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oil concentration of
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In the Atractylodes lancea (A. lancea)-maize intercropping system, maize can

promote the growth of A. lancea, but it is unclear whether this constitutes an

aboveground or belowground process. In this study, we investigated the

mechanisms of the root system interaction between A. lancea and maize

using three different barrier conditions: no barrier (AI), nylon barrier (AN), and

plastic barrier (AP) systems. The biomass, volatile oil concentration,

physicochemical properties of the soil, and rhizosphere microorganisms of

the A. lancea plant were determined. The results showed that (1) the A. lancea -

maize intercropping system could promote the growth of A. lancea and its

accumulation of volatile oils; (2) a comparison of the CK, AI, and AP treatments

revealed that it was the above-ground effect of maize specifically that

promoted the accumulation of both atractylon and atractylodin within the

volatile oils of A. lancea, but inhibited the accumulation of hinesol and b-
eudesmol; (3) in comparing the soil physicochemical properties of each

treatment group, intercropping maize acidified the root soil of A. lancea,

changed its root soil physicochemical properties, and increased the

abundance of the acidic rhizosphere microbes of A. lancea at the phylum

level; (4) in an analysis of rhizospheremicrobial communities of A. lancea under

different barrier systems, intercropping was found to promote plant growth-

promoting rhizobacteria (PGPR) enrichment, including Streptomyces,

Bradyrhizobium, Candidatus Solibacter, Gemmatirosa, and Pseudolabrys, and

the biomass of A. lancea was significantly influenced by PGPR. In summary, we
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found that the rhizosphere soil of A. lancea was acidified in intercropping with

maize, causing the accumulation of PGPR, which was beneficial to the growth

of A. lancea.
KEYWORDS

Atractylodes lancea (Thunb.) DC., intercropping, root barrier, volatile oil, rhizosphere,
soil physicochemical properties, PGPR, maize
Introduction

Attractylodes lancea (A. lancea) (Chinese: Cangzhu) is used

in traditional Chinese medicine (TCM) and has become valued

in recent years for its high medicinal and economic value. The

rhizome of this plant has been used in clinics to treat rheumatic

diseases, digestive problems, night blindness, and influenza

(Wang et al., 2008; Nie et al., 2018). A. lancea is a perennial

plant that is typically cultivated in long-term continuous

monocultures. This practice, however, makes the plant prone

to soil-borne diseases and continuous crop obstacles, which

negatively affect the yield and quality of A. lancea (Wang

et al., 2016; Chen et al., 2021). Many other medicinal materials

and crops suffer from this same issue (Wang, 2020; Gu et al.,

2021; Ding et al., 2022). The monoculture cultivation problem

has become one of the main challenges hindering sustainable

medicinal herb production.

By increasing plant diversity, intercropping serves as an

important strategy for restoring the microecological balance of

the soil and achieving sustainable agricultural development (Li,

2016). In previous studies, diverse intercropping patterns were

found to improve the soil’s micro-ecological environment and

increase plant productivity (Raseduzzaman, 2016). Researchers

have recently revealed that belowground interactions contribute

to plant productivity more than aboveground interactions do,

and such interactions involve both the microbial community

and physicochemical properties of the soil (Fusuo and Long,

2003; Walker et al., 2009; Bai et al., 2022b). The root microbiota,

regarded as the second genome of the plant, promotes the

growth, development, and quality of Chinese herbal medicines

by influencing their absorption of nutrients and resistance

against both biotic and abiotic stresses (Vandenkoornhuyse

et al., 2015; Martin et al., 2017; Bai et al., 2022a). Research has

shown diversified cropping systems to result in higher soil

microbial abundance and diversity, as such systems act by

altering the dominant soil microbial taxa and communities (Li

et al., 2020; Tian et al., 2020; Lin et al., 2022).

