
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Chuanlei Zhang,
Tianjin University of Science and
Technology, China

REVIEWED BY

Jing Zhou,
University of Wisconsin-Madison,
United States
Mohammad Shah Jahan,
Sher-e-Bangla Agricultural University,
Bangladesh
Leonardo Rundo,
University of Salerno, Italy

*CORRESPONDENCE

LinHui Li
linhuili@nefu.edu.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 29 August 2022

ACCEPTED 14 November 2022
PUBLISHED 04 January 2023

CITATION

Bian Y, Li LH and Jing WP (2023)
CACPU-Net: Channel attention U-net
constrained by point features for crop
type mapping.
Front. Plant Sci. 13:1030595.
doi: 10.3389/fpls.2022.1030595

COPYRIGHT

© 2023 Bian, Li and Jing. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 04 January 2023

DOI 10.3389/fpls.2022.1030595
CACPU-Net: Channel attention
U-net constrained by point
features for crop type mapping

Yuan Bian, LinHui Li* and WeiPeng Jing

The College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
Crop type mapping is an indispensable topic in the agricultural field and plays

an important role in agricultural intelligence. In crop type mapping, most

studies focus on time series models. However, in our experimental area, the

images of the crop harvest stage can be obtained from single temporal remote

sensing images. Only using single temporal data for crop type mapping can

reduce the difficulty of dataset production. In addition, the model of single

temporal crop type mapping can also extract the spatial features of crops more

effectively. In this work, we linked crop type mapping with 2D semantic

segmentation and designed CACPU-Net based on single-source and single-

temporal autumn Sentinel-2 satellite images. First, we used a shallow

convolutional neural network, U-Net, and introduced channel attention

mechanism to improve the model’s ability to extract spectral features.

Second, we presented the Dice to compute loss together with cross-entropy

to mitigate the effects of crop class imbalance. In addition, we designed the CP

module to additionally focus on hard-to-classify pixels. Our experiment was

conducted on BeiDaHuang YouYi of Heilongjiang Province, which mainly

grows rice, corn, soybean, and other economic crops. On the dataset we

collected, through the 10-fold cross-validation experiment under the 8:1:1

dataset splitting scheme, our method achieved 93.74% overall accuracy, higher

than state-of-the-art models. Compared with the previous model, our

improved model has higher classification accuracy on the parcel boundary.

This study provides an effective end-to-end method and a new research idea

for crop typemapping. The code and the trainedmodel are available on https://

github.com/mooneed/CACPU-Net.

KEYWORDS

artificial intelligence, smart agriculture, crop type mapping, remote sensing, semantic
segmentation, attention mechanisms
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1 Introduction

Since the advent of satellite remote sensing, land cover

classification has been an essential and active topic in land-use

science and agriculture Ren et al. (2022). Typically, the land

cover classification includes cropland class but lacks fine-grained

classification of crop types Xiong et al. (2017). In agricultural

applications, crop type classification is of great importance for

crop yield prediction and agricultural disaster estimation.

Accurate crop type mapping is a necessary prerequisite for

developing many smart agricultural technologies, as well as a

technical means for agricultural policy-making and

sustainable development.

With the rapid development of Earth Observation Satellites,

the resolution of remote sensing data has been continuously

increasing, which provides an opportunity for high-resolution

and high-precision crop type mapping. Recently, more and more

research on crop type mapping has emerged. However, crop type

mapping is challenging due to crop diversity, inter-class spectral

similarity, intra-class variability, and other factors (Zhong

et al., 2014).

In the traditional methods of crop type mapping, machine

learning methods, such as random forest algorithm, have always

been the mainstream (Yang et al., 2019; Pott et al., 2021). With

the rapid development of deep learning, some deep learning

research has also begun to emerge in crop type mapping and has

demonstrated its advantages over machine learning. Using

Landsat Enhanced Vegetation Index (EVI) time series as data,

Zhong et al. (2019) replaced the traditional machine learning

method with a simple Fully-connected Neural Network (FNN)

and achieved better performance. This proves that deep learning

is superior to machine learning in crop type mapping. However,

the method they proposed still requires manual intervention.

The input data of FNN are the features that need to be extracted

through complex manual preprocessing, and it is highly

dependent on the prior knowledge of the professional field.

