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Maize population density is one of the most essential factors in agricultural

production systems and has a significant impact on maize yield and quality.

Therefore, it is essential to estimate maize population density timely and

accurately. In order to address the problems of the low efficiency of the

manual counting method and the stability problem of traditional image

processing methods in the field complex background environment, a deep-

learning-based method for counting maize plants was proposed. Image

datasets of the maize field were collected by a low-altitude UAV with a

camera onboard firstly. Then a real-time detection model of maize plants

was trained based on the object detection model YOLOV5. Finally, the tracking

and counting method of maize plants was realized through Hungarian

matching and Kalman filtering algorithms. The detection model developed in

this study had an average precision mAP@0.5 of 90.66% on the test dataset,

demonstrating the effectiveness of the SE-YOLOV5m model for maize plant

detection. Application of the model to maize plant count trials showed that

maize plant count results from test videos collected at multiple locations

were highly correlated with manual count results (R2 = 0.92), illustrating the

accuracy and validity of the counting method. Therefore, the maize plant

identification and counting method proposed in this study can better achieve

the detection and counting of maize plants in complex backgrounds and

provides a research basis and theoretical basis for the rapid acquisition of

maize plant population density.
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Introduction

Crop planting density counts the number of plants per unit

area, which has a great impact on the yield and quality of crops

and is one of the important factors of agricultural production

systems (Zhi et al., 2016; Zhai et al., 2018; Adams et al., 2019;

Chapepa et al., 2020; Ndou et al., 2021). The research on maize

planting density plays an important role in early breeding

decisions to improve yield (Zhai et al., 2018). Therefore, it is

essential to estimate the population density of maize accurately

and timely.

To estimate plant population densities, the traditional field

assessments method counts the number of plants in a randomly

selected partition manually of a field and uses the average of

multiple partitions to express plant population density. This

method is time-consuming, labor-intensive, and inaccurate. To

solve this problem, some studies have used color RGB images to

count crops in the field (Lv et al., 2019; Zhao et al., 2021; Qi et al.,

2022). These studies are based on traditional image processing

algorithms that primarily use color information to segment crop

areas for crop counting. These methods have high counting

accuracy (approximately 90%) under certain conditions but have

the following shortcomings. Firstly, the color information is

easily affected by the surrounding light intensity and crop status.

For example, plants looked darker on cloudy days than on sunny

days and may have different colors at different stages of growth.

Secondly, some counting methods are closely related to location

and time. Typically, these methods require the necessary

calibration by manually counting plants in a small portion of

the field to build a regression model between pixel counts and

actual plant counts. Then the regression model was applied to

the rest of the images to achieve automatic processing.

Therefore, a regression model established at one site (or

growth stage) usually cannot be applied directly to another site

(or growth stage), and the model needs to be re-validated or

calibrated at a new site (or growth stage).

In recent years, many crop detection and counting methods

based on traditional image processing (Zhao et al., 2021),

machine learning (Lv et al., 2019), and deep learning

technology (Qi et al., 2022) have been studied. For the three

types of methods mentioned above, traditional image processing

methods are easily disturbed by factors such as illumination,

noise, and weed background. The shallow features such as color,

shape, and texture extracted by machine learning methods have

limited expression ability, and lack universality and adaptability.

Deep convolutional neural networks (CNN) have shown

powerful performance in object detection for agricultural

images in recent years (Zhao et al., 2019). Many algorithms

based on deep learning models have been successfully applied to

the detection of a variety of crops. For example, researchers have

explored the use of models such as YOLO and Faster-RCNN for
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the detection of fruits (Koirala et al., 2019; Häni et al., 2020),

trees (Zhou et al., 2021), and crops (Hu et al., 2013; Jin et al.,

2019). These studies reported promising detection accuracy and

thus per-image counting accuracy.