Numerous studies have shown that maize can act as a fitting

intercropping partner for many medicinal plants and crops
02
(Li, 2020; Liu et al., 2021; Tripathi et al., 2021). Maize

promotes the sustainable productivity of intercropped plants

by increasing beneficial soil microorganisms, changing the

microbial structure, increasing the microbial abundance,

suppressing the occurrence of diseases, and promoting

nitrogen uptake (Fan et al., 2019; Chang et al., 2020; Huang

et al., 2022). In a previous study, maize was selected among

various crops for its superior yield and quality advantage

conferred to A. lancea, thereby revealing itself as a well-

matched intercropping crop. However, the mechanism of the

intercropping advantage brought by maize to A. lancea has not

yet been elucidated.

In this study, by testing the three respective conditions of

using no barrier, plastic, and nylon root barriers in the A. lancea

- maize root, we examined the influence of maize on the yield

and quality of A. lancea from the perspective of the soil

rhizosphere microbiome and physicochemical properties of the

soil. This study intends to determine: (1) the effect of maize

intercropping on the rhizosphere microbiome structure and

abundance in A. lancea-cultivated soil; (2) the effect of maize

intercropping on the physicochemical properties of A. lancea-

cultivated soil; and (3) the relationship between the growth and

development, volatile oil content, soil rhizosphere microbiome

community, and soil physicochemical properties of A. lancea.
Materials and methods

Experimental site

Field experimentswere conducted in the LishuiDistrict,Nanjing

City (119°6′38″E, 31°36′2″N, altitude 40 m) in November 2019

during a north subtropical monsoon climate. The area is

characterized as having an annual average temperature of 16.0°C,

annual average relative humidity of 77%, annual average

precipitation of 1147.0 mm, annual average rainy days of 124 days,

annual average sunshine hours of 1969.0 hours, and annual average

frost-free period of 224 days. All experimental sites were newly

cultivated (Table 1), and random block experiments were used.
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Experimental design and field
management

The intercropping experiment was divided into 4 treatments

with 4 replicates each: (1) A. lancea grown separately as

monocultures (CK); (2) A. lancea - maize intercropping without a

root barrier (AI); (3) A. lancea - maize intercropping separated by a

nylon barrier (AN), which prohibited the roots from intermingling

between species while permitting the exchange of root exudates,

water, and nutrients; (4) A. lancea - maize intercropping separated

by a plastic barrier (AP) to completely eliminate the underground

effect of the intercropping system (Figure 1). Select A. lancea

seedlings with similar growth conditions, good resulting growth,

and no disease were transplanted into the field and covered with

straw in November 2019. The row spacing of A. lancea was 30 ×

20 cm. The maize was planted in April of the second year (April

2020) with a row spacing of 30×40 cm. Each planting site was

fertilized with 100 grams of compound fertilizer (N+P2O5+K2O 5%,

organic matter 45%) after the A. lancea or maize was planted. The

experiment used a randomized complete block design with four

replicates, and each experimental plot was 10 m2 (2 m × 5 m), and

as shown in Figure 1, two rows of maize were planted after three

rows of A.lancea, and the planting ratio was 3: 2.

Sample collection and measurement
of biomass

A. lancea and its accompanying rhizosphere soil was collected

in July 2020. The A. lancea plant roots were carefully removed from
Frontiers in Plant Science 03
the soil and shaken by hand to remove loosely attached soil (not

rhizosphere soil). Then, soils tightly adhering to roots were removed

by a sterile brush (rhizosphere soils). And these fresh rhizosphere

soil samples were stored in dry ice at −80°C for DNA extraction. Six

A. lancea plants were randomly selected from each experimental

plot for biomass and yield analysis, including both their above- and

belowground parts. Measurements included plant height, branch

number, sprout number, fibrous root, stem diameter, fresh weight,

and rhizome weight.
Determination of volatile oil content

The rhizome of A. lancea. were collected and dried in a 40°C

oven for one week to constant weight, then crushed it to a<0.3 mm

size. The drying of A. lancea as well as the extraction and

determination of volatile oils were conducted according to Peng

et al. (2021). The method is accurate, fast, and reproducible.
Determination of soil physicochemical
properties