To overcome the limitation of manual feature extraction and

due to deep learning has shown significant advantages over other

methods in feature extraction in various fields, the other part of

the studies on crop type mapping based on deep learning

automatically extracts features from remote sensing images by

end-to-end Convolutional Neural Networks. Influenced by the

habit of data selection in traditional crop type mapping methods

(Cai et al., 2018), these studies still use time series data to

generate datasets, although sometimes this is unnecessary. This

way of data selection makes researchers mainly focus on the

temporal features of time series data and have designed a series

of time series models. Rustowicz et al. (2019) used 2D U-Net

+CLSTM and 3D U-Net to map crop types for smallholder

farms in Africa, but it mainly improves the performance of the

model by integrating other data sources and pays insufficient

attention to the classification accuracy of land parcel boundaries.
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Garnot et al. (2022) proposed U-TAE, which combines 3D U-

Net with a time attention module called TAE to enhance the

ability to extract temporal features. The research of Garnot and

Landrieu (2021) showed that deep learning models designed for

time-series data perform poorly on single-temporal satellite

image data in their ablation experiments. However, the

difficulty of making a multi-temporal dataset is much higher

than that of a single-temporal dataset, which undoubtedly

hinders the implementation of agricultural applications. Deep

learning has a good extraction effect for spectral features and

spatial features and has achieved favorable results in pixel-level

classification without using temporal features. We note the

success of deep learning on 2D semantic segmentation

targeting large public datasets of typical color images, land

cover datasets, and medical images. In the general computer

vision community, we associate the crop type mapping of single-

source single-temporal remote sensing data with 2D semantic

segmentation to improve our task based on its research results.

Some of the earliest works applying deep learning to

semantic segmentation started with the Fully Convolutional

Network (FCN) proposed by Shelhamer et al. (2017), which

used convolutional neural networks as the basic architecture to

perform supervised classification of pixels in raster images, and

achieved remarkable results. Ronneberger et al. (2015) presented

a U-Net, designed for medical image segmentation, and it is the

first semantic segmentation network trained on a small dataset.

Badrinarayanan et al. (2017) proposed SegNet, which was the

first to propose the idea of encoding and decoding, and its

encoder-decoder structure has been used in semantic

segmentation until now. Chen et al. (2018) proposed DeepLab

series of network models, used atrous convolution and

introduced atrous pooling, used ResNet He et al. (2016) as the

backbone, and used Xception Everingham et al. (2014) for the

segmentation task, which achieved the state-of-the-art

performance on the publicly available dataset VOC2012

Everingham et al. (2014) at that time.

Following the convolutional neural network, the attention

mechanism has gained extensive attention. The attention

mechanism can combine with the convolutional neural network

well. The mainstream attention mechanisms include channel

attention, spatial attention, temporal attention, and branching

attention, all with great success. In medical image segmentation,

the attention mechanism often combines with the model to handle

class imbalance. Guo et al. (2021) proposed SA-UNet on Real

Vessel Segmentation, which added a spatial attention module

between the encoder and decoder, effectively improving the

model’s ability to classify blood vessels and backgrounds. Yeung

et al. (2021) proposed Focus U-Net and designed an attention

module called Focus Gate, which can encourage learning of salient

regions and suppress learning of irrelevant background regions. In

land cover, Li et al. (2022) proposed a MAResU-Net that

introduced a multi-stage CAM attention module and achieved
frontiersin.org

https://doi.org/10.3389/fpls.2022.1030595
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bian et al. 10.3389/fpls.2022.1030595
state-of-the-art performance on the VAIHINGEN dataset ISPRS

(2018). Inspired by the above studies, we tried a variety of different

attention mechanisms in our method to find a more suitable

attention module for crop type mapping to improve the model

performance. In recent times, a type of special spatial attention

called transformer self-attention has appeared in the researchers’

view. Almost all the current state-of-the-art semantic segmentation

networks use this transformer structure. However, it is frustrating

that the transformer does not get good results in training with a

small dataset (Dosovitskiy et al., 2021), making it difficult to adapt

to crop type mapping.

Our study selected Sentinel-2 satellite imagery as the data

source. Sentinel-2 satellites are polar-orbiting multi-spectral

high-resolution imaging satellites used for land monitoring to

provide imagery such as vegetation, soil and water cover, inland

waterways, and coastal areas. The satellites are divided into

Sentinel-2A and Sentinel-2B, respectively, launched on June

23, 2015, and March 7, 2017. Sentinel-1 and Sentinel-2

satellites offer near-real-time images with high spatial (10–60

m) and temporal (1–5 days) resolution (Pott et al., 2021). The

study of Ren et al. (2022) demonstrates the advantages of

Sentinel-2 satellite in crop type mapping. Single-source single-

temporal Sentinel-2 satellite crop type mapping dataset has low

difficulty to produce, good effect, no manual intervention, and

better meets the needs of agricultural automated monitoring.