For the counting methods based on image sequences, how to

prevent the repeated counting of the same object in a continuous

image sequence is a key problem. Methods to address this

problem can be divided into three main categories. The first

class of methods uses 3D reconstruction techniques to

reconstruct space point cloud information from 2D images,

then detection and counting were made in the 3D space (Häni

et al., 2020; Gené-Mola et al., 2020). Since a plant is unique in the

3D space, a plant that is repeatedly counted in 2D images will be

highly overlapped in the 3D space. Therefore, repeated counting

of a plant can be avoided in the 3D space. The second class of

methods uses the position and pose information of the imaging

device to estimate the geometric correspondence between the

same target in two consecutive images (Stein et al., 2016). Using

this method, objects detected in two images captured at different

locations can be associated, then the objects could be tracked and

counted. The third type of method is the tracking method based

on the object detection results. The key to this method is to

establish the associations between detection results and the

trackers (Gao et al., 2022; Lin et al., 2022). The mentioned

three types of methods can achieve high counting accuracy

under certain conditions, but they have certain shortcomings

and problems. The method based on 3D reconstruction

technology has a high computational cost and the 3D

reconstruction results are easily affected by the external

environment. The computational cost of the second method is

lower than that of the method based on 3D reconstruction

techniques, but the applied sensors (e.g., RTK GPS) made the

cost of systems becomes very high. The detection-based tracking

counting method has a low cost, but the robustness of this

strategy is still insufficient to a certain extent. Since the IoU

threshold is obtained from a small portion of the image sequence

data, the threshold may fail when the test image sequence is

obtained in a different environment (Jiang et al., 2019). Recently,

other new tracking strategies can handle this problem. For

example, the research of tracking algorithms based on

correlation filtering has made promising progress recently,

especially in the Kalman filtering method (Wang et al., 2019;

Zhang et al., 2022).

The target detection model YOLOv5 has fast detection

speed, and many target tracking algorithm has been applied to

the tracking and quantity statistics of vehicles and pedestrians

recently. Research shows that YOLOv5 and detection-based

tracking algorithm could quickly and accurately count objects

in videos. At the same time, UAVs have shown great potential as

remote sensing platforms for crop growth monitoring in recent

years (Wang et al., 2019). So it is necessary to explore the
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research on the detection and counting of maize plants by

combing of CNN and drones. In this study, the image datasets

were collected by a low-altitude UAV first. Then the maize

plants detection method based on the SE-YOLOV5m model was

trained. And the trained SE-YOLOV5m model and Kalman

filter algorithm were combined to track and count maize plants

in individual videos. Finally, the counting method was tested and

evaluated on test videos.
Materials and methods

Image acquisition and processing
methods

The DJI Phantom 4 was used for taking pictures of corn

canopy. The Phantom 4 featured a fully stabilized 3-Axis gimbal

system with a 4k 12-megapixel camera and up to 27 minutes of

flight time. The collection site was Nong'an County, Changchun

(125.153436 N, 44.166099 E). According to the identification

system, maize development can be divided into vegetative (V)

and reproductive (R) stages. The V stages are designated

numerically as V(n), where (n) represents the number of

leaves with visible collars. We collected videos for plants from

stages V4 to V6, which are the vegetative growth stages of maize

plants (Zea mays L., Jingke 968) when the fourth, fifth, and sixth

leaf collars are visible. The images and videos containing the

maize plants were taken in different weather conditions (cloudy

and sunny) with the UAV flying at a height of approximately 4

meters. The width and height of the images were 3840 and 2160

pixels, respectively. The collected videos are divided into a

detection dataset and a counting dataset according to the ratio

of 6:4. Images were extracted every 10 frames from every video

in the detection set. They were used to train and validate the
Frontiers in Plant Science 03
detection model together with the collected images. And videos

in the counting dataset were used to validate the performance of

the final counting algorithm. The training samples were

manually labeled using Labelimg software (Tzutalin, 2015).

Since the size of the original images was 3840 and 2160 pixels,

which were too large for labeling and training. So the original

images were first cropped to 960 and 540 pixels, respectively.

The maize plants between the V4 and V6 stages look like small

bell mouths when viewed from the top. It is obviously different

from the rest of the leaves in color, brightness, and shape, so this

feature is mainly used as the labeling standard. Some labeled

images are shown in Figure 1. After labeling, a total of

2200 images were obtained, which contains 22235 maize

plants. The images in the detection dataset were split into the

a training set, a validation set, and a test set in the ratio of 8:1:1.