To measure soil total nitrogen (TN), total phosphorus (TP),

and total kalium (TK), the soil samples were dried indoors by

airflow, cleaned by removing the fine roots, and passed through a

0.25 mm soil sieve (Wang et al., 2022). The total organic carbon

(TOC) was measured using the kalium dichromate external heating

method. The soil pHwasmeasured using the potential method. The
FIGURE 1

Different root barriers separating A. lancea - maize intercropping.
TABLE 1 Physicochemical properties of soil samples from experimental sites (n ≥ 5).

TN (mg/kg) TP (mg/kg) TK (g/kg) TOC (g/kg) NH+
4 (mg/kg) Av. P (mg/kg) Av. K (mg/kg) pH

Experimental site 850.68 308.00 11.93 7.39 25.55 5.70 84.60 5.01
frontiersin
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contents of ammonium nitrogen ( NH+
4 ), available phosphorus

(Av.P), and available kalium (Av.K) were measured using assay kits

manufactured by Sinobestbio Technology Co., Ltd., (Shanghai,

China) according to the manufacturer’s instructions.
DNA extraction, library construction, and
metagenomic sequencing

Total genomic DNA was extracted from A. lancea

rhizosphere soil samples using the E.Z.N.A.® Soil DNA Kit

(Omega Bio-tek, Norcross, GA, U.S.) according to the

manufacturer’s instructions. The concentration and purity of

the extracted DNA were determined by TBS-380 and

NanoDrop2000, respectively. The quality of the DNA extracts

was checked by conducting electrophoresis on 1% agarose gels.

DNA extracts were fragmented to an average size of ~400 bp

using Covaris M220 (Gene Company Limited, China) for

paired-end library construction. The paired-end library was

constructed using NEXTFLEX Rapid DNA-Seq (Bioo

Scientific, Austin, TX, USA). Adapters containing the full

complement of sequencing primer hybridization sites were

ligated to the blunt end of the fragments. Paired-end

sequencing was performed on the Illumina NovaSeq/Hiseq

Xten system (Illumina Inc., San Diego, CA, USA) at Majorbio

Bio-Pharm Technology Co., Ltd. (Shanghai, China) using

NovaSeq Reagent Kits/HiSeq X Reagent Kits according to the

manufacturer’s instructions (www.illumina.com) (Yang

et al., 2022).
Sequence quality control and
genome assembly

The data were analyzed on the free online platformMajorbio

Cloud Platform (www.majorbio.com). The paired-end Illumina

reads were trimmed of their adaptors, and low-quality reads

(length<50 bp or with a quality value<20 or having N bases)

were removed by fastp (Chen et al., 2018) (https://github.com/

OpenGene/fastp, version 0.20.0).
Gene prediction, taxonomy, and
functional annotation

Open reading frames (ORFs) from each assembled contig

were predicted using MetaGene (Noguchi et al., 2006) (http://

metagene.cb.k.u-tokyo.ac.jp/). The predicted ORFs with lengths

equal to or exceeding 100 bp were retrieved and translated into

amino acid sequences using the NCBI translation table, which is

available online (http://www.ncbi.nlm.nih.gov/Taxonomy/
Frontiers in Plant Science 04
taxonomyhome.html/index.cgi?chapter=tgencodes#SG1). A non-

redundant gene catalog was constructed using CD-HIT (Fu et al.,

2012) (http://www.bioinformatics.org/cd-hit/, version 4.6.1) with

90% sequence identity and 90% coverage. After quality control,

the resulting reads were mapped to the non-redundant gene

catalog with 95% identity using SOAPaligner (Li et al., 2008)

(http://soap.genomics.org.cn/, version 2.21), and the gene

abundances in each sample were evaluated. The amino acid

sequences of the non-redundant gene catalog were aligned to

the NCBI NR database with an e-value cutoff of 1e-5 using

Diamond (Buchfink et al., 2015) (http://www.diamondsearch.

org/index.php, version 0.8.35) for taxonomic annotations.
Statistical analysis

Microsoft Excel 2016 and SPSS v26.0 (SPSS Inc., Chicago,

United States) were used for statistical and correlation analyses.