In this paper, we designed CACPU-Net, which is a two-way

end-to-end crop type mapping network with an encoder-

decoder structure based on point features and spectral

features. On the single-source single-temporal Sentinel-2

satellite imagery dataset, it is significantly better than other

deep learning methods, reaching 93.74% overall accuracy. This

proves that the network we designed can meet the application

requirements, and also shows that deep learning has great

potential for future applications of crop type mapping. The

main contributions of this paper are as follows:
Fron
• We fully apply the mainstream 2D semantic

segmentation models to multi-crop type mapping and

improved the U-Net, which has the best performance,

into a two-way network, further improving the

performance of the model in crop type mapping,

especially in the boundary of the parcel. And we

produce a single-Source and single-temporal Autumn

Sentinel-2 satellite crop type mapping dataset.

• We evaluated our scheme and defined CACPU-Net, a

new state-of-the-art method to crop type mapping.

• We verified whether many proposed modules, such as

mainstream attention modules, different loss functions,

and so on, are effective in crop type mapping.

• We show that single-temporal remote sensing images of

the harvest period can be effectively applied to crop type

mapping.
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2 Materials and methods

2.1 Data collection

All data used in our experiments were collected at the

BeiDaHuang YouYi in Heilongjiang Province, China, with

geographic coordinates ranging from 46°28 ‘15 “to 46°58’ 39”

N and 137°27 ‘50 “to 132°15’ 38” E.

The data source is the 10m high-resolution remote sensing

image of the Sentinel-2 satellite, and the collection date is August

17, 2021. The label data is collected by the local insurance

company. In the experiments, we used four bands of red, green,

blue, and near-infrared light from satellite images. The size of the

original remote sensing image is 5505×4280, as shown in Figure 1.
2.2 Dataset

Some uninsured farmland has no labels of crop type in the

corresponding pixels of the image. So we manually added the

rectangular mask on some image areas for the original image to

reduce the impact of the areas lacking labels on model

performance. The masked image is shown in Figure 1B. To

better identify the main crops, we removed the peanut and wheat

categories that could not be recognized by the model due to the

small number of pixels and retained the rice, Maize, soybean,

and non-farmland categories. We cut the original image into

256×256 size image patches in the sliding windowmanner with a

stride of 256 to avoid cross-contamination between training,

validation, and testing datasets. For the cropped patches, we

discard the patches in which the proportion of masked pixels is

higher than 15%. Some examples of the image patches produced

by the above processing are shown in Figure 2.

Our final dataset has 143 training image patches, 17 validation

image patches, and 17 testing image patches. The split ratio of the

dataset is approximately 8:1:1. All our experiments are performed

with 10-fold cross-validation. And in each experiment, the dataset

is randomly assigned according to the above split ratio. The

specific number of pixels is shown in Table 1.
2.3 CACPU-Net

CACPU-Net follows the encoder-decoder structure

(Figure 3), a design idea obtained from semantic segmentation

networks. The input image is encoded using the 5-layer encoder

of U-Net (Ronneberger et al., 2015) combined with the Efficient

Channel Attention (ECA) module (Wang et al., 2020). To

improve the activation degree of pixels, we use the PReLU

(He et al., 2015) activation function in the encoder to replace

the original ReLU activation function. The decoder part of the

network has two branches, the master branch is a 4-level
frontiersin.org
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cascaded bilinear interpolation upsampling module. The second

branch, which is named Constrain of Point (CP) Module,

extracts one-dimensional point features from the second-layer

encoder, and inputs them into a separate MLP module to obtain

the final result.
2.3.1 Baseline network encoder
This module is mainly composed of a five-layer structure.

The first layer is a double-layer convolution module that

converts the 4-band original image into a 64-channel feature

map and keeps the image size unchanged. Each subsequent layer
Frontiers in Plant Science 04
is a down-sampling module, which reduces the resolution of the

input image to 1/2 and expands the channel to 2 times the

original. The double-layer convolution module consists of two

3×3 convolutional layers, activation functions, and BN layers

connected. The downsampling module consists of a max-

pooling layer in series with the double-layer convolution

module. The encoder formula is as follows:

Xi
en = ½sign BN C(Xi)

� �� ��2, i = 1,…, 5, (1)

where Xi/ Xi
enis the input/output of the ith encoder, C(·) stands

for the convolution operation, BN(·) for the Batch
FIGURE 2

The upper part is the image patches, and the lower part is the corresponding ground truth.
B CA

FIGURE 1

(A) is the original full-frame image, (B) is the pre-processed full-frame image, and (C) is the annotated pre-processed full-frame image.
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Normalization operation, sign(·) for the activation function, and

[·]2 represents the above calculation of the double layer structure.

