 models (RF, ET, ADA, GBDT). RF, Random Forest; ET, Extremely randomized
trees; ADA, Adaptive Boosting; GBDT, Gradient Boosting Decision Tree; Classes: 0 indicates healthy ginseng, 1 indicates diseased ginseng.
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randomness of the RF and ET models resulted in low band

importance scores (less than 0.01), 690-726 nm was also

identified within the top 5 bands of importance for these two

models (Figure 7). As a result, in the hyperspectral reflectance of

ginseng leaves, the differences of bands close to 690-726 nm were

most likely to indicate whether a ginseng root was diseased or

not, and this range of bands can be considered as the

hyperspectral characteristic bands for ginseng root

disease detection.
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3.4 Model validation

According to the evaluation of various indicators of RF, ET,

ADA and GBDT models, the ET model was selected as the early

detection model for ginseng root diseases. The hyperspectral

reflectance of leaves (with no symptoms) of another 12 plants

growing in the nearby field were collected and were used for

model validation. Among the 12 plants, 9 were detected to be

diseased ones and the other 3 were considered to be healthy
B

C D

A

FIGURE 7

Schematic diagram of wavelength importance analysis of the 4 models (A: RF, B: ET, C: ADA, D: GBDT) same as Figure 6.
TABLE 2 Root diseases prediction of 12 ginsengs in another plot by the ET model.

No. of Ginsengs Prediction by the model Detection after sampling Correctness of the model

1 0 Di No

2 1 Di Yes

3 1 Di Yes

4 1 Di Yes

5 1 Di Yes

6 1 Di Yes

7 0 Di No

8 1 Di Yes

9 1 Di Yes

10 1 Di Yes

11 1 Di Yes

12 0 He Yes
Model prediction: 0 refers to the healthy root, whereas 1 refers to the diseased root. After sampling, whether the root of each ginseng was healthy (He) or diseased (Di), was identified by vision.
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according to the models (Table 2). After harvest, these 12

ginsengs were diagnosed visually (Figure S2), 11 were found to

be diseased and 1 was healthy (Table 2). The model correctly

identified the 9 diseased ginsengs and the 1 healthy ginseng.

Only two plants (No. 1 and 7, Table 2), which were actually

diseased ones, were mistakenly predicted to be the healthy ones.

Thus, the accuracy of this model for these 12 ginsengs is 83.3%.
4 Discussion

The development of root disease is a gradual process. It is

generally believed that symptoms on leaves appear much later

until the diseases of the root are severe to a certain extent (Zhou

et al., 2017). Surprisingly, our research found that when the root

is seriously rotted, there are still ginsengs with leaves showing no

symptoms (Figure 2D). Along with the visual observation, there

were no significant changes in the physiological traits, like SPAD

and antioxidant enzyme activities (Figure 3). The insignificantly

changed SPAD indicated that the chlorophyll contents of leaves

were not affected and even the photosynthesis system may still

be well functioning when roots were infected. Even VIs

including MSR, mNDVI1, VOG1, CRI1 and CRI2 were not

significantly affected in these leaves, confirming the changes of

leaves caused by root diseases were very slight. It is not clear how

leaves could keep healthy when roots are already severely rotted,

but it reminds us that the macro symptoms and even

physiological traits of leaves may not reflect the status of roots

and a more accurate detection method such as the one based on

the spectroscopic information is necessary.

The application of hyperspectral remote sensing technology

combined with ML is prospectively used in detecting diseases of

an increasing number of crops (Lowe et al., 2017; Yang et al.,

2020; Tian et al., 2021). So far, this technology has not been

widely used in disease detection of medicinal plants. Most

disease detection and identification of crops or other plants

are performed on images of plant tissues where the diseases

occur with visible symptoms (Singh et al., 2018; Singh et al.,

2021), such as leaf blast and false smut infection of rice (An et al.,

2021; Tian et al., 2021) and apple fire blight disease (Jarolmasjed

et al., 2019). However, the medicinal parts of most medicinal

plants, like ginsengs, are roots, whose hyperspectral reflectance

data cannot be collected directly and non-constructively.

Calamita et al. (2021) found significant differences in the near-

infrared spectral region of leaves between healthy and root-rot

grape plants by the naive bayes algorithm, which showed 90%

accuracy in the identification of healthy and diseased plants,

indicating the possibility for the diagnosis of root rot in plants by

applying hyperspectral reflectance from leaves. However, such

detection method is rarely mentioned by previous researchers

and has not been reported in medicinal plants. In this study, we

established a method to detect ginseng root diseases by collecting

and analysing the hyperspectral reflectance data of leaves. Since
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the relationship between leaves and diseased root is still unclear,

this indirect detection highly demands on the precision of data

collection and analysis. Thus, the recognition of the region of

characteristic bands and a proper method of ML processing are

very important.