The results were expressed as means ± standard deviations (S.D.).

One–way analysis of variance (ANOVA) followed by the Fisher

Protected Least Significance Difference (LSD) test was performed

to determine the main effects. The figures in the manuscript were

created with Adobe Illustrator CS6 and GraphPad Prism 8.
Results

Intercropping promoted biomass
accumulation in A. lancea

To assess the advantages of A. lancea - maize intercropping in

promoting the growth and development of A. lancea, seven

agronomic traits of A. lancea were examined (Figure 2). The

AI, AN, and AP treatments were distinguished by using three

different root barriers in A. lancea - maize intercropping, thereby

respectively representing root system interactions completely,

partially, or not at all. In comparison with the CK treatment, the

fresh weight and rhizome weight were increased by 16.5% and

25.9% under the AI treatment (Figures 2A, B), but branch

number was markedly decreased by 13.4% (Figure 2C). Other

agronomic traits saw no significant change between the AI and CK

treatments (Figures 2D–G). These results indicate that maize

intercropping promotes biomass accumulation in A. lancea.

With declining interactions in the root systems employed by

respective conditions, both the fresh weight and rhizome weight

correspondingly showed decreasing trends under both the AN and

AP treatments as compared with the AI treatment. The results of

the agronomic traits analysis showed that the root system

interactions of A. lancea - maize are involved in the formation of

the intercropping advantage and promoted the accumulation of

both the fresh weight and rhizome weight.
frontiersin.org
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Intercropping affected the proportional
relationship of four volatile oils in A.
lancea rhizomes

The proportion of the individual components comprising the

volatile oils of A. lancea is an important characteristic for

determining the quality of the plant. Rhizomes of the best quality

(termed ‘Dao-di’ (Geo-authentic)) possess a higher proportion of

both atractylon and atractylodin compared to hinesol and b-
eudesmol (Guo et al., 2002). As shown in Figures 3A, B, the

proportion of the concentrations of atractylon and atractylodin to

the total volatile oil concentration in the AI treatment was higher

than that of the CK treatment (Figure 3A). However, the total

combined amount of the four volatile oils saw no significant

differences between conditions either with or without

underground root system interactions (Figure 3B), though the

atractylodin concentration was significantly higher in the AI

treatment than the CK treatment (Figure 3C). The atractylon

concentration was slightly higher in AI treatment compared to

the CK treatment (Figure 3D). The hinesol and b-eudesmol

concentrations were no different between the AI and CK

treatments (Figures 3E, F). These results showed that the quality

ofA. lanceawas promoted by intercropping it withmaize compared

to subjecting it to the CK treatment. With an increase in the root

system interactions corresponding to the treatment order of AP<

AN< AI, the concentrations of hinesol and b-eudesmol were

observed to be improved accordingly (Figures 3E, F), while the

atractylon content declined (Figure 3D). Although lacking a similar

accumulation trend with atractylon, atractylodin was higher in the
Frontiers in Plant Science 05
AP treatment than in the AI treatment, which was consistent with

the results for atractylon (Figure 3D). In summary, A. lancea -

maize intercropping improved the quality of A. lancea, and root

system interactions favored the accumulation of hinesol and b-
eudesmol but inhibited the accumulation of atractylon.
Effect of intercropping on the
physicochemical properties of A. lancea

The physicochemical properties of soil, which are closely related

to plant growth, were examined to analyze the effect of maize

intercropping on the physicochemical properties of A. lancea. The

basic physicochemical properties of the bulk soil from the

experimental sites are represented by a dotted line in each graph.