The formula we use for the activation function PReLU is shown

below:

sign(x) =
x, x > 0

ax, x ≤ 0

(
(2)
2.3.2 Baseline network decoder
The baseline network decoder is nearly symmetrical in

structure with the encoder and is 4 up-sampling modules. The

upsampling module is a bilinear upsampling layer concatenated

with the double-layer convolutional module. The input of each

level of the upsampling module is the feature map of the current

resolution and the feature map of the previous level of

resolution. After sampling the current resolution feature map

to increase the resolution, the feature map of the previous

resolution is fused with the feature map of the previous level

through the concatenate operation, and then the number of

channels is reduced to 1/4 through the double-layer convolution

module. The final feature map is 64 channels, and the final pixel-

level classification results are obtained through a 1×1

convolutional layer.
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2.3.3 ECA module
The Attention module of our network uses the ECA module

(as shown in Figure 4). ECA is a type of channel attention.

Channel attention enables the model to select the channel of

interest by adding a learnable weight to each channel of the

feature maps. This can improve the impact of key features on the

prediction results, suppress the impact of irrelevant features or

noise, and thus improve the accuracy of crop type identification.

ECA’s formula is as follows:

w i = s (C1D3(x
0i)),w i ∈ W4 (3)

where the W4 represents the attention modules corresponding to

four different resolutions, x′ is the featuremap after global average

pooling, w is the weight of all channels, s is the Sigmoid function,

C1D is the 1-dimensional convolution kernel, and its subscript 3 is

the kernel size of the convolution kernel.

Finally, w and the original feature map x generate the final

attention map A by dot operation. The formula is as follows:

Ai = w i • xi,Ai ∈ W4 (4)

At the same time, we use multi-stage attention. The feature

maps at the first four levels of resolution all use attention

modules, and the number of channels in the original feature
FIGURE 3

CACPU-Net. The yellow part is the network encoder, and the gray part is the network decoder. The upper part is the CP Module structure, and
the lower part is the Baseline Network structure.
TABLE 1 Dataset statistics.

Type Rice Maize Soybean Other Total

Pixel Num 4,685,724 2,833,795 925,493 15,116,388 23,561,400
fron
Rice, Maize, and Soybean are the main crop type in the dataset we produced. The parcels of other crop types or the parcels without insurance are labeled in the Other type. In addition, the
Other type also includes all non-farmland parcels, including towns, waters, wastelands, roads, etc.
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map is not changed. The detailed embedding of attention

modules in the network structure can be seen in Figure 3.

2.3.4 CP module
The design inspiration for the CP module comes from

PointRend (Kirillov et al., 2020). In our model, the CP module

is the decoder module of the second branch. Its input is the

feature array of the difficult-to-classify point in the image, and its

output is the crop type corresponding to that point. The CP

module has a separate loss function and a different network

structure from the master branch of the model, so it can

independently predict the types of selected points that are

difficult to classify and improve the prediction accuracy of the

whole model.

First, the CP module calculates the classification difficulty of

each pixel of the master branch prediction result and selects the

top k points that are the most difficult to classify. This

calculation is obtained by the difference in the scores of each

point type. And in our model, the k value is selected as 8096, and

this number accounts for about 12% of the pixels of each image

patch. This choice is because if the k value is too small, it will not

affect the prediction results of the model, and if the k value is too

large, it will excessively interfere with the prediction results of

the master branch. Secondly, it extracts the features of points

that are difficult to classify in the medium-resolution feature

map. To correspond to the position of the point on the image

patch, the feature map is upsampled to the same size as the

image patch. Finally, it takes the features of the difficult-to-

classify points and the prediction results of the corresponding

points of the master branches as the input of the MLP module

obtains the final prediction results of the difficult-to-classify

points through training and covers the results of the points

corresponding to the master branches.
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2.4 Network training

During training, the masked pixels are ignored. This is

because there should be no masked regions during inference

in practical applications. Since we used 4-band data for network

training, all of the models were not pre-trained. During the

training process, we use Adam optimizer, and the learning rate is

0.0003. A total of 150 epochs of training are performed, and the

batch size is 16. Training is performed on Tesla v100 GPU, and

the training is interrupted in advance if the model performance

does not improve within 20 epochs.