In order to prevent overfitting and improve the generalization

ability of the model, several date augmentations methods were

applied. Such as image perturbation, changing brightness,

changing contrast, changing saturation, changing hue, adding

noise, random scaling, random crop, flipping, rotating, random

erasing, and so on. In addition, Mosaic (Glenn, 2022) was also

used. The data processing flow and data enhancement examples

are shown in Figure 1.
Maize plants detection model

For the maize plant quantity statistics method proposed in

this study, the first thing to study is the design of maize plant

detection model. The model of YOLOv5 (Glenn, 2022) series is

able to substantially improve the detection speed while

maintaining the detection accuracy of existing models, and is

one of the optimal choices for target detection. So the model of

YOLOv5 series was used to build the maize plants detection
FIGURE 1

Data processing flow and data enhancement examples.
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model. The YOLOv5 model is an upgraded version based on

YOLOv3 (Redmon and Farhadi, 2018). Four object detection

models of different depths and widths can be trained by using

the official code. The YOLOv5s has the smallest depth and width

in the YOLOv5 series. The other three networks are deepened

and broadened on the basis of it. The YOLOv5 directly uses a

single neural network to predict and classify input images to

achieve end-to-end object detection. And it proposes cross-scale

prediction, which enables the network to detect objects at three

different scale features and adapt to multiple object detection

tasks of different sizes. The backbone and the neck of the model

use CSPDarknet53 (Wang et al., 2020) and the PAN (Liu et al.,

2018) structure, respectively. Two different CSP modules are

used in different parts of the model. Specifically, the C3_x

module is applied to the backbone, the other C3_F_x module

is used in the later structure. Comparing the speed and accuracy

of the four different YOLOv5 models in Table 1, it can be seen

that the mAP of YOLOv5m is 2.9% higher than that of

YOLOv5s, and 0.8% and 1.6% lower than that of the YOLOv5l

model and the YOLOv5x model, respectively. On the other

hand, the model size of YOLOv5m is 26.7 MB larger than that of

YOLOv5s, but it is 1/2 and 1/4 of that of YOLOv5l and

YOLOv5x, respectively. Therefore, after balancing the

detection accuracy and the model size of the network, the

YOLOv5m model was used as the base for research.

Related research shows that visual attention mechanism can

improve the accuracy of deep learning models (Yang et al.,

2020). To improve the efficiency and accuracy of detecting maize

plants, the Squeeze and Excitation Networks (SENet) (Hu et al.,

2018) was introduced in the CNN. The SENet could obtain the

weight of each channel of the features and then uses the weight

to filter the key features, which could improve the representation

capability of CNN. As shown in Figure 2, the SE module mainly

contains squeeze and excitation operations (Hu et al., 2018). It

performs a squeeze operation firstly, then performs an excitation

on the global features to obtain the weights of different channels

and the relationship between the channels. As shown in Figure 3,

the structure of improved SE-YOLOv5m was proposed in this

study. As shown in the figure, the SE module is embedded in the

C3_x module and C3_F_x module individually. The purpose of
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the SE module is to enhance the feature extraction ability of the

model by emphasizing the key feature of maize plants and

suppressing background features to improve the detection

accuracy in multiple scenarios.
Counting model based on YOLOV5

Firstly, the YOLOV5 model was used to detect maize plants

in continuous static images. Then a tracker based on Kalman

filter (Kalman, 1960) was used to track the maize plants to avoid

repeated counting of them in continuous image sequences.

Based on the trackers, each maize plant would be given a

unique tracking number, so that every maize plant would only

be counted only once. The tracking counting model contains

three steps: maize plants state estimation, association and

matching of maize plants between frames, and trackers update.

Maize plants state estimation
To track each maize plant detected by the detection model,

the following state variable was used to represent the status of

the maize plants:

t = (u, v, s, r, _u, _v, _s) (1)

where u, v, s, r are the horizontal and vertical coordinates of the

center point of the plant bounding box in image coordinates (in

pixels), the area of the bounding box (in pixels), and the aspect

ratio, respectively. _u, _v, _s are their corresponding first derivatives

with respect to time in image coordinates.

The plant tracking problem is a discrete-time series problem

and consists of the following two main steps: the first is

prediction process. Through the Kalman filter dynamic model,

the state variables of the maize plant in the current frame would

be used to predict the state variables in the next frame. The

second step is the update process. The observed variables

(detected bounding box) of the maize plant in the next frame

would be used to update the state variables predicted in the

prediction process (Jiang et al., 2019). Since the camera has a

high frame rate, the position change of the target between video

sequences is very small. So the motion of the camera can be

regarded as a uniform motion. Therefore, it is assumed that the

visual detection and tracking system is linearly correlated with

the time change. A standard Kalman filter with constant velocity

motion and linear observation model was used, which takes a 4-

dimensional state (u, v, s, r) as the direct observation model of

the maize plant.