The rhizosphere soil pH ofA. lanceawas lower than that of the bulk

soil. The A. lancea root system has the ability to acidify the

surrounding soil. There was no clear significant difference

observed in the soil pH between the AP and CK treatments

(Figure 4H). However, the soil pH of the AI and AN treatments

were significantly lower than that of the CK treatment. These results

suggest that the maize root system had enhanced rhizosphere

acidification compared to A. lancea. Similar results were obtained

for soil carbon levels regarding the nitrogen ratio (Figure 4I). As

compared with the CK treatment, the TOC, TP, TK, Av.P, and

Av.K of A. lancea soil was decreased by 9.37%, 13.75%, 11.85%,

26.87%, and 4.92% in the AI treatment (Figure 4). With the

enhancement in the root interactions of A. lancea - maize

corresponding to the order of AP< AN< AI, the contents of
B C D

E F G

A

FIGURE 2

The effect of different root intercropping treatments imposed on A.lancea-maize on the growth and development of A. lancea. (A) fresh weight,
(B) rhizome weight, (C) branch number, (D) stem diameter, (E) plant height, (F) sprout number, (G) fibrous root. Data are shown as means ± SD.
A-G: n=24. Lower-case letters represent significant differences (one-way ANOVA, P<0.05).
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B

C D

E F

A

FIGURE 3

The concentrations of four volatile oils in A. lancea rhizomes under different root intercropping treatments in A. lancea - maize. (A) the proportion
of individual components in the four volatile oils, (B) individual volatile oil component concentration, (C) atractylodin, (D) atractylon, (E) hinesol, (F)
b-eudesmol. Data are shown as means ± SD. A-D: n=6. Lower-case letters represent significant differences (one-way ANOVA, P<0.05).
Frontiers in Plant Science frontiersin.org06
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TOC, TP, and Av.K were found to be improved. The contents of

TN and NH+
4 exhibited no significant differences among all the

groups (Figures 4A, E). These preliminary results demonstrate that

TOC, TP, and Av.K of the A. lancea rhizosphere is affected by the

root system interactions under A. lancea - maize intercropping.
Intercropping effects on the rhizosphere
microbial community structure
of A. lancea

To further understand the effect of maize intercropping on the

growth and quality of A. lancea, we performed metagenomic assays

on the rhizosphere microbial community of A. lancea. PCA analysis
Frontiers in Plant Science 07
at the phylum level was performed on the microbial communities

obtained from the different treatment groups, and the rhizosphere

microbial communities of the four treatments were found to be

different due to different intercropping treatments (Figure 5A). It

can be seen from Figure 5B that the rhizosphere microbial

community composition of A. lancea did not change across

treatment groups, but its microbial abundance changed

significantly. At the phylum level, the act of intercropping A.

lancea with maize significantly changed the abundance of

microbes in the rhizosphere microbial community of A. lancea.

The top 2 phyla in order of their abundance were Actinobacteria

(relative abundance ≥ 30%) and Proteobacteria (relative abundance

≥ 20%), followed by Acidobacteria , Chloroflexi , and

Gemmatimonadetes (Figure 5B). Observing the rhizosphere flora
B C

D E F

G H I

A

FIGURE 4

The effects of different root system intercropping treatments on the soil physicochemical properties of A. lancea in A. lancea - maize
intercropping. (A) total nitrogen (TN), (B) total phosphorus (TP), (C) total kalium (TK), (D) total organic carbon (TOC), (E) ammonium nitrogen
(NH+