2.4.1 Loss function
The design inspiration for our loss function comes from the

research of medical image segmentation loss function. Ma et al.

(2021) has evaluated more than 20 different loss functions. From

its experimental results, it can be seen that cross-entropy, Dice,

and its variants can achieve stable and good performance. Yeung

et al. (2022) proposed Unified Focal loss, a Dice and cross

entropy-based loss, which achieves the most advanced

performance in five different medical image segmentation

public datasets. In medical image segmentation, the loss

function is mainly designed to solve the class imbalance

problem between foreground (polyps, blood vessels, or other

objects) and background regions. It is usually a pixel-level

secondary classification, while in crop type mapping, it is a

multi-crop classification, which brings some challenges.

During training, the two decoder branches of the network are

trained with separate loss functions. The loss function used by the

master branch is composed of Dice (Milletari et al., 2016) and

cross-entropy with different weights. The formula is as follows:

L = aLc + bLd , (5)
FIGURE 4

The ECA module takes the C×H×W feature map as input, compresses features through global average pooling (GAP), and uses 1×1×C 1-
dimensional convolution with kernel size of 3 to obtain the channels’ attention weight. Finally, the attention map is obtained by Dot between
the attention weight obtained and the original input of the module. s is Sigmoid function.
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where Lc is the cross-entropy loss function and its weight

parameter is a, and Ld is the Dice loss function and its weight

parameter is b.

Lc =o
C

i=1
o
X

j=1
yij log  xij, (6)

Ld = 1 −o
C
i=1oX

j=1xij ∩ yij

oC
i=1X

, (7)

where C is the number of channels of the feature map, X is the

number of pixels in each channel of the feature map, xij is the

predicted value of pixel j of channel i, and yij is the true value of

pixel j of channel i.

Among them, the introduction of the Dice is mainly to

handle class imbalance. The effect of the Dice has been verified in

medical image semantic segmentation. The detailed weight ratio

of the master branch loss function is shown in Table 2. Different

from the master branch, the CP module only uses cross-entropy

as the loss function.
3 Results

3.1 Contrast experiments

In all experiments in this paper, three evaluation indicators

are used, namely, Overall accuracy (OA), Average accuracy

(AA), and mIoU. Among them, OA is the main evaluation

indicator of our task, AA is mainly used to observe the average

accuracy of various categories, and mIoU can better evaluate the

misclassification of the model. Our study uses U-Net

Ronneberger et al. (2015), Deeplab v3+ Chen et al. (2018),

HR-Net, HR-Net (+OCR) Wang et al. (2021), and MAResU-

Net Li et al. (2022) to conduct contrast experiments with our

method. Detailed experimental results are shown in Table 3. It is
Frontiers in Plant Science 07
worth noting that all models in the experiment are without pre-

trained, the main factor is that the 4-band data for

this task is different from the 3-band RGB data of ImageNet,

a general dataset for model pre-training. As can be seen from

Table 3, our method has state-of-the-art performance. This

performance is even more pronounced on mIoU, which is a

2.48% improvement over the second model. For each competing

method of the contrast experiment, we made a non-parametric

Wilcoxon’s test between it and our method to ensure that our

method is superior to the other competing methods.

The intuitive performance benefits of our method can be

seen in Figure 5. It can be seen that all the other methods can

complete crop type mapping to different degrees, except that

Deeplab v3+ is unable to classify crops well. Compared with the

inability of MAResU-Net, HR-Net, and HR-Net(+OCR) to

classify long and narrow parcels, our method can be more

accurate in this case. In addition, our method is more refined

in the classification of the junction between farmland and non-

farmland. Compared with U-Net, on the one hand, our method

effectively reduces the misjudgment rate for the classification of

long and narrow parcels. We can see that in the part circled by

the red box, U-Net makes a misclassification of the entire parcel

in the long and narrow parcel. On the other hand, our method

performs better in the classification of irregular gaps at the edge

of the parcels, which are also circled by the red box.
3.2 Ablation experiments

To analyze the influence of each module in the experiment

on the final performance of the model, we performed ablation

experiments on each module, as shown in Table 4.

In the upper half of Table 4, we mainly verified the impact of

each module on the baseline. First, PReLU can better activate the

nodes in our baseline network, with 0.49% and 0.79%

improvement in OA and mIoU compared with ReLU.
TABLE 2 Loss function experiments.