The state parameters u, v, s, r of the tracker are initialized

according to the detection results in the first frame, and _u, _v, _s are

set to 0. After the first frame ( i ≥2 ), the state variables (t) and the

state covariance matrix (P) of the trackers in the ith image are
TABLE 1 Comparison of model prediction results.

Models mAP
(%)

Average detection speed
(ms)

Model size
(MB)

YOLOV5s 87.65 18.2 14.1

YOLOV5m 90.24 20.3 40.8

YOLOV5l 91.02 22.4 89.2

YOLOV5x 92.15 25.6 166
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estimated using the data of the trackers in the (i-1)th image in

the prediction process. The following formulas were used in the

prediction process (Jiang et al., 2019):

t̂ iji−1k = Ft̂ i−1ji−1k , F =

1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666666666664

3
777777777777775

(2)
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Piji−1 = FPi−1ji−1F
T + Q,Q =

1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 10−2 0 0

0 0 0 0 0 10−2 0

0 0 0 0 0 0 10−4

2
666666666666664

3
777777777777775

(3)

Where t̂ iji−1k is the a priori state estimate for the kth plant

tracker in the ith frame, t̂ i−1ji−1k is the a posteriori state estimate

for the kth plant tracker in the (i-1)th frame, F is the state

transfer matrix, Pi|i−1 is the a priori state covariance matrix for
FIGURE 2

The structure of Squeeze and excitation (SE).
FIGURE 3

The structure of improved SE-YOLOV5m model. CBS contains a Conv, a BN and a SiLU (sigmoid liner relu) activation function, where Conv is
2D Convolutional layer, BN indicates batch normalization. C3_x indicates the use of a CBS structure with X residual modules (ResUnit), e.g. in
the first C3_x, one residual components are used, hence C3_1. C3_F_X has the same meaning as C3_X.
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the ith frame, Pi−1|i−1 is the a posteriori state covariance matrix

for the (i-1)th frame, and Q is the random process noise matrix.

The following formula is used to calculate the posterior state

covariance matrix of the ith frame image and the posterior state

of the tracker.

Si = HPiji−1H
T + R,H =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

2
666664

3
777775,R

=

1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 10

2
666664

3
777775 (4)

Ki = Piji−1H
TS−1i (5)

Piji = (I − KiH)Piji−1(I − KiH)T + KiRK
T
i (6)

yi = dt − Ht̂ iji−1paired (7)

t̂ ijipaired = t̂ iji−1paired + Kiy
i (8)

where Si is the covariance matrix of the measurement residuals

for the ith frame andH is the measurement matrix that maps the
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tracker state variables to the measurement state variables

(detection frame). R is the measurement error covariance

matrix. Ki is the Kalman filter gain in the ith frame, and I is

the identity matrix. yi is the measured residual between the

tracker's a priori estimated state of the ith image and the

matched detection frame, and t̂ iji−1paired is the amount of the

tracker's a posteriori estimated state.
Association and matching between frames
In the update process, the trackers in the (i-1)th frame

and the detection results (Di) of the ith frame were used. Since

the detection results could be valued as the ground truth for

the current frame, it is necessary to match the detection

results with the trackers and thus update the Kalman filter.

In this study, the IoU-based Hungarian algorithm (Kuhn,

2005) was used to establish the association between the

detection results and the trackers. Figure 4 is a schematic

diagram of a maize plant detection and a tracking bounding

box. As shown in the figure, the white rectangle ABCD

represents a maize plant bounding box predicted by the

detector, and the yellow rectangle EFNM represents a maize

plant bounding box predicted by the tracker. The overlap

degree of the tracked bounding box and the detected

bounding box is represented by formula (9). The closer the

value of IoU is to 1, the higher the overlap and correlation

between the detection bounding box and the tracking

bounding box.
FIGURE 4

The schematic diagram of a maize plant detection and a tracking bounding box.
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IoU =
SEMCN

SABCD + SEFGH − SEMCN
(9)

Then the IOU was used in the Hungarian algorithm to

calculate the cost matrix to establish the corresponding

matching relationship between the maize plant tracked

bounding box predicted by Kalman filter and the detection

bounding box predicted by detectors. Assuming that maize

plants have been tracked in the ith frame image denoted as

Ti={T1,T2,…,Tm} , and maize plants detected in the (i+1)th

frame image denoted as Di={D1,D2,…,Dn} . The matching

correlation matrix C is obtained by calculating the IoU of the

tracking frame T and the detection frame D. The calculation

formula is shown in equation (10).