We found visible (460-760 nm) and near-infrared (760-950

nm) spectral reflectance of leaves played an important role in

monitoring ginseng growth (Figure 5). Based on the data

collected from leaves from this region and the visual detection

of ginseng roots after harvest, ML algorithms were used to

construct the model of root diseases detection. The

combination of non-destructively acquired hyperspectral

reflectance data and ML algorithms can recognize the tiny

changes of hyperspectral reflectance of the asymptomatic

patients, that greatly improves the classification accuracy of

the model (Sankaran et al., 2012; Abdulridha et al., 2022). For

example, the logistic regression-based ML algorithms by

Appeltans et al. (2021) obtained the accuracy of automatically

labelled Phytophthora infestans is 98.80%, wheat Puccinia

striiformis and Puccinia triticina are 97.69% and 96.66%,

respectively. The four ML models of RF, ET, ADA, and GBDT

used in this study all belonged to EL have achieved high accuracy

in the detection of ginseng root diseases (> 85%). EL is a

commonly used ML algorithm in processing hyperspectral

datasets (Wei et al., 2020; Ekramirad et al., 2022). Its

advantage is to organize several simple algorithms to jointly

determine the final performance. Among the models, RF and ET

are based on bagging strategy and mainly optimize the

robustness (variance) of the model (Breiman, 2001; Svetnik

et al., 2003). For example, RF hyperspectral model can better

predict heavy metal distribution in agricultural soil (Tan et al.,

2020). Whereas ADA and GBDT are based on boosting strategy

and mainly optimize the precision (bias) of the model (Freund

and Schapire, 1997). For example, the GBDT model can validly

classify apple bruising times (Pan et al., 2019). In this study, after

parameter adjustment, the models of the bagging strategy (RF

and ET) were more suitable for this dataset. The accuracy of ET

model was highest of 98% and the AUC of ETmodel is as high as

99.8% (Figure 6). This is consistent with the good generalization

ability of the ET algorithm, that successfully classified seven

types of Spanish honeys with single botanical origins (Mateo

et al., 2021).

Besides model selection, the pre-processing method is also

strongly affected the model accuracy. The partial least squares

discriminant analysis achieves the best results in SNV-processed

Paris yunnanensis data of different origins (Pei et al., 2018). For

the ET model in this study, the accuracy of the SG pre-

processing method is 19.52 percentage higher than that of the

2D pre-processing method (Table 1). Based on the contribution

rate of the models, the most important bands collected from

ginseng leaves were all concentrated in the range of 690-726 nm

(Figure 7). Combined with the analysis of hyperspectral VIs

(Figure 4), the significant differences of NDVI were also
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associated with this range. The reflectance at the red edge

position is suggested to be used to evaluate the structural

changes and physiological degradation of leaves (Vescovo

et al., 2012; Liu et al., 2014). Thus, the changes in the position

of red edges in ginseng leaves may be the results of unobservable

changes in leaf structure caused by lesions of ginseng root.

Therefore, the range of characteristic bands for early detection

of ginseng root diseases was further narrowed.

This study explored the detection method of root diseases

based on the hyperspectral reflectance of asymptomatic ginseng

leaves. The method was built based on the combination of non-

destructively acquired hyperspectral data from healthy leaves

and the ML classification algorithms. After pre-processing and

optimizing the data set, classification models combined with the

indicators were evaluated. Finally, the method for early detection

of ginseng root disease was built and validated. The pipeline of

the construction of the method was shown in Figure 8. Besides,

ginsengs from another plot with healthy leaves were also

collected and were used to validate the model. Though with a
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limited number of samples, the model achieves a correct rate of

83.3%, showing the effectiveness of the method. Upon the high

detection rate of the method, the method can still be improved in

many aspects. The hyperspectral reflectance can be affected by

many factors, such as the ages of ginseng, the development stages

of ginsengs, the types or causes of diseases, the severity of

diseases as well as the changes of environments. Thus, based

on the effectiveness of the simple model we built in this study, it

is promising to develop an integrated algorithm based on data

collected during the precise identification phase of root disease

development. In addition to the two groups of healthy and

diseased, more variables such as the development stages of

ginsengs, the environmental factors, the type of the diseases

and the severity of the diseases can be brought into the model.

To be more precisely, hyperspectral data can be collected in the

manual interventions conditions, such as different stages of

ginsengs being pathogenic inoculated or ginsengs growing

under certain abiotic stresses, that lead to a certain type of

ginseng root diseases. Thus, a lot more data are expected to be
FIGURE 8

Schematic diagram of the classification method based on the ET algorithm for spectral detection of ginseng root diseases. same as Figure 6;
AUC, area under the curve; MCC, Matthew’s correlation coefficient.
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collected, and a hyperspectral reflectance database of ginseng

root diseases database can be built. Since the training of ML

models requires large amount of data (Tsaftaris et al., 2016),

comprehensive algorithms are supposed to be developed and

improved based on the database. In addition, the development of

the detection method could be combined with pathological

studies, which would provide basic knowledge of the

mechanism how hyperspectral reflectance are related to the

diseased roots, aiding the construction of ML models. To

summarize, based on the detection method of ginseng root

diseases constructed by the hyperspectral reflectance of

asymptomatic ginseng leaves that has been proposed in this

study, a comprehensive hyperspectral reflectance database is

expected to be built in the future together with the

development of ML models, in order to accurately identify the

type, onset time, severity of underground diseases of ginsengs

and to perform timely treatments to reduce production loss.

Early detection of root diseases is essential as timely excavation

of diseased ginseng in the early stages of the disease can prevent

further infection of other plants. This will help to provide new

methods for disease detection in other root plants and also

provide ideas for the development of more portable and simple

field detection equipment. Equipping hyperspectral remote

sensing equipment with intelligent robots for self-service

detection will also be a future goal for the development of

smart agriculture in the field. By establishing abiotic stress

tests, combined with hyperspectral remote sensing technology

to further explore the optimal cultivation conditions for ginseng

root growth, the environmental conditions for ginseng root

disease development will be blocked at source and root disease

prevention will be achieved. In the field cultivation of ginseng,

the diseased ginseng can be harvested according to the predicted

results based on our established model for early detection of root

diseases, further completing the identification of ginseng root

disease pathogens, exploring the pathogenic mechanisms of

fungi and bacteria, screening for efficient and non-polluting

antibacterial substances, and finally achieving the prevention

and control of the disease.
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