Loss Ratio OA (%) AA (%) mIoU (%)

CE Dice

1 – 92.43 90.34 83.51

– 1 93.38 91.67 85.52

1 1 93.25 91.82 85.36

1 2 93.34 90.85 84.52

1 5 93.35 90.92 84.77

1 10 93.38 91.01 84.79

2 1 93.27 91.24 84.98

5 1 93.15 90.98 84.66

10 1 93.21 91.21 84.65
fro
The weights of the different loss functions are integers, not percentages. Bold font indicates the highest performance.
ntiersin.org
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Secondly, both the dice loss function and the ECA module can

improve the baseline network in all aspects. Dice loss function

instead of cross entropy makes the baseline network achieve

0.95%, 1.33%, and 2.01% improvement in the three evaluation

indexes. This is mainly because the calculation principle of the

Dice loss function has a strong correlation with mIoU, which

enables it to play the role of class balance. ECA makes the

baseline network pay better attention to the key features through

the channel attention mechanism, thus achieving 0.88%, 0.74%,

and 1.37% improvement in the three evaluation indicators.

Finally, the CP module enables the baseline network to

achieve 0.72% and 1.18% improvement in OA and mIoU. This

is mainly due to the additional performance improvement

brought about by reclassification at difficult classification points.

In the lower part of Table 4, we mainly verified the role of

different arrangements and combinations of modules in our

method. First, the combination of the ECA module and Dice

played the most important role in our method. It achieved 1.27%

and2.01% improvement in OA and mIoU, respectively.

Secondly, based on the ECA module and Dice, the addition of

PReLU caused a decrease of 0.18% in OA and an increase of

0.23% in mIoU and obtained the highest AA. Thirdly, we placed

the CP module that inputs the second-level resolution feature

map before and after the ECA module to observe the change in

its performance. Compared with the CP module not added, the

CP module placed in front of the ECA module failed to achieve
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satisfactory results, while the CP module placed after the ECA

module made our network achieve 0.22% and 0.24%

improvement in OA and mIoU. It is worth mentioning that if

too many feature maps with different levels of resolution are

input into the CP module, the performance of the CP module

will decline. We also noticed that although PReLU caused a

slight decrease in OA when combined with the ECA module and

Dice, the addition of PReLU was still improved after the CP

module was added or only the baseline network was used.

The correct classification of the tiny parts of the image will

not cause huge numerical changes in the evaluation indicators.

Therefore, we analyze the specific impact of different modules in

the model through visualization, and the visualization results are

shown in Figure 6. First of all, through the visualization of the

prediction results of each module, we can see that the Dice loss

function has a good classification accuracy for the boundaries of

some parcels, and can more accurately identify irregular shapes

and gaps. The ECA module has a significant impact on the

correctness of the classification of land parcel categories. It can

be seen that the problem of the appearance of other types of

prediction results in the same type of parcels has been

suppressed. The CP module improves the details in many

areas, mainly because its principle is aimed at points that are

difficult to classify. It can be seen from the blue box on the far

right of the visualization diagram of the CP module that it is the

only model to improve the prediction accuracy of the wide
TABLE 4 Ablation experiments.

Ablation Modules OA(%) AA(%) mIoU(%)

Baseline 92.43 90.34 83.51

Baseline+PReLU 92.92 90.87 84.30

Baseline+Dice 93.38 91.67 85.52

Baseline+ECA 93.31 91.08 84.88

Baseline+CP Module 93.15 91.23 84.69

Baseline+Dice+ECA 93.70 91.70 85.52

Baseline+Dice+PReLU+ECA 93.52 91.91 85.75

Baseline+Dice+ECA+CP Module(afterECA) 93.72 91.82 85.80

Baseline+Dice+PReLU+ECA+CP Module(beforeECA) 93.37 91.09 84.79

Baseline+Dice+PReLU+ECA+CP Module(afterECA) 93.74 91.75 85.99
fro
We tried different modules and different insertion sequences, and the main experimental results are as follows. Bold font indicates the highest performance.
TABLE 3 Contrast experiments with various mainstream state-of-the-art semantic segmentation models.