C = (ci,j)mxn = IoU(T ,D) (10)

The threshold Tthresh was set to process the matching

incidence matrix C to obtain the result matrix R. The

processing formula is shown in equation (11).

R = (ri,j)mxn =
0,   ci,j < T

1,   ci,j > T

(
(11)

In the formula, Tthresh is equal to 0.3. when ri,j is 1, it means

that the ith tracked maize plant is successfully associated with

the jth detected maize plant. At the same time, it should be

ensured that each tracked maize plant can only be associated

with one detected maize plant. That is, equation (12) needs to be

met.

maxoM
i=1oN

j=1ci,jri,j   s : t : (oM
i=1ri,j = 1,oN

j=1ri,j = 1) (12)
Trackers update
After the matching of detection bounding boxes and

trackers, detection bounding boxes (Di) and trackers (Ti-1) can

be divided into three categories: trackers associated with

detection boxes, unmatched trackers, and unmatched detection

bounding boxes. The trackers associated with detection boxes

will be used in the update process. As for unmatched detection

boxes, a new tracker will be created for each of them separately

and will be added to the existing collection of trackers. For every

unmatched tracker, its Vlost will be increased by 1, which means

it loses the target once. When the cumulative number of lost

targets reaches the set threshold Tlost, it will be removed from the

tracker set.

Since one tracker theoretically corresponds to one maize

plant, the number of trackers is the number of maize plants.

However, because the detection model may miss or misdetect,

this will cause errors in the number of trackers and eventually

lead to errors in the count of maize plants. For the missed

detection problem of the detector, this study solves this problem

by adding a parameter threshold Tlost to the algorithm. When

the missing detection of the detector causes the unmatched
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tracker appears, the Vlost of the tracker will be increased by 1,

which means that the tracker loses the target once. When the

Vlost reaches the set threshold Tlost, it will be removed from the

tracker set. For the problem of false detection problem, the

algorithm judges by setting the threshold Tlife. Only when the

cumulative number of tracker existences of a plant is greater

than the threshold Tlife, it will be regarded as a valid count.
A quantitative statistical method based
on cross-line counting

If the detection model misses a maize plant in several frames

and then detects it again in another frame, the original tracking

ID will be discarded and then a new ID will be created. When

maize plants appear at the edge of the image, the view of the

center of plants is prone to distortion. At this time, the

performance of the tracker and detector would be affected by

this. Therefore, a counting baseline was defined in the image to

improve the counting accuracy. As shown in Figure 5, the

counting baseline (the yellow line) is defined at the center (1/2

height) of the image. The counting baseline served as a reference

line to count maize plants. The tracked bounding box would be

regarded as a valid count when it crosses the counting baseline

(in Figure 5B). At the same time, the color of the tracking box

will change from red to yellow, indicating that the tracker has

been counted.
Test results and discussion

Model training and testing

The python version and framework used were Python 3.8

and Pytorch 1.5.0, respectively. Ubuntu 16.04 was used with the

Intel Core I7 6700K processor (64GB RAM) and the Nvidia

GeForce RTX 3090. CUDA 10.1 parallel computing framework

and CUDNN 7.6 deep neural network acceleration library were

used. The batch size and epochs were set to 24 and 300,

respectively. Other hyperparameters used the default values

given by the official website. A pretrained weight trained on

Microsoft Common Objects in Context (MS COCO) dataset

(Lin et al., 2015) was used to initialize the weight of the model. In

order to validate the performance of the algorithm, precision,

recall rate, missed rate, and average precision (AP) are used to

evaluate the trained model. The calculation formulas are as

follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)
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M =
FN

TP + FN
(15)

AP =
Z 1

0
P(R)dR (16)

where P is the precision, R is the recall, M is the miss detection

rate, TP is the number of maize correctly detected by the model,

FP is the number of backgrounds misclassified as maize plants

and FN is the number of maize misclassified as background.