4 ), (F) available phosphorus (Av.P), (G) available kalium (Av.K), (H) pH, (I) C/N ratio. Data are shown as means ± SD. (A-I): n=6. Lower-case
letters represent significant differences (one-way ANOVA, P<0.05).
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ofA. lancea across the different treatments reveals that intercropping

significantly affected the abundance of Actinobacteria and

Proteobacteria, especially in the AN and AP treatment compared

to the CK treatment, as well as the AN treatment and AP treatment

compared to the AI treatment (Figures S1A–D). There was no

significant difference observed in the abundance ofActinobacteria or

Proteobacteria between the CK treatment and AI treatment (Figure

S1E). There was also no significant difference observed between the

AN and AP treatment (Figure S1F).
Effects of intercropping on the microbial
community abundance of the A. lancea
rhizosphere

At the genus level, Figure 6 shows that the relative abundance of

the A. lancea rhizosphere microbial community significantly

differed between the CK treatment and the other intercropping
Frontiers in Plant Science 08
treatments. There were 5 genera observed under the AI treatment, 5

under the AP treatment, and 5 under the AN treatment in the top

10 genera compared with the CK treatment, respectively (Figure 6).

The AI treatment significantly promoted the abundance

of Streptomyces, and unclassified_o:Acidobacteriaceae,

Candidatus_Koribacter, while having significantly inhibited

Bradyrhizobium and Nocardioides (Figure 6A). Solirubrobacter,

Conexibacter, Gaiella, Sphingomonas, and unclassified_o:

Solirubrobacterales were significantly inhibited under the AN

treatment compared with the CK treatment (Figure 6B).

Comparison between the AP and CK treatment (Figure 6C)

showed that Streptomyces and Gemmatimonas were significantly

promoted, while Solirubrobacter, Conexibacter and Gaiella were

significantly inhibited. Bradyrhizobium were found to be

significantly promoted in the AN treatment compared with the

AI treatment, as well as in the AP treatment compared with the AI

treatment, while Solirubrobacter, Conexibacter, Sphingomonas, and

Candidatus_koribacter were inhibited (Figure S2).
B

A

FIGURE 5

PCA analysis of the microbial community structure (A) and the microbial community composition (B) at the phylum level.
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B

C

A

FIGURE 6

Abundance comparison of the top 10 genera comprising the rhizosphere microbial community in A. lancea between the CK treatment and
other different root intercropping treatments in A. lancea - maize intercropping. Comparison of microbial abundance at the genus level
between the (A) CK and AI treatment, (B) CK and AN treatment, (C) CK and AP treatment. (*P<0.05; **P<0.01; ***P<0.001).
Frontiers in Plant Science frontiersin.org09
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Correlation analysis among
the rhizosphere microorganisms,
physicochemical properties of the
soil, volatile oil content, and biomass
of A. lancea

In order to explore the relationship between the microbial

community and the growth of A. lancea, its volatile oil content,

and soil physicochemical properties (Figure 7), Spearman

correlation analysis was performed. Results show that the soil

TP, TOC, Av.P, and Av.K were closely related to the

microorganisms comprising the A. lancea rhizosphere. The pH

was negatively correlated with microbial abundance at the genus

level, while the TN, TP, TK, TOC, Av.P, and Av.K were

positively correlated with most microbial abundance

(Figure 7A). Likewise, microbes were found to be strongly

associated with the growth and development of A. lancea

especially in relation to its roots (Figure 7B) while only few
Frontiers in Plant Science 10
microorganisms are related with atractylon and atractylodin of

four volatile oils of A. lancea. (Figure 7C). The physicochemical

properties of the soil were determined to be weakly correlated

with the growth and quality of A. lancea rhizoma (Table S1), but

showed a strong correlation with the resident microorganisms,

especially for the soil concentration changes of the total

phosphorus, organic carbon, available phosphorus, and

available kalium (Figure 7A).