Method OA (%) AA (%) mIoU (%)

DeepLab v3+ 79.29 73.50 60.87

HRNet+OCR 86.82 81.47 71.11

HRNet 87.80 82.42 72.62

MAResU-Net 89.55 86.34 77.18

U-Net 92.43 90.34 83.51

Ours 93.74 91.75 85.99
Bold font indicates the highest performance. The p-values for paired non-parametric Wilcoxon’s testing for our method versus each competing method are less than 0.05.
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FIGURE 6

Visualization of the predicted results of ablation experiments. This part mainly analyzes the specific impact of adding and deleting different
modules on the performance of the model. The second line of the image shows the common influence of different modules on the prediction
results, and the third line shows the specific influence of each module on the prediction results. Among them, the red box shows the areas
where our method is superior to other methods, and the blue box shows the areas where each module improves the baseline network.
FIGURE 5

Visual prediction comparison of different methods.
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parcel spacing area in the image. Compared with other models in

the ablation experiment, our model has advantages in the

accuracy of parcel boundary and classification of crop

categories. The PReLU activation function is mainly a global

promotion, so there are no specific areas circled with the blue

box. In addition, in the visualization of the common influence of

different modules, it can be seen that the performance is better

than that of a single module.

For detailed experiments on the attention module and loss

function used in the ablation experiments, see the next

two subsections.
3.3 Loss function experiments

In the design of the loss function, we introduce the Dice into the

loss functionof themasterbranchof themodel toalleviate the impact

of class imbalance. Wemixed Dice and cross-entropy with different

weight ratios in our experiments tofind the best combination for our

dataset. The specific experiments are shown in Table 2 .

The final experimental results show that using only Dice has

the most obvious improvement in model performance. Due to

the calculation principle of Dice, the improvement of the mIoU

is higher than the improvement of the accuracy. Second, using a

loss function that mixes cross-entropy and Dice at a ratio of 1:10

achieves the same improvement in OA, but decreases in mIoU.
3.4 Attention experiments

In the selection of attention modules, we consider channel

attention, spatial attention, and channel & spatial attention. And

we use SE Hu et al. (2020) and ECA two types of channel

attention modules, CCA Huang et al. (2019) A Non-local self-

attention module, as well as two types of channel & spatial

attention modules, CBAM Woo et al. (2018) and Coordinate

Attention (CA) Hou et al. (2021). Finally, we chose the best-

performing ECA on our dataset as the attention used in our

model. The specific experimental results are shown in Table 5.

It can be seen from the table that the ECA module has

advantages over other attention modules for the baseline
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network. As channel attention, the ECA module performs

much better than the SE module in our tasks. This is mainly

because the ECA module avoids the reduction of feature

dimension through the local cross-channel strategy. In

addition, in the contrast experiments of the paper in which the

ECA module is proposed, the promotion of the ECA module in

the shallow network is significantly better than that in the

deep network.
4 Discussion

Deep learning methods have shown significant advantages

over traditional methods in various fields, such as semantic

segmentation. However, deep learning is developing rapidly. It is

a challenge to apply state-of-the-art technology to the

subdivision field, especially to make certain adjustments to

better solve the technical bottleneck in the subdivision field.

An early study of deep learning applied to crop type mapping

appeared in Zhong et al. (2019), which only used a simple fully-

connected neural network structure. In our background

investigation, there are a few studies were found that link crop

type mapping to 2D semantic segmentation. In crop type

mapping, the application of deep learning still has great

research space and potential.

Most semantic segmentation networks are designed on

standard computer vision benchmark datasets, typically large

public datasets of typical color images. Typical color images are

3-band RGB images, while remote sensing images usually have

more than three bands. In our experiments, we tried DeepLab v3

+, and we adopted two schemes respectively. One is using RGB

3-band data for model training with pre-training. Another is

using 4-band data for model training without pre-training. In

contrast, the former scheme can achieve better performance.

However, it has been verified in other models that do not require

pre-training, and the addition of near-infrared light bands can

significantly improve the performance of the model. Therefore,

the DeepLab v3+ loses too many latent features due to this

limitation. In our actual experiments, we also found that the

backbone of DeepLab v3+ used, ResNet, is also very

incompatible with the crop type mapping dataset, mainly
TABLE 5 Insert different state-of-the-art attention modules into the backbone network for experiments.

Attention Module OA(%) AA(%) mIoU(%)

Baseline Only 92.43 90.34 83.51

CBAM 92.79 90.71 84.24

SE 93.09 90.75 84.12

CA 93.11 90.75 84.21

CCA 93.27 90.67 84.27

ECA 93.31 91.08 84.88
fro
Bold font indicates the highest performance.
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because small datasets do not require too deep convolution

layers to extract features.