Since the category detected in this study is only the maize plant,

the AP (average precision) is equivalent to the commonly used

mAP (mean average precision).
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Detection results of the model on maize
plants

The trained Faster RCNN, SSD, YOLOV5, and SE-YOLOV5

models were tested on the test dataset respectively. The results

are shown in Table 2. Comparing in terms of accuracy and speed

in Table 2, it can be seen that the YOLOV5 series models are

superior to the SSD model in both accuracy and speed. Although

the YOLOV5 series models are comparable to Faster RCNN in

terms of accuracy, their speed is more than 7 times that of Faster

RCNN. The mAP of SE-YOLOv5m is 1.21 higher than that of

YOLOv5m. Meanwhile, the model size and the average detection
TABLE 2 Comparison of different detection models on the test set.

Models mAP (%) Average detection speed (ms) Model size (MB)

YOLOV5m 90.24 20.3 40.8

SE-YOLOV5m 91.45 20.4 42.7

SSD 78.32 44.2 82.78

Faster R-CNN 91.88 180.4 110.8
A

B

FIGURE 5

Demonstration of the counting baseline for counting. The yellow line is the counting baseline. The top shows the n th frame; the bottom shows
the n+i th frame. (A, B) shows the n-th frame and n+1 th frame, respectively.
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speed of the SE-YOLOv5m model are close to that of the

YOLOv5m model. Thus, the SE-YOLOv5m network model

was adopted in this experiment after considering the detection

accuracy and the lightweight requirement of the network.
Accuracy evaluation of the model under
different weed proportions

Because weeds are easy to grow in the seedling stage of

maize, excessive weeds may even affect the growth of maize.

Therefore, the complex environment in this study mainly refers

to different weed proportion. The presence of weeds in some
Frontiers in Plant Science 09
areas of the maize field may have an impact on the accuracy of

the detection model. Therefore, the above test set was split into

three parts according to different the proportion of weeds in the

field: a dataset with a weed proportion less than 30% (denoted by

A), a dataset with a weed proportion between 30% and 60%

(denoted by B) and a dataset with the weed proportion greater

than 60%. Among them, the number of pictures in test sets A, B,

and C are 80, 90, and 50, respectively. The tested models are the

above-mentioned SE-YOLOV5 model and other state-of-art

models. The detection results are shown in Table 3. The test

sample results under different weed proportions are shown in

Figure 6. It can be seen from the table and the figure that

different weed proportions in the field have no significant
TABLE 3 Comparison of detection results under different weed rates.

Models Dataset A Dataset B Dataset C

YOLOV5m 91.24 91.26 90.46

SE-YOLOV5m 92.68 92.65 92.02

SSD 79.24 79.12 78.62

Faster R-CNN 92.88 92.88 92.88
fro
FIGURE 6

Detection results and feature maps of SE-YOLOV5m under different weed proportions. The left column shows detection results; the right
column shows the corresponding feature maps of the last layer in the first C3_2 module of SE-YOLOV5m. From top to bottom are
representative images with weed proportions less than 30%, between 30% and 60% and more than 60%, respectively. In the figure, the blue
boxes and red boxes are the TP and FN.
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influence on the detection accuracy of the maize plant detection

models. The reason may be that weeds are different from maize

plants in color, texture, and shape, so detection models are able

to distinguish weeds from maize plants more directly. Then, the

convolution feature maps of maize plants are visualized in

Figure 6 to further analyze the reasons. It can be seen in

Figure 6 that the features extracted by the model can well

distinguish weeds from maize plants. In addition, it can also

be seen from the FN samples in the figure (red boxes in the first

column) that when the core leaves of the maize plant are

partially obscured or the view of the central leaves is skewed,

the model would have a certain degree of missed detection. It can

also be seen from the corresponding feature map that the model

can not extract effective feature information to distinguish maize

plants at this time.
Counting accuracy regression analysis
and evaluation

Videos in the counting dataset were segregated into 23 video

clips for evaluating the developed counting algorithm, and they

were individually counted by three researchers. Each video clip

represented an approximately 3 m long segment in the videos.