Discussion

Increased yield and volatile oil
concentration of A. lancea by maize
intercropping without root barriers

Much research has shown that improving biodiversity can

increase the productivity of entire plant systems (Brooker et al.,

2015; Wang et al., 2018; Cong, 2020). There are two predominant
B C

A

FIGURE 7

Spearman correlation analysis of the top 30 represented microbes at the genus level against the (A) soil physicochemical properties, (B) growth
and development, and (C) four volatile oils of A. lancea. (*P<0.05; **P<0.01; ***P<0.001).
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mechanisms underlying this effect in intercropping, which are (i)

resource complementarity and (ii), niche partitioning (Yu et al.,

2021). In our previous research, we found that the intercropping of

A. lancea with maize, calendula, marigold, etc. increased the fresh

weight and the rhizome weight of A. lancea (Peng et al., 2021).

Similar results have been found in the current study, although the

fresh weight and rhizome weight of A. lancea under the AI

treatment was not significantly higher than that under the CK

treatment. This inconspicuous effect of intercropping may be due to

the fact that our study provided adequate nutrition for A. lancea,

and this must be considered against the fact that crop diversity

largely exerts its effects by alleviating a stressful environment for

plants to increase their growth; for example, in combating nutrient

stress (Liancourt and Dolezal, 2021). In one study, the plant-plant

stimulatory effect was observably decreased with the reduction of

stress in the intercropping of maize and grass bean under

phosphorus and water deficiency conditions (Zhu et al., 2022).

Similarly, under either water sufficiency or drought stress

conditions, intercropping increased grain yield by 14% and 93%,

respectively, over monocropping (Willey, 1990).

In many plant-plant interaction studies, the strength of the

rhizosphere interaction determines plant growth outcomes

(Zhang et al., 2017; Xiao et al., 2020; Li et al., 2021), but in

our study, some rhizosphere interactions of maize evidently

failed to promote the growth of A. lancea. Maize is more

competitive than A. lancea due to its dominant position in the

nylon barrier intercropping system (Li et al., 2011; Worku, 2014;

Zhu et al., 2022), and is hence better able to absorb nutrients and

soil moisture through the nylon barrier. Therefore, the rhizome

weight of A. lancea in the AI treatment group was higher than

that in the CK treatment group, but the result was not significant

in this experiment. When barrier treatments were applied, the

rhizome weight of A. lancea in the AN and AP treatment groups

was similar to that of the CK treatment.
Aboveground action of the intercropping
system promoted the accumulation of
volatile oils in A. lancea

The contents of active ingredients in plants represent an

important indicator for evaluating the quality of TCMs

(Zhang et al., 2022), and appropriate intercropping can

improve their contents (Guo et al., 2020). The intercropping

ofMentha piperita L. and Vicia faba L. has been demonstrated

to increase the content of menthone in Vicia faba L. (Machiani

et al., 2018), while the intercropping of Dracocephalum

moldavica (D. moldavica) with Glycine max could increase

the content of volatile oils in D. moldavica (Fallah et al., 2018).

Similarly, by comparing the volatile oil contents of A. lancea

between the AI and the CK treatment, the entire intercropping

effect (aboveground + belowground) could promote the
Frontiers in Plant Science 11
accumulation of volatile oils. By comparing the CK

treatment with the AP treatment, we could verify our

previous conjecture that the aboveground effect of maize can

promote the accumulation of atractylon and atractylodin, but

inhibit the accumulation of hinesol and b-eudesmol (Peng

et al., 2021). It would be premature to draw the conclusion

that part of the belowground effect lies in promoting or

inhibiting the content of total volatile oils, so this needs

further verification.
Effects of A. lancea - maize intercropping
on the physicochemical properties of the
soil and the rhizosphere microbial
community of A. lancea