In our work, we separately verify the effects of different

architectures of CNNs on crop type mapping, and actively

explore whether semantic segmentation modules, which have

been proven effective in different domains, also have good

performance in our network. In this paper, we identify the

significant advantages of shallow convolutional neural

networks on a small dataset to accomplish crop type mapping.

CACPU-Net is influenced by many other network structures in

the design process. For the combination of the attention module

and CNN architecture, we refer to the multi-stage attention

structure of MAResU-Net Li et al. (2022). Although MAResU-

Net has not worked well in our dataset, we think this is more

from the influence of the depth of the network. The design of the

attention module is still worth learning. Among many attention

modules, we finally chose ECA after experiments. We believe

that the advantages of ECA in crop type mapping are mainly

because the spectral features of agricultural remote sensing

ima g e s c a n b e w e l l c a p t u r e d b y t h i s c h a nn e l

attention mechanism.

Our experiments show that CACPU-Net is more sensitive to

the classification of parcel boundaries, which is also the

advantage of using single temporal remote sensing images for

crop type mapping. In addition, our dataset is relatively easy to

produce, which can avoid errors caused by various operations

such as image registration in the production of a multi-temporal

dataset. Our research also has some defects. The main

disadvantage is that our method is not compared with the

multi-temporal method on the same dataset, which is mainly

due to the large difference in the crop growth cycle between the

public crop type mapping dataset and our dataset. Our next

work plan is to expand our dataset, make a multi-temporal crop

type mapping dataset for our experimental selection region, and

complete the comparison with the multi-temporal crop type

mapping method on this basis(In addition to the multi-temporal

crop type mapping that has been proposed, considering that

there are many well-performing 3D networks in medical image

segmentation, such as nnU-Net Isensee et al. (2020) that

outperforms in multiple different medical image segmentation

datasets, we will try to implement in multi-temporal crop type

mapping). In addition, inspired by Rundo et al. (2022), we plan

to introduce a nested cross-validation scheme in future work to

mitigate the negative impact of the lack of an independent

external test dataset. Nested cross-validation is a model

selection scheme, which can inhibit the overfitting of models.

It applies to small datasets and is very suitable for our dataset.

There are also some improvement schemes for nested cross-

validation that we will consider together. Parvandeh et al. (2020)

proposes consensus nested cross-validation, which can reduce

the calculation cost of nested cross-validation. After the
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comparison with the multi-temporal crop type mapping

method, our method can be widely used in all regions where

crops are harvested in one season.

In general, our designed CACPU-Net can well meet the

requirements of crop type mapping and achieve state-of-the-art

performance on the dataset we made. The effect between

different modules in CACPU-Net has improved the model to a

certain extent. We have shown that the relationship between

single-temporal remote sensing image features and crop

refinement types is learnable.
5 Conclusion

A new convolutional neural network architecture with an

attention mechanism (CACPU-Net) for crop type mapping is

expected to become a general method for crop type mapping.

Compared with the method for time series data, the method

proposed in this paper has a lower amount of data and the

difficulty of data collection and production in crop typemapping,

which effectively reduces the number ofmodel parameters. At the

same time, our method achieves higher accuracy than other

semantic segmentation methods. Our method improved the

classification accuracy of parcel boundaries, which is mainly

due to the Dice loss and CP module. The ECA module

improved the sensitivity of the model to the crop type. Under

the 10-fold cross-validation experiment, our model finally

achieved 93.74% accuracy and 85.99% mIoU.

In future work, considering the difference in crop growth

cycles in different climates, we plan to expand our dataset to a

time series dataset and design the corresponding multi-temporal

crop type mapping model. This allows us to assess the differences

in the specific impact of time series data and single temporal data

on crop type mapping and can be directly compared with other

methods on public datasets, such as PASTIS Garnot and

Landrieu (2021). In addition, we will pay more attention to

the classification accuracy of parcel boundaries. Early crop type

mapping research paid little attention to the parcel boundary

Rußwurm and Körner (2018); Rustowicz et al. (2019). Garnot

and Landrieu (2021) realized object-level parcel segmentation

and improved the classification accuracy of the parcel boundary

by introducing new labels and designing PaPs modules. We

believe that introducing additional labels to limit the

classification of the model on the parcel boundary (crop and

non-crop parcels or parcel boundary labels, both of which can be

generated through the original labels) can effectively improve the

performance of the model, which is also the direction of our next

work. We will also continue to design the loss function of the

model through the research on the loss function in medical

image segmentation (Ma et al., 2021; Yeung et al., 2022) to

mitigate the impact of the imbalance problem of the dataset.
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