Frame rate and length of each video were about 30 frames per
Frontiers in Plant Science 10
seconds (FPS) and 10 s, respectively. Then, the counting results

were averaged to obtain the actual number of maize plants in the

corresponding video. The counting algorithm based on SE-

YOLOV5m was tested on the videos. Based on the proposed

algorithm, the corn plant video tracking experiment was carried

out. Figure 7 is an example of tracking a maize plant video

sequence based on the proposed algorithm. As can be seen in the

figure, the No. 24 corn plant has been detected and tracked for

55 consecutive frames in the video. Due to the disturbance of

wind, the key features of the No. 50 maize plant are occluded in

the 10th and 44th frames, which leads to intermittent missed

detection. The algorithm can still track the target in subsequent

images and keep the original ID unchanged, which is because

Tlost is set in this study. When Tlost is not set, the algorithm

cannot track the target in subsequent images. Therefore, it can be

seen that although there is a short-term missed detection

phenomenon in the video, the algorithm in this study could

still effectively track maize plants.

In order to verify the performance of the proposed

algorithm, 23 videos in the counting dataset are used as

experimental data for comparative experiments. The

comparison models were to replace the SE-YOLOv5m model

in the proposed algorithm with the trained YOLOv5m, SSD, and

Faster R-CNN models, respectively. The confusion matrix was

used as the evaluation index to compare the performance of the
A B

D E F

C

FIGURE 7

Tracking example of intermittently detected maize plant. (A–F) shows the result in the 3th frame, 10th frame, 20th frame, 34th frame, 44th
frame and 55th frame, respectively.
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four algorithms quantitatively. The experimental results are

shown in Figure 8. At the same time, the frame rates of the

proposed algorithm and the algorithm based on the above three

models are 28.2, 28.4, 20.2, and 5.2, respectively. It can be seen

from the results that the running speed of the proposed

algorithm is similar to that of the counting algorithm based on

YOLOv5m, but its accuracy is higher. The performance of the

counting algorithm based on SSD is poor, mainly because the

SSD model has low detection accuracy, which can also be

confirmed in Table 2. Compared with the counting algorithm

based on Faster R-CNN, the proposed method is faster on the

basis of comparable accuracy. Although the counting algorithm

based on Faster R-CNN performs well in terms of accuracy,

there is still a lot of room for optimization in terms of running

speed. Therefore, according to the comprehensive analysis of

accuracy and speed, we can see that the performance of the

proposed algorithm is the best among the four methods. Taking

one of the videos as an example, there are a total of 311 frames of

a video collected by UAV, and the statistical results are shown in

Figure 9. Among them, the statistical result of the number of the

104th frame is 4, and the statistical result of the number of the

first 241 frames is 14. During the process of tracking and

matching, the number of some maize plants was lost at the

edge (some plants don’t have ID numbers), but the cross-line

counting method effectively solved this problem. It shows that
Frontiers in Plant Science 11
under the interference of ground weeds and wind, the algorithm

in this study could accurately count the number of maize plants.
Conclusion

(1) The YOLOV5m model which incorporates a channel

attention mechanism (SENet) was constructed to achieve

effective detection of maize plants in a complex background.

The mAP of the SE-YOLOV5mmodel on the test set was 90.66%

(IoU 0.5), indicating the effectiveness of the SE-YOLOV5m

model for detecting maize plants. The proposed SE-

YOLOV5m model was able to infer at 20.4 ms on a GPU on

an image with the size of 960 pixels × 540 pixels, which have the

potential to be applied to embedded terminals. Evaluation under

different weed proportions shows that different weed

proportions in the field have no significant influence on the

detection accuracy of the maize plant detection models.

(2) A deep-learning-based method for counting maize plants

in a field was proposed, which used an improved YOLOV5

model with a Kalman filter. The mazie plant counting method

proposed in this paper was compared with the counting

algorithms based on YOLOv5, SSD and Faster R-CNN

algorithms. The test results show that the proposed method is

significantly better than the SSD-based algorithm in terms of
A B

DC

FIGURE 8

The confusion matrix of of the four algorithms. (A–D) shows the confusion matrix of Ours algorithm, YOLOv5m based algorithm, SSD based
algorithm and Faster R-CNN based algorithm, respectively.
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accuracy and speed. Its speed is similar to that of the counting

algorithm based on YOLOv5, but its accuracy is higher. Its

accuracy is similar to that of the algorithm based on Faster R-

CNN, but the frame rate is about 23 higher. Therefore, the

proposed counting method is an effective method to achieve fast

and accurate counting of the number of maize plants. In

addition, the detection methods and annotated images used in

this study could be used by the other researchers and engineers

to further develop maize plants detection and counting methods.
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