Compared with the CK treatment, the rhizosphere

microorganisms of intercropped plants may have both higher

diversity and activity levels (Welbaum et al., 2010). Under

intercropping conditions, there was a higher abundance of

Acidobacteria bacteria (Zi et al., 2020). This finding is consistent

with the existing literature. The relative abundance of the

rhizosphere microorganism Acidobacteria in A. lancea under both

the AI and AN treatment was higher than that in CK treatment

(Figures S1A, E). Changing the soil microenvironment in the plant

rhizosphere is known to be conducive to soil nutrient cycling

(Kielak et al., 2016), thereby effectively improving the uptake of

nitrogen (N), phosphorus (P), kalium (K), and other elements in the

soil by plants, which is beneficial to their growth and development

(Zeng et al., 2020; Wei et al., 2021). From the correlation analysis of

Figure 7A, we observe that TP, TOC, Av.P, and Av.K were

significantly positively correlated with the abundance of the

majority of the different A. lancea rhizosphere microorganisms

(the top 30 species), which was consistent with our Figures 6A-C

analysis, where the relative abundance of these genera under the CK

treatment was higher. The relative abundances of Streptomyces,

Candidatus Solibacter, Gemmatirosa, and Pseudolabrys were lower

in the CK treatment than in the AI treatment (Figure S3), and these

microorganisms are known to form specific symbiotic relationships

with plants to promote plant growth (Kong and Liu, 2022). From

Figure S2, we found that these PGPRwere most abundant following

the AI treatment compared to the AN treatment, and compared

with the AN and AP treatments, only the abundance of

Bradyrhizobium was significantly higher after the AI treatment.

This also provides an explanation for why some subterranean effects

have failed to promote the growth of A. lancea.
Conclusion

We analyzed the biomass, volatile oil concentration,

physicochemical properties of the soil, and rhizosphere
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microbial community of A. lancea to characterize the underlying

features of the root system interaction between A. lancea and

maize. The results showed that in the A. lancea - maize

intercropping system, maize could promote A. lancea to enrich

the beneficial microorganisms in the rhizosphere, thereby

promoting the growth of A. lancea as well as its accumulation

of volatile oil. However, it is worth noting that when there is only

partial rhizosphere interaction, the reported outcome may not be

obvious or may even be entirely absent. In summation, we have

demonstrated that intercropping maize can significantly change

the soil physicochemical properties of A. lancea, thereby

affecting the composition and structure of the microbial

community in the rhizosphere of A. lancea, which proved

beneficial to the enrichment of PGPR, and ultimately exerted a

beneficial effect on the growth of A. lancea.
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SUPPLEMENTARY FIGURE 1

Comparison of abundance in the top 10 represented phyla of the A.
lancea rhizosphere microbial community under different root

intercropping treatments employed for A. lancea - maize intercroping.
The abundance comparison at the phylum level between the (A) CK and

AN treatment, (B) CK and AP treatment, (C) AI and AN treatment, (D) AI and

AP treatment, (E) CK and AI treatment, (F) AP and AN treatment. (* P<0.05;
** P<0.01; *** P<0.001).

SUPPLEMENTARY FIGURE 2

Comparison of abundance in the top 10 represented genera of the A.
lancea rhizosphere microbial community under AI treatment, AN

treatment, and AP treatment. Comparison of microbial abundance at

the genus level between the (A) AI and AN treatment, (B) AI and AP
treatment, (C) AP and AN treatment. (* P<0.05; ** P<0.01; *** P<0.001).

SUPPLEMENTARY FIGURE 3

Abundance comparison of the top 15 genera comprising the rhizosphere
microbial community in A. lancea between the CK treatment and AI

treatments in A. lancea - maize intercropping. (* P<0.05; ** P<0.01;
*** P<0.001).

SUPPLEMENTARY TABLE 1

Spearman correlation analysis of soil physicochemical properties with
growth and development and four volatile oils of A.lancea. FW, fresh

weight; H, plant height; SD, stem diameter; BN, branch number; RW,

rhizome weight; SN, sprout number; FR, fibrous root; Hin, hinesol; Eud,
eudesmol; Atd, atractylodin; Atn, atractylon; TN, total nitrogen; TP, total

phosphorus; TK, total kalium; TOC, total organic carbon; NH+
4 ,

ammonium nitrogen; Av_P, available phosphorus; Av_K, available kalium